]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sparc/kernel/perf_event.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[mirror_ubuntu-artful-kernel.git] / arch / sparc / kernel / perf_event.c
1 /* Performance event support for sparc64.
2 *
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4 *
5 * This code is based almost entirely upon the x86 perf event
6 * code, which is:
7 *
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/kernel.h>
18 #include <linux/kdebug.h>
19 #include <linux/mutex.h>
20
21 #include <asm/stacktrace.h>
22 #include <asm/cpudata.h>
23 #include <asm/uaccess.h>
24 #include <asm/atomic.h>
25 #include <asm/nmi.h>
26 #include <asm/pcr.h>
27
28 #include "kstack.h"
29
30 /* Sparc64 chips have two performance counters, 32-bits each, with
31 * overflow interrupts generated on transition from 0xffffffff to 0.
32 * The counters are accessed in one go using a 64-bit register.
33 *
34 * Both counters are controlled using a single control register. The
35 * only way to stop all sampling is to clear all of the context (user,
36 * supervisor, hypervisor) sampling enable bits. But these bits apply
37 * to both counters, thus the two counters can't be enabled/disabled
38 * individually.
39 *
40 * The control register has two event fields, one for each of the two
41 * counters. It's thus nearly impossible to have one counter going
42 * while keeping the other one stopped. Therefore it is possible to
43 * get overflow interrupts for counters not currently "in use" and
44 * that condition must be checked in the overflow interrupt handler.
45 *
46 * So we use a hack, in that we program inactive counters with the
47 * "sw_count0" and "sw_count1" events. These count how many times
48 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
49 * unusual way to encode a NOP and therefore will not trigger in
50 * normal code.
51 */
52
53 #define MAX_HWEVENTS 2
54 #define MAX_PERIOD ((1UL << 32) - 1)
55
56 #define PIC_UPPER_INDEX 0
57 #define PIC_LOWER_INDEX 1
58 #define PIC_NO_INDEX -1
59
60 struct cpu_hw_events {
61 /* Number of events currently scheduled onto this cpu.
62 * This tells how many entries in the arrays below
63 * are valid.
64 */
65 int n_events;
66
67 /* Number of new events added since the last hw_perf_disable().
68 * This works because the perf event layer always adds new
69 * events inside of a perf_{disable,enable}() sequence.
70 */
71 int n_added;
72
73 /* Array of events current scheduled on this cpu. */
74 struct perf_event *event[MAX_HWEVENTS];
75
76 /* Array of encoded longs, specifying the %pcr register
77 * encoding and the mask of PIC counters this even can
78 * be scheduled on. See perf_event_encode() et al.
79 */
80 unsigned long events[MAX_HWEVENTS];
81
82 /* The current counter index assigned to an event. When the
83 * event hasn't been programmed into the cpu yet, this will
84 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
85 * we ought to schedule the event.
86 */
87 int current_idx[MAX_HWEVENTS];
88
89 /* Software copy of %pcr register on this cpu. */
90 u64 pcr;
91
92 /* Enabled/disable state. */
93 int enabled;
94 };
95 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
96
97 /* An event map describes the characteristics of a performance
98 * counter event. In particular it gives the encoding as well as
99 * a mask telling which counters the event can be measured on.
100 */
101 struct perf_event_map {
102 u16 encoding;
103 u8 pic_mask;
104 #define PIC_NONE 0x00
105 #define PIC_UPPER 0x01
106 #define PIC_LOWER 0x02
107 };
108
109 /* Encode a perf_event_map entry into a long. */
110 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
111 {
112 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
113 }
114
115 static u8 perf_event_get_msk(unsigned long val)
116 {
117 return val & 0xff;
118 }
119
120 static u64 perf_event_get_enc(unsigned long val)
121 {
122 return val >> 16;
123 }
124
125 #define C(x) PERF_COUNT_HW_CACHE_##x
126
127 #define CACHE_OP_UNSUPPORTED 0xfffe
128 #define CACHE_OP_NONSENSE 0xffff
129
130 typedef struct perf_event_map cache_map_t
131 [PERF_COUNT_HW_CACHE_MAX]
132 [PERF_COUNT_HW_CACHE_OP_MAX]
133 [PERF_COUNT_HW_CACHE_RESULT_MAX];
134
135 struct sparc_pmu {
136 const struct perf_event_map *(*event_map)(int);
137 const cache_map_t *cache_map;
138 int max_events;
139 int upper_shift;
140 int lower_shift;
141 int event_mask;
142 int hv_bit;
143 int irq_bit;
144 int upper_nop;
145 int lower_nop;
146 };
147
148 static const struct perf_event_map ultra3_perfmon_event_map[] = {
149 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
150 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
151 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
152 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
153 };
154
155 static const struct perf_event_map *ultra3_event_map(int event_id)
156 {
157 return &ultra3_perfmon_event_map[event_id];
158 }
159
160 static const cache_map_t ultra3_cache_map = {
161 [C(L1D)] = {
162 [C(OP_READ)] = {
163 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
164 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
165 },
166 [C(OP_WRITE)] = {
167 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
168 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
169 },
170 [C(OP_PREFETCH)] = {
171 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
172 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
173 },
174 },
175 [C(L1I)] = {
176 [C(OP_READ)] = {
177 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
178 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
179 },
180 [ C(OP_WRITE) ] = {
181 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
182 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
183 },
184 [ C(OP_PREFETCH) ] = {
185 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
186 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
187 },
188 },
189 [C(LL)] = {
190 [C(OP_READ)] = {
191 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
192 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
193 },
194 [C(OP_WRITE)] = {
195 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
196 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
197 },
198 [C(OP_PREFETCH)] = {
199 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
