]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/sparc/kernel/process_64.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-bionic-kernel.git] / arch / sparc / kernel / process_64.c
1 /* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/sysrq.h>
32 #include <linux/nmi.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/system.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
51
52 #include "kstack.h"
53
54 static void sparc64_yield(int cpu)
55 {
56 if (tlb_type != hypervisor) {
57 touch_nmi_watchdog();
58 return;
59 }
60
61 clear_thread_flag(TIF_POLLING_NRFLAG);
62 smp_mb__after_clear_bit();
63
64 while (!need_resched() && !cpu_is_offline(cpu)) {
65 unsigned long pstate;
66
67 /* Disable interrupts. */
68 __asm__ __volatile__(
69 "rdpr %%pstate, %0\n\t"
70 "andn %0, %1, %0\n\t"
71 "wrpr %0, %%g0, %%pstate"
72 : "=&r" (pstate)
73 : "i" (PSTATE_IE));
74
75 if (!need_resched() && !cpu_is_offline(cpu))
76 sun4v_cpu_yield();
77
78 /* Re-enable interrupts. */
79 __asm__ __volatile__(
80 "rdpr %%pstate, %0\n\t"
81 "or %0, %1, %0\n\t"
82 "wrpr %0, %%g0, %%pstate"
83 : "=&r" (pstate)
84 : "i" (PSTATE_IE));
85 }
86
87 set_thread_flag(TIF_POLLING_NRFLAG);
88 }
89
90 /* The idle loop on sparc64. */
91 void cpu_idle(void)
92 {
93 int cpu = smp_processor_id();
94
95 set_thread_flag(TIF_POLLING_NRFLAG);
96
97 while(1) {
98 tick_nohz_stop_sched_tick(1);
99
100 while (!need_resched() && !cpu_is_offline(cpu))
101 sparc64_yield(cpu);
102
103 tick_nohz_restart_sched_tick();
104
105 preempt_enable_no_resched();
106
107 #ifdef CONFIG_HOTPLUG_CPU
108 if (cpu_is_offline(cpu))
109 cpu_play_dead();
110 #endif
111
112 schedule();
113 preempt_disable();
114 }
115 }
116
117 #ifdef CONFIG_COMPAT
118 static void show_regwindow32(struct pt_regs *regs)
119 {
120 struct reg_window32 __user *rw;
121 struct reg_window32 r_w;
122 mm_segment_t old_fs;
123
124 __asm__ __volatile__ ("flushw");
125 rw = compat_ptr((unsigned)regs->u_regs[14]);
126 old_fs = get_fs();
127 set_fs (USER_DS);
128 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
129 set_fs (old_fs);
130 return;
131 }
132
133 set_fs (old_fs);
134 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
135 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
136 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
137 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
138 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
139 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
140 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
141 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
142 }
143 #else
144 #define show_regwindow32(regs) do { } while (0)
145 #endif
146
147 static void show_regwindow(struct pt_regs *regs)
148 {
149 struct reg_window __user *rw;
150 struct reg_window *rwk;
151 struct reg_window r_w;
152 mm_segment_t old_fs;
153
154 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
155 __asm__ __volatile__ ("flushw");
156 rw = (struct reg_window __user *)
157 (regs->u_regs[14] + STACK_BIAS);
158 rwk = (struct reg_window *)
159 (regs->u_regs[14] + STACK_BIAS);
160 if (!(regs->tstate & TSTATE_PRIV)) {
161 old_fs = get_fs();
162 set_fs (USER_DS);
163 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
164 set_fs (old_fs);
165 return;
166 }
167 rwk = &r_w;
168 set_fs (old_fs);
169 }
170 } else {
171 show_regwindow32(regs);
172 return;
173 }
174 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
175 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
176 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
177 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
178 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
179 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
180 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
181 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
182 if (regs->tstate & TSTATE_PRIV)
183 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
184 }
185
186 void show_regs(struct pt_regs *regs)
187 {
188 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
189 regs->tpc, regs->tnpc, regs->y, print_tainted());
190 printk("TPC: <%pS>\n", (void *) regs->tpc);
191 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
192 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
193 regs->u_regs[3]);
194 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
195 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
196 regs->u_regs[7]);
197 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
198 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
199 regs->u_regs[11]);
200 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
201 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
202 regs->u_regs[15]);
203 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
204 show_regwindow(regs);
205 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
206 }
207
208 struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
209 static DEFINE_SPINLOCK(global_reg_snapshot_lock);
210
211 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
212 int this_cpu)
213 {
214 flushw_all();
215
216 global_reg_snapshot[this_cpu].tstate = regs->tstate;
217 global_reg_snapshot[this_cpu].tpc = regs->tpc;
218 global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
219 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
220
221 if (regs->tstate & TSTATE_PRIV) {
222 struct reg_window *rw;
223
224 rw = (struct reg_window *)
225 (regs->u_regs[UREG_FP] + STACK_BIAS);
226 if (kstack_valid(tp, (unsigned long) rw)) {
227 global_reg_snapshot[this_cpu].i7 = rw->ins[7];
228 rw = (struct reg_window *)
229 (rw->ins[6] + STACK_BIAS);
230 if (kstack_valid(tp, (unsigned long) rw))
231 global_reg_snapshot[this_cpu].rpc = rw->ins[7];
232 }
233 } else {
234 global_reg_snapshot[this_cpu].i7 = 0;
235 global_reg_snapshot[this_cpu].rpc = 0;
236 }
237 global_reg_snapshot[this_cpu].thread = tp;
238 }
239
240 /* In order to avoid hangs we do not try to synchronize with the
241 * global register dump client cpus. The last store they make is to
242 * the thread pointer, so do a short poll waiting for that to become
243 * non-NULL.
244 */
245 static void __global_reg_poll(struct global_reg_snapshot *gp)
246 {
247 int limit = 0;
248
249 while (!gp->thread && ++limit < 100) {
250 barrier();
251 udelay(1);
252 }
253 }
254
255 void arch_trigger_all_cpu_backtrace(void)
256 {
257 struct thread_info *tp = current_thread_info();
258 struct pt_regs *regs = get_irq_regs();
259 unsigned long flags;
260 int this_cpu, cpu;
261
262 if (!regs)
263 regs = tp->kregs;
264
265 spin_lock_irqsave(&global_reg_snapshot_lock, flags);
266
267 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
268
269 this_cpu = raw_smp_processor_id();
270
271 __global_reg_self(tp, regs, this_cpu);
272
273 smp_fetch_global_regs();
274
275 for_each_online_cpu(cpu) {
276 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
277
278 __global_reg_poll(gp);
279
280 tp = gp->thread;
281 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
282 (cpu == this_cpu ? '*' : ' '), cpu,
283 gp->tstate, gp->tpc, gp->tnpc,
284 ((tp && tp->task) ? tp->task->comm : "NULL"),
285 ((tp && tp->task) ? tