]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/sh/mm/cache.c
sh: Ensure all PG_dcache_dirty pages are written back.
[mirror_ubuntu-zesty-kernel.git] / arch / sh / mm / cache.c
1 /*
2 * arch/sh/mm/cache.c
3 *
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2002 - 2009 Paul Mundt
6 *
7 * Released under the terms of the GNU GPL v2.0.
8 */
9 #include <linux/mm.h>
10 #include <linux/init.h>
11 #include <linux/mutex.h>
12 #include <linux/fs.h>
13 #include <linux/smp.h>
14 #include <linux/highmem.h>
15 #include <linux/module.h>
16 #include <asm/mmu_context.h>
17 #include <asm/cacheflush.h>
18
19 void (*local_flush_cache_all)(void *args) = cache_noop;
20 void (*local_flush_cache_mm)(void *args) = cache_noop;
21 void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
22 void (*local_flush_cache_page)(void *args) = cache_noop;
23 void (*local_flush_cache_range)(void *args) = cache_noop;
24 void (*local_flush_dcache_page)(void *args) = cache_noop;
25 void (*local_flush_icache_range)(void *args) = cache_noop;
26 void (*local_flush_icache_page)(void *args) = cache_noop;
27 void (*local_flush_cache_sigtramp)(void *args) = cache_noop;
28
29 void (*__flush_wback_region)(void *start, int size);
30 EXPORT_SYMBOL(__flush_wback_region);
31 void (*__flush_purge_region)(void *start, int size);
32 EXPORT_SYMBOL(__flush_purge_region);
33 void (*__flush_invalidate_region)(void *start, int size);
34 EXPORT_SYMBOL(__flush_invalidate_region);
35
36 static inline void noop__flush_region(void *start, int size)
37 {
38 }
39
40 static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
41 int wait)
42 {
43 preempt_disable();
44 smp_call_function(func, info, wait);
45 func(info);
46 preempt_enable();
47 }
48
49 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
50 unsigned long vaddr, void *dst, const void *src,
51 unsigned long len)
52 {
53 if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
54 !test_bit(PG_dcache_dirty, &page->flags)) {
55 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
56 memcpy(vto, src, len);
57 kunmap_coherent(vto);
58 } else {
59 memcpy(dst, src, len);
60 if (boot_cpu_data.dcache.n_aliases)
61 set_bit(PG_dcache_dirty, &page->flags);
62 }
63
64 if (vma->vm_flags & VM_EXEC)
65 flush_cache_page(vma, vaddr, page_to_pfn(page));
66 }
67
68 void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
69 unsigned long vaddr, void *dst, const void *src,
70 unsigned long len)
71 {
72 if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
73 !test_bit(PG_dcache_dirty, &page->flags)) {
74 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
75 memcpy(dst, vfrom, len);
76 kunmap_coherent(vfrom);
77 } else {
78 memcpy(dst, src, len);
79 if (boot_cpu_data.dcache.n_aliases)
80 set_bit(PG_dcache_dirty, &page->flags);
81 }
82 }
83
84 void copy_user_highpage(struct page *to, struct page *from,
85 unsigned long vaddr, struct vm_area_struct *vma)
86 {
87 void *vfrom, *vto;
88
89 vto = kmap_atomic(to, KM_USER1);
90
91 if (boot_cpu_data.dcache.n_aliases && page_mapped(from) &&
92 !test_bit(PG_dcache_dirty, &from->flags)) {
93 vfrom = kmap_coherent(from, vaddr);
94 copy_page(vto, vfrom);
95 kunmap_coherent(vfrom);
96 } else {
97 vfrom = kmap_atomic(from, KM_USER0);
98 copy_page(vto, vfrom);
99 kunmap_atomic(vfrom, KM_USER0);
100 }
101
102 if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK))
103 __flush_purge_region(vto, PAGE_SIZE);
104
105 kunmap_atomic(vto, KM_USER1);
106 /* Make sure this page is cleared on other CPU's too before using it */
107 smp_wmb();
108 }
109 EXPORT_SYMBOL(copy_user_highpage);
110
111 void clear_user_highpage(struct page *page, unsigned long vaddr)
112 {
113 void *kaddr = kmap_atomic(page, KM_USER0);
114
115 clear_page(kaddr);
116
117 if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK))
118 __flush_purge_region(kaddr, PAGE_SIZE);
119
120 kunmap_atomic(kaddr, KM_USER0);
121 }
122 EXPORT_SYMBOL(clear_user_highpage);
123
124 void __update_cache(struct vm_area_struct *vma,
125 unsigned long address, pte_t pte)
126 {
127 struct page *page;
128 unsigned long pfn = pte_pfn(pte);
129
130 if (!boot_cpu_data.dcache.n_aliases)
131 return;
132
133 page = pfn_to_page(pfn);
134 if (pfn_valid(pfn)) {
135 int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
136 if (dirty)
137 __flush_purge_region(page_address(page), PAGE_SIZE);
138 }
139 }
140
141 void __flush_anon_page(struct page *page, unsigned long vmaddr)
142 {
143 unsigned long addr = (unsigned long) page_address(page);
144
145 if (pages_do_alias(addr, vmaddr)) {
146 if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
147 !test_bit(PG_dcache_dirty, &page->flags)) {
148 void *kaddr;
149
150 kaddr = kmap_coherent(page, vmaddr);
151 /* XXX.. For now kunmap_coherent() does a purge */
152 /* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
153 kunmap_coherent(kaddr);
154 } else
155 __flush_purge_region((void *)addr, PAGE_SIZE);