200 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
201 },
202 },
203 [C(DTLB)] = {
204 [C(OP_READ)] = {
205 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
206 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
207 },
208 [ C(OP_WRITE) ] = {
209 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
210 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
211 },
212 [ C(OP_PREFETCH) ] = {
213 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
214 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
215 },
216 },
217 [C(ITLB)] = {
218 [C(OP_READ)] = {
219 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
220 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
221 },
222 [ C(OP_WRITE) ] = {
223 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
224 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
225 },
226 [ C(OP_PREFETCH) ] = {
227 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
228 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
229 },
230 },
231 [C(BPU)] = {
232 [C(OP_READ)] = {
233 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
234 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
235 },
236 [ C(OP_WRITE) ] = {
237 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
238 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
239 },
240 [ C(OP_PREFETCH) ] = {
241 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
242 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
243 },
244 },
245 };
246
247 static const struct sparc_pmu ultra3_pmu = {
248 .event_map = ultra3_event_map,
249 .cache_map = &ultra3_cache_map,
250 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
251 .upper_shift = 11,
252 .lower_shift = 4,
253 .event_mask = 0x3f,
254 .upper_nop = 0x1c,
255 .lower_nop = 0x14,
256 };
257
258 /* Niagara1 is very limited. The upper PIC is hard-locked to count
259 * only instructions, so it is free running which creates all kinds of
260 * problems. Some hardware designs make one wonder if the creator
261 * even looked at how this stuff gets used by software.
262 */
263 static const struct perf_event_map niagara1_perfmon_event_map[] = {
264 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
265 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
266 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
267 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
268 };
269
270 static const struct perf_event_map *niagara1_event_map(int event_id)
271 {
272 return &niagara1_perfmon_event_map[event_id];
273 }
274
275 static const cache_map_t niagara1_cache_map = {
276 [C(L1D)] = {
277 [C(OP_READ)] = {
278 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
279 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
280 },
281 [C(OP_WRITE)] = {
282 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
283 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
284 },
285 [C(OP_PREFETCH)] = {
286 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
287 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
288 },
289 },
290 [C(L1I)] = {
291 [C(OP_READ)] = {
292 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
293 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
294 },
295 [ C(OP_WRITE) ] = {
296 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
297 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
298 },
299 [ C(OP_PREFETCH) ] = {
300 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
301 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
302 },
303 },
304 [C(LL)] = {
305 [C(OP_READ)] = {
306 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
307 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
308 },
309 [C(OP_WRITE)] = {
310 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
311 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
312 },
313 [C(OP_PREFETCH)] = {
314 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
315 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
316 },
317 },
318 [C(DTLB)] = {
319 [C(OP_READ)] = {
320 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
321 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
322 },
323 [ C(OP_WRITE) ] = {
324 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
325 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
326 },
327 [ C(OP_PREFETCH) ] = {
328 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
329 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
330 },
331 },
332 [C(ITLB)] = {
333 [C(OP_READ)] = {
334 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
335 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
336 },
337 [ C(OP_WRITE) ] = {
338 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
339 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
340 },
341 [ C(OP_PREFETCH) ] = {
342 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
343 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
344 },
345 },
346 [C(BPU)] = {
347 [C(OP_READ)] = {
348 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
349 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
350 },
351 [ C(OP_WRITE) ] = {
352 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
353 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
354 },
355 [ C(OP_PREFETCH) ] = {
356 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
357 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
358 },
359 },
360 };
361
362 static const struct sparc_pmu niagara1_pmu = {
363 .event_map = niagara1_event_map,
364 .cache_map = &niagara1_cache_map,
365 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
366 .upper_shift = 0,
367 .lower_shift = 4,
368 .event_mask = 0x7,
369 .upper_nop = 0x0,
370 .lower_nop = 0x0,
371 };
372
373 static const struct perf_event_map niagara2_perfmon_event_map[] = {
374 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
375 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
376 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
377 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
378 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
379 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
380 };
381
382 static const struct perf_event_map *niagara2_event_map(int event_id)
383 {
384 return &niagara2_perfmon_event_map[event_id];
385 }
386
387 static const cache_map_t niagara2_cache_map = {
388 [C(L1D)] = {
389 [C(OP_READ)] = {
390 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
391 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
392 },
393 [C(OP_WRITE)] = {
394 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
395 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
396 },
397 [C(OP_PREFETCH)] = {
398 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
399 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
400 },
401 },
402 [C(L1I)] = {
403 [C(OP_READ)] = {
404 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
405 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
406 },
407 [ C(OP_WRITE) ] = {
408 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
409 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
410 },
411 [ C(OP_PREFETCH) ] = {
412 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
413 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
414 },
415 },
416 [C(LL)] = {
417 [C(OP_READ)] = {
418 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
419 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
420 },
421 [C(OP_WRITE)] = {
422 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
423 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
424 },
425 [C(OP_PREFETCH)] = {
426 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
427 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
428 },
429 },
430 [C(DTLB)] = {
431 [C(OP_READ)] = {
432 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
433 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
434 },
435 [ C(OP_WRITE) ] = {
436 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
437 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
438 },
439 [ C(OP_PREFETCH) ] = {
440 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
441 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
442 },
443 },
444 [C(ITLB)] = {
445 [C(OP_READ)] = {
446 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
447 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
448 },
449 [ C(OP_WRITE) ] = {
450 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
451 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
452 },
453 [ C(OP_PREFETCH) ] = {
454 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
455 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
456 },
457 },
458 [C(BPU)] = {
459 [C(OP_READ)] = {
460 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
461 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
462 },
463 [ C(OP_WRITE) ] = {
464 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
465 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
466 },
467 [ C(OP_PREFETCH) ] = {
468 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
469 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
470 },
471 },
472 };
473
474 static const struct sparc_pmu niagara2_pmu = {
475 .event_map = niagara2_event_map,
476 .cache_map = &niagara2_cache_map,
477 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
478 .upper_shift = 19,
479 .lower_shift = 6,
480 .event_mask = 0xfff,
481 .hv_bit = 0x8,
482 .irq_bit = 0x30,
483 .upper_nop = 0x220,
484 .lower_nop = 0x220,
485 };
486
487 static const struct sparc_pmu *sparc_pmu __read_mostly;
488
489 static u64 event_encoding(u64 event_id, int idx)
490 {
491 if (idx == PIC_UPPER_INDEX)
492 event_id <<= sparc_pmu->upper_shift;
493 else
494 event_id <<= sparc_pmu->lower_shift;
495 return event_id;
496 }
497
498 static u64 mask_for_index(int idx)
499 {
500 return event_encoding(sparc_pmu->event_mask, idx);
501 }
502
503 static u64 nop_for_index(int idx)
504 {
505 return event_encoding(idx == PIC_UPPER_INDEX ?
506 sparc_pmu->upper_nop :
507 sparc_pmu->lower_nop, idx);
508 }
509
510 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
511 {
512 u64 val, mask = mask_for_index(idx);
513
514 val = cpuc->pcr;
515 val &= ~mask;
516 val |= hwc->config;
517 cpuc->pcr = val;
518
519 pcr_ops->write(cpuc->pcr);
520 }
521
522 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
523 {
524 u64 mask = mask_for_index(idx);
525 u64 nop = nop_for_index(idx);
526 u64 val;
527
528 val = cpuc->pcr;
529 val &= ~mask;
530 val |= nop;
531 cpuc->pcr = val;
532
533 pcr_ops->write(cpuc->pcr);
534 }
535
536 static u32 read_pmc(int idx)
537 {
538 u64 val;
539
540 read_pic(val);
541 if (idx == PIC_UPPER_INDEX)
542 val >>= 32;
543
544 return val & 0xffffffff;
545 }
546
547 static void write_pmc(int idx, u64 val)
548 {
549 u64 shift, mask, pic;
550
551 shift = 0;
552 if (idx == PIC_UPPER_INDEX)
553 shift = 32;
554
555 mask = ((u64) 0xffffffff) << shift;
556 val <<= shift;
557
558 read_pic(pic);
559 pic &= ~mask;
560 pic |= val;
561 write_pic(pic);
562 }
563
564 static u64 sparc_perf_event_update(struct perf_event *event,
565 struct hw_perf_event *hwc, int idx)
566 {
567 int shift = 64 - 32;
568 u64 prev_raw_count, new_raw_count;
569 s64 delta;
570
571 again:
572 prev_raw_count = atomic64_read(&hwc->prev_count);
573 new_raw_count = read_pmc(idx);
574
575 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
576 new_raw_count) != prev_raw_count)
577 goto again;
578
579 delta = (new_raw_count << shift) - (prev_raw_count << shift);
580 delta >>= shift;
581
582 atomic64_add(delta, &event->count);
583 atomic64_sub(delta, &hwc->period_left);
584
585 return new_raw_count;
586 }
587
588 static int sparc_perf_event_set_period(struct perf_event *event,
589 struct hw_perf_event *hwc, int idx)
590 {
591 s64 left = atomic64_read(&hwc->period_left);
592 s64 period = hwc->sample_period;
593 int ret = 0;
594
595 if (unlikely(left <= -period)) {
596 left = period;
597 atomic64_set(&hwc->period_left, left);
598 hwc->last_period = period;
599 ret = 1;
600 }
601
602 if (unlikely(left <= 0)) {
603 left += period;
604 atomic64_set(&hwc->period_left, left);
605 hwc->last_period = period;
606 ret = 1;
607 }
608 if (left > MAX_PERIOD)
609 left = MAX_PERIOD;
610
611 atomic64_set(&hwc->prev_count, (u64)-left);
612
613 write_pmc(idx, (u64)(-left) & 0xffffffff);
614
615 perf_event_update_userpage(event);
616
617 return ret;
618 }
619
620 /* If performance event entries have been added, move existing
621 * events around (if necessary) and then assign new entries to
622 * counters.