156 }
157 }
158
159 void flush_cache_all(void)
160 {
161 cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
162 }
163 EXPORT_SYMBOL(flush_cache_all);
164
165 void flush_cache_mm(struct mm_struct *mm)
166 {
167 if (boot_cpu_data.dcache.n_aliases == 0)
168 return;
169
170 cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
171 }
172
173 void flush_cache_dup_mm(struct mm_struct *mm)
174 {
175 if (boot_cpu_data.dcache.n_aliases == 0)
176 return;
177
178 cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
179 }
180
181 void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
182 unsigned long pfn)
183 {
184 struct flusher_data data;
185
186 data.vma = vma;
187 data.addr1 = addr;
188 data.addr2 = pfn;
189
190 cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
191 }
192
193 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
194 unsigned long end)
195 {
196 struct flusher_data data;
197
198 data.vma = vma;
199 data.addr1 = start;
200 data.addr2 = end;
201
202 cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
203 }
204 EXPORT_SYMBOL(flush_cache_range);
205
206 void flush_dcache_page(struct page *page)
207 {
208 cacheop_on_each_cpu(local_flush_dcache_page, page, 1);
209 }
210 EXPORT_SYMBOL(flush_dcache_page);
211
212 void flush_icache_range(unsigned long start, unsigned long end)
213 {
214 struct flusher_data data;
215
216 data.vma = NULL;
217 data.addr1 = start;
218 data.addr2 = end;
219
220 cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
221 }
222
223 void flush_icache_page(struct vm_area_struct *vma, struct page *page)
224 {
225 /* Nothing uses the VMA, so just pass the struct page along */
226 cacheop_on_each_cpu(local_flush_icache_page, page, 1);
227 }
228
229 void flush_cache_sigtramp(unsigned long address)
230 {
231 cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
232 }
233
234 static void compute_alias(struct cache_info *c)
235 {
236 c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
237 c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
238 }
239
240 static void __init emit_cache_params(void)
241 {
242 printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
243 boot_cpu_data.icache.ways,
244 boot_cpu_data.icache.sets,
245 boot_cpu_data.icache.way_incr);
246 printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
247 boot_cpu_data.icache.entry_mask,
248 boot_cpu_data.icache.alias_mask,
249 boot_cpu_data.icache.n_aliases);
250 printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
251 boot_cpu_data.dcache.ways,
252 boot_cpu_data.dcache.sets,
253 boot_cpu_data.dcache.way_incr);
254 printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
255 boot_cpu_data.dcache.entry_mask,
256 boot_cpu_data.dcache.alias_mask,
257 boot_cpu_data.dcache.n_aliases);
258
259 /*
260 * Emit Secondary Cache parameters if the CPU has a probed L2.
261 */
262 if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
263 printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
264 boot_cpu_data.scache.ways,
265 boot_cpu_data.scache.sets,
266 boot_cpu_data.scache.way_incr);
267 printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
268 boot_cpu_data.scache.entry_mask,
269 boot_cpu_data.scache.alias_mask,
270 boot_cpu_data.scache.n_aliases);
271 }
272 }
273
274 void __init cpu_cache_init(void)
275 {
276 unsigned int cache_disabled = 0;
277
278 #ifdef CCR
279 cache_disabled = !(__raw_readl(CCR) & CCR_CACHE_ENABLE);
280 #endif
281
282 compute_alias(&boot_cpu_data.icache);
283 compute_alias(&boot_cpu_data.dcache);
284 compute_alias(&boot_cpu_data.scache);
285
286 __flush_wback_region = noop__flush_region;
287 __flush_purge_region = noop__flush_region;
288 __flush_invalidate_region = noop__flush_region;
289
290 /*
291 * No flushing is necessary in the disabled cache case so we can
292 * just keep the noop functions in local_flush_..() and __flush_..()
293 */
294 if (unlikely(cache_disabled))
295 goto skip;
296
297 if (boot_cpu_data.family == CPU_FAMILY_SH2) {
298 extern void __weak sh2_cache_init(void);
299
300 sh2_cache_init();
301 }
302
303 if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
304 extern void __weak sh2a_cache_init(void);
305
306 sh2a_cache_init();
307 }
308
309 if (boot_cpu_data.family == CPU_FAMILY_SH3) {
310 extern void __weak sh3_cache_init(void);
311
312 sh3_cache_init();
313
314 if ((boot_cpu_data.type == CPU_SH7705) &&
315 (boot_cpu_data.dcache.sets == 512)) {
316 extern void __weak sh7705_cache_init(void);
317
318 sh7705_cache_init();
319 }
320 }
321
322 if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
323 (boot_cpu_data.family == CPU_FAMILY_SH4A) ||
324 (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
325 extern void __weak sh4_cache_init(void);
326
327 sh4_cache_init();
328 }
329
330 if (boot_cpu_data.family == CPU_FAMILY_SH5) {
331 extern void __weak sh5_cache_init(void);
332
333 sh5_cache_init();
334 }
335
336 skip:
337 emit_cache_params();
338 }