623 */
624 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
625 {
626 int i;
627
628 if (!cpuc->n_added)
629 goto out;
630
631 /* Read in the counters which are moving. */
632 for (i = 0; i < cpuc->n_events; i++) {
633 struct perf_event *cp = cpuc->event[i];
634
635 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
636 cpuc->current_idx[i] != cp->hw.idx) {
637 sparc_perf_event_update(cp, &cp->hw,
638 cpuc->current_idx[i]);
639 cpuc->current_idx[i] = PIC_NO_INDEX;
640 }
641 }
642
643 /* Assign to counters all unassigned events. */
644 for (i = 0; i < cpuc->n_events; i++) {
645 struct perf_event *cp = cpuc->event[i];
646 struct hw_perf_event *hwc = &cp->hw;
647 int idx = hwc->idx;
648 u64 enc;
649
650 if (cpuc->current_idx[i] != PIC_NO_INDEX)
651 continue;
652
653 sparc_perf_event_set_period(cp, hwc, idx);
654 cpuc->current_idx[i] = idx;
655
656 enc = perf_event_get_enc(cpuc->events[i]);
657 pcr |= event_encoding(enc, idx);
658 }
659 out:
660 return pcr;
661 }
662
663 void hw_perf_enable(void)
664 {
665 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
666 u64 pcr;
667
668 if (cpuc->enabled)
669 return;
670
671 cpuc->enabled = 1;
672 barrier();
673
674 pcr = cpuc->pcr;
675 if (!cpuc->n_events) {
676 pcr = 0;
677 } else {
678 pcr = maybe_change_configuration(cpuc, pcr);
679
680 /* We require that all of the events have the same
681 * configuration, so just fetch the settings from the
682 * first entry.
683 */
684 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
685 }
686
687 pcr_ops->write(cpuc->pcr);
688 }
689
690 void hw_perf_disable(void)
691 {
692 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
693 u64 val;
694
695 if (!cpuc->enabled)
696 return;
697
698 cpuc->enabled = 0;
699 cpuc->n_added = 0;
700
701 val = cpuc->pcr;
702 val &= ~(PCR_UTRACE | PCR_STRACE |
703 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
704 cpuc->pcr = val;
705
706 pcr_ops->write(cpuc->pcr);
707 }
708
709 static void sparc_pmu_disable(struct perf_event *event)
710 {
711 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
712 struct hw_perf_event *hwc = &event->hw;
713 unsigned long flags;
714 int i;
715
716 local_irq_save(flags);
717 perf_disable();
718
719 for (i = 0; i < cpuc->n_events; i++) {
720 if (event == cpuc->event[i]) {
721 int idx = cpuc->current_idx[i];
722
723 /* Shift remaining entries down into
724 * the existing slot.
725 */
726 while (++i < cpuc->n_events) {
727 cpuc->event[i - 1] = cpuc->event[i];
728 cpuc->events[i - 1] = cpuc->events[i];
729 cpuc->current_idx[i - 1] =
730 cpuc->current_idx[i];
731 }
732
733 /* Absorb the final count and turn off the
734 * event.
735 */
736 sparc_pmu_disable_event(cpuc, hwc, idx);
737 barrier();
738 sparc_perf_event_update(event, hwc, idx);
739
740 perf_event_update_userpage(event);
741
742 cpuc->n_events--;
743 break;
744 }
745 }
746
747 perf_enable();
748 local_irq_restore(flags);
749 }
750
751 static int active_event_index(struct cpu_hw_events *cpuc,
752 struct perf_event *event)
753 {
754 int i;
755
756 for (i = 0; i < cpuc->n_events; i++) {
757 if (cpuc->event[i] == event)
758 break;
759 }
760 BUG_ON(i == cpuc->n_events);
761 return cpuc->current_idx[i];
762 }
763
764 static void sparc_pmu_read(struct perf_event *event)
765 {
766 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
767 int idx = active_event_index(cpuc, event);
768 struct hw_perf_event *hwc = &event->hw;
769
770 sparc_perf_event_update(event, hwc, idx);
771 }
772
773 static void sparc_pmu_unthrottle(struct perf_event *event)
774 {
775 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
776 int idx = active_event_index(cpuc, event);
777 struct hw_perf_event *hwc = &event->hw;
778
779 sparc_pmu_enable_event(cpuc, hwc, idx);
780 }
781
782 static atomic_t active_events = ATOMIC_INIT(0);
783 static DEFINE_MUTEX(pmc_grab_mutex);
784
785 static void perf_stop_nmi_watchdog(void *unused)
786 {
787 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
788
789 stop_nmi_watchdog(NULL);
790 cpuc->pcr = pcr_ops->read();
791 }
792
793 void perf_event_grab_pmc(void)
794 {
795 if (atomic_inc_not_zero(&active_events))
796 return;
797
798 mutex_lock(&pmc_grab_mutex);
799 if (atomic_read(&active_events) == 0) {
800 if (atomic_read(&nmi_active) > 0) {
801 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
802 BUG_ON(atomic_read(&nmi_active) != 0);
803 }
804 atomic_inc(&active_events);
805 }
806 mutex_unlock(&pmc_grab_mutex);
807 }
808
809 void perf_event_release_pmc(void)
810 {
811 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
812 if (atomic_read(&nmi_active) == 0)
813 on_each_cpu(start_nmi_watchdog, NULL, 1);
814 mutex_unlock(&pmc_grab_mutex);
815 }
816 }
817
818 static const struct perf_event_map *sparc_map_cache_event(u64 config)
819 {
820 unsigned int cache_type, cache_op, cache_result;
821 const struct perf_event_map *pmap;
822
823 if (!sparc_pmu->cache_map)
824 return ERR_PTR(-ENOENT);
825
826 cache_type = (config >> 0) & 0xff;
827 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
828 return ERR_PTR(-EINVAL);
829
830 cache_op = (config >> 8) & 0xff;
831 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
832 return ERR_PTR(-EINVAL);
833
834 cache_result = (config >> 16) & 0xff;
835 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
836 return ERR_PTR(-EINVAL);
837
838 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
839
840 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
841 return ERR_PTR(-ENOENT);
842
843 if (pmap->encoding == CACHE_OP_NONSENSE)
844 return ERR_PTR(-EINVAL);
845
846 return pmap;
847 }
848
849 static void hw_perf_event_destroy(struct perf_event *event)
850 {
851 perf_event_release_pmc();
852 }
853
854 /* Make sure all events can be scheduled into the hardware at
855 * the same time. This is simplified by the fact that we only
856 * need to support 2 simultaneous HW events.
857 *
858 * As a side effect, the evts[]->hw.idx values will be assigned
859 * on success. These are pending indexes. When the events are
860 * actually programmed into the chip, these values will propagate
861 * to the per-cpu cpuc->current_idx[] slots, see the code in
862 * maybe_change_configuration() for details.
863 */
864 static int sparc_check_constraints(struct perf_event **evts,
865 unsigned long *events, int n_ev)
866 {
867 u8 msk0 = 0, msk1 = 0;
868 int idx0 = 0;
869
870 /* This case is possible when we are invoked from
871 * hw_perf_group_sched_in().
872 */
873 if (!n_ev)
874 return 0;
875
876 if (n_ev > perf_max_events)
877 return -1;
878
879 msk0 = perf_event_get_msk(events[0]);
880 if (n_ev == 1) {
881 if (msk0 & PIC_LOWER)
882 idx0 = 1;
883 goto success;
884 }
885 BUG_ON(n_ev != 2);
886 msk1 = perf_event_get_msk(events[1]);
887
888 /* If both events can go on any counter, OK. */
889 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
890 msk1 == (PIC_UPPER | PIC_LOWER))
891 goto success;
892
893 /* If one event is limited to a specific counter,
894 * and the other can go on both, OK.
895 */
896 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
897 msk1 == (PIC_UPPER | PIC_LOWER)) {
898 if (msk0 & PIC_LOWER)
899 idx0 = 1;
900 goto success;
901 }
902
903 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
904 msk0 == (PIC_UPPER | PIC_LOWER)) {
905 if (msk1 & PIC_UPPER)
906 idx0 = 1;
907 goto success;
908 }
909
910 /* If the events are fixed to different counters, OK. */
911 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
912 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
913 if (msk0 & PIC_LOWER)
914 idx0 = 1;
915 goto success;
916 }
917
918 /* Otherwise, there is a conflict. */
919 return -1;
920
921 success:
922 evts[0]->hw.idx = idx0;
923 if (n_ev == 2)
924 evts[1]->hw.idx = idx0 ^ 1;
925 return 0;
926 }
927
928 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
929 {
930 int eu = 0, ek = 0, eh = 0;
931 struct perf_event *event;
932 int i, n, first;
933
934 n = n_prev + n_new;
935 if (n <= 1)
936 return 0;
937
938 first = 1;
939 for (i = 0; i < n; i++) {
940 event = evts[i];
941 if (first) {
942 eu = event->attr.exclude_user;
943 ek = event->attr.exclude_kernel;
944 eh = event->attr.exclude_hv;
945 first = 0;
946 } else if (event->attr.exclude_user != eu ||
947 event->attr.exclude_kernel != ek ||
948 event->attr.exclude_hv != eh) {
949 return -EAGAIN;
950 }
951 }
952
953 return 0;
954 }
955
956 static int collect_events(struct perf_event *group, int max_count,
957 struct perf_event *evts[], unsigned long *events,
958 int *current_idx)
959 {
960 struct perf_event *event;
961 int n = 0;
962
963 if (!is_software_event(group)) {
964 if (n >= max_count)
965 return -1;
966 evts[n] = group;
967 events[n] = group->hw.event_base;
968 current_idx[n++] = PIC_NO_INDEX;
969 }
970 list_for_each_entry(event, &group->sibling_list, group_entry) {
971 if (!is_software_event(event) &&
972 event->state != PERF_EVENT_STATE_OFF) {
973 if (n >= max_count)
974 return -1;
975 evts[n] = event;
976 events[n] = event->hw.event_base;
977 current_idx[n++] = PIC_NO_INDEX;
978 }
979 }
980 return n;
981 }
982
983 static void event_sched_in(struct perf_event *event, int cpu)
984 {
985 event->state = PERF_EVENT_STATE_ACTIVE;
986 event->oncpu = cpu;
987 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
988 if (is_software_event(event))
989 event->pmu->enable(event);
990 }
991
992 int hw_perf_group_sched_in(struct perf_event *group_leader,
993 struct perf_cpu_context *cpuctx,
994 struct perf_event_context *ctx, int cpu)
995 {
996 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
997 struct perf_event *sub;
998 int n0, n;
999
1000 if (!sparc_pmu)
1001 return 0;
1002
1003 n0 = cpuc->n_events;
1004 n = collect_events(group_leader, perf_max_events - n0,
1005 &cpuc->event[n0], &cpuc->events[n0],
1006 &cpuc->current_idx[n0]);
1007 if (n < 0)
1008 return -EAGAIN;
1009 if (check_excludes(cpuc->event, n0, n))
1010 return -EINVAL;
1011 if (sparc_check_constraints(cpuc->event, cpuc->events, n + n0))
1012 return -EAGAIN;
1013 cpuc->n_events = n0 + n;
1014 cpuc->n_added += n;
1015
1016 cpuctx->active_oncpu += n;
1017 n = 1;
1018 event_sched_in(group_leader, cpu);
1019 list_for_each_entry(sub, &group_leader->sibling_list, group_entry) {
1020 if (sub->state != PERF_EVENT_STATE_OFF) {
1021 event_sched_in(sub, cpu);
1022 n++;
1023 }
1024 }
1025 ctx->nr_active += n;
1026
1027 return 1;
1028 }
1029
1030 static int sparc_pmu_enable(struct perf_event *event)
1031 {
1032 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1033 int n0, ret = -EAGAIN;
1034 unsigned long flags;
1035
1036 local_irq_save(flags);
1037 perf_disable();
1038
1039 n0 = cpuc->n_events;
1040 if (n0 >= perf_max_events)
1041 goto out;
1042
1043 cpuc->event[n0] = event;
1044 cpuc->events[n0] = event->hw.event_base;
1045 cpuc->current_idx[n0] = PIC_NO_INDEX;
1046
1047 if (check_excludes(cpuc->event, n0, 1))
1048 goto out;
1049 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1050 goto out;
1051
1052 cpuc->n_events++;
1053 cpuc->n_added++;
1054
1055 ret = 0;
1056 out:
1057 perf_enable();
1058 local_irq_restore(flags);
1059 return ret;
1060 }
1061
1062 static int __hw_perf_event_init(struct perf_event *event)
1063 {
1064 struct perf_event_attr *attr = &event->attr;
1065 struct perf_event *evts[MAX_HWEVENTS];
1066 struct hw_perf_event *hwc = &event->hw;
1067 unsigned long events[MAX_HWEVENTS];
1068 int current_idx_dmy[MAX_HWEVENTS];
1069 const struct perf_event_map *pmap;
1070 int n;
1071
1072 if (atomic_read(&nmi_active) < 0)
1073 return -ENODEV;
1074
1075 if (attr->type == PERF_TYPE_HARDWARE) {
1076 if (attr->config >= sparc_pmu->max_events)
1077 return -EINVAL;
1078 pmap = sparc_pmu->event_map(attr->config);
1079 } else if (attr->type == PERF_TYPE_HW_CACHE) {
1080 pmap = sparc_map_cache_event(attr->config);
1081 if (IS_ERR(pmap))
1082 return PTR_ERR(pmap);
1083 } else
1084 return -EOPNOTSUPP;
1085
1086 /* We save the enable bits in the config_base. */
1087 hwc->config_base = sparc_pmu->irq_bit;
1088 if (!attr->exclude_user)
1089 hwc->config_base |= PCR_UTRACE;
1090 if (!attr->exclude_kernel)
1091 hwc->config_base |= PCR_STRACE;
1092 if (!attr->exclude_hv)
1093 hwc->config_base |= sparc_pmu->hv_bit;
1094
1095 hwc->event_base = perf_event_encode(pmap);
1096
1097 n = 0;
1098 if (event->group_leader != event) {
1099 n = collect_events(event->group_leader,
1100 perf_max_events - 1,
1101 evts, events, current_idx_dmy);
1102 if (n < 0)
1103 return -EINVAL;
1104 }
1105 events[n] = hwc->event_base;
1106 evts[n] = event;
1107
1108 if (check_excludes(evts, n, 1))
1109 return -EINVAL;
1110
1111 if (sparc_check_constraints(evts, events, n + 1))
1112 return -EINVAL;
1113
1114 hwc->idx = PIC_NO_INDEX;
1115
1116 /* Try to do all error checking before this point, as unwinding
1117 * state after grabbing the PMC is difficult.
1118 */
1119 perf_event_grab_pmc();
1120 event->destroy = hw_perf_event_destroy;
1121
1122 if (!hwc->sample_period) {
1123 hwc->sample_period = MAX_PERIOD;
1124 hwc->last_period = hwc->sample_period;
1125 atomic64_set(&hwc->period_left, hwc->sample_period);
1126 }
1127
1128 return 0;
1129 }
1130
1131 static const struct pmu pmu = {
1132 .enable = sparc_pmu_enable,
1133 .disable = sparc_pmu_disable,
1134 .read = sparc_pmu_read,
1135 .unthrottle = sparc_pmu_unthrottle,
1136 };
1137
1138 const struct pmu *hw_perf_event_init(struct perf_event *event)
1139 {
1140 int err = __hw_perf_event_init(event);
1141
1142 if (err)
1143 return ERR_PTR(err);
1144 return &pmu;
1145 }
1146
1147 void perf_event_print_debug(void)
1148 {
1149 unsigned long flags;
1150 u64 pcr, pic;
1151 int cpu;
1152
1153 if (!sparc_pmu)
1154 return;
1155
1156 local_irq_save(flags);
1157
1158 cpu = smp_processor_id();
1159
1160 pcr = pcr_ops->read();
1161 read_pic(pic);
1162
1163 pr_info("\n");
1164 pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1165 cpu, pcr, pic);
1166
1167 local_irq_restore(flags);
1168 }
1169
1170 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1171 unsigned long cmd, void *__args)
1172 {
1173 struct die_args *args = __args;
1174 struct perf_sample_data data;
1175 struct cpu_hw_events *cpuc;
1176 struct pt_regs *regs;
1177 int i;
1178
1179 if (!atomic_read(&active_events))
1180 return NOTIFY_DONE;
1181
1182 switch (cmd) {
1183 case DIE_NMI:
1184 break;
1185
1186 default:
1187 return NOTIFY_DONE;
1188 }
1189
1190 regs = args->regs;
1191
1192 data.addr = 0;
1193
1194 cpuc = &__get_cpu_var(cpu_hw_events);
1195
1196 /* If the PMU has the TOE IRQ enable bits, we need to do a
1197 * dummy write to the %pcr to clear the overflow bits and thus
1198 * the interrupt.
1199 *
1200 * Do this before we peek at the counters to determine
1201 * overflow so we don't lose any events.
1202 */
1203 if (sparc_pmu->irq_bit)
1204 pcr_ops->write(cpuc->pcr);
1205
1206 for (i = 0; i < cpuc->n_events; i++) {
1207 struct perf_event *event = cpuc->event[i];
1208 int idx = cpuc->current_idx[i];
1209 struct hw_perf_event *hwc;
1210 u64 val;
1211
1212 hwc = &event->hw;
1213 val = sparc_perf_event_update(event, hwc, idx);
1214 if (val & (1ULL << 31))
1215 continue;
1216
1217 data.period = event->hw.last_period;
1218 if (!sparc_perf_event_set_period(event, hwc, idx))
1219 continue;
1220
1221 if (perf_event_overflow(event, 1, &data, regs))
1222 sparc_pmu_disable_event(cpuc, hwc, idx);
1223 }
1224
1225 return NOTIFY_STOP;
1226 }
1227
1228 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1229 .notifier_call = perf_event_nmi_handler,
1230 };
1231
1232 static bool __init supported_pmu(void)
1233 {
1234 if (!strcmp(sparc_pmu_type, "ultra3") ||
1235 !strcmp(sparc_pmu_type, "ultra3+") ||
1236 !strcmp(sparc_pmu_type, "ultra3i") ||
1237 !strcmp(sparc_pmu_type, "ultra4+")) {
1238 sparc_pmu = &ultra3_pmu;
1239 return true;
1240 }
1241 if (!strcmp(sparc_pmu_type, "niagara")) {
1242 sparc_pmu = &niagara1_pmu;
1243 return true;
1244 }
1245 if (!strcmp(sparc_pmu_type, "niagara2")) {
1246 sparc_pmu = &niagara2_pmu;
1247 return true;
1248 }
1249 return false;
1250 }
1251
1252 void __init init_hw_perf_events(void)
1253 {
1254 pr_info("Performance events: ");
1255
1256 if (!supported_pmu()) {
1257 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1258 return;
1259 }
1260
1261 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1262
1263 /* All sparc64 PMUs currently have 2 events. */
1264 perf_max_events = 2;
1265
1266 register_die_notifier(&perf_event_nmi_notifier);
1267 }
1268
1269 static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1270 {
1271 if (entry->nr < PERF_MAX_STACK_DEPTH)
1272 entry->ip[entry->nr++] = ip;
1273 }
1274
1275 static void perf_callchain_kernel(struct pt_regs *regs,
1276 struct perf_callchain_entry *entry)
1277 {
1278 unsigned long ksp, fp;
1279
1280 callchain_store(entry, PERF_CONTEXT_KERNEL);
1281 callchain_store(entry, regs->tpc);
1282
1283 ksp = regs->u_regs[UREG_I6];
1284 fp = ksp + STACK_BIAS;
1285 do {
1286 struct sparc_stackf *sf;
1287 struct pt_regs *regs;
1288 unsigned long pc;
1289
1290 if (!kstack_valid(current_thread_info(), fp))
1291 break;
1292
1293 sf = (struct sparc_stackf *) fp;
1294 regs = (struct pt_regs *) (sf + 1);
1295
1296 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1297 if (user_mode(regs))
1298 break;
1299 pc = regs->tpc;
1300 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1301 } else {
1302 pc = sf->callers_pc;
1303 fp = (unsigned long)sf->fp + STACK_BIAS;
1304 }
1305 callchain_store(entry, pc);
1306 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1307 }
1308
1309 static void perf_callchain_user_64(struct pt_regs *regs,
1310 struct perf_callchain_entry *entry)
1311 {
1312 unsigned long ufp;
1313
1314 callchain_store(entry, PERF_CONTEXT_USER);
1315 callchain_store(entry, regs->tpc);
1316
1317 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1318 do {
1319 struct sparc_stackf *usf, sf;
1320 unsigned long pc;
1321
1322 usf = (struct sparc_stackf *) ufp;
1323 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1324 break;
1325
1326 pc = sf.callers_pc;
1327 ufp = (unsigned long)sf.fp + STACK_BIAS;
1328 callchain_store(entry, pc);
1329 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1330 }
1331
1332 static void perf_callchain_user_32(struct pt_regs *regs,
1333 struct perf_callchain_entry *entry)
1334 {
1335 unsigned long ufp;
1336
1337 callchain_store(entry, PERF_CONTEXT_USER);
1338 callchain_store(entry, regs->tpc);
1339
1340 ufp = regs->u_regs[UREG_I6];
1341 do {
1342 struct sparc_stackf32 *usf, sf;
1343 unsigned long pc;
1344
1345 usf = (struct sparc_stackf32 *) ufp;
1346 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1347 break;
1348
1349 pc = sf.callers_pc;
1350 ufp = (unsigned long)sf.fp;
1351 callchain_store(entry, pc);
1352 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1353 }
1354
1355 /* Like powerpc we can't get PMU interrupts within the PMU handler,
1356 * so no need for seperate NMI and IRQ chains as on x86.
1357 */
1358 static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
1359
1360 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1361 {
1362 struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
1363
1364 entry->nr = 0;
1365 if (!user_mode(regs)) {
1366 stack_trace_flush();
1367 perf_callchain_kernel(regs, entry);
1368 if (current->mm)
1369 regs = task_pt_regs(current);
1370 else
1371 regs = NULL;
1372 }
1373 if (regs) {
1374 flushw_user();
1375 if (test_thread_flag(TIF_32BIT))
1376 perf_callchain_user_32(regs, entry);
1377 else
1378 perf_callchain_user_64(regs, entry);
1379 }
1380 return entry;
1381 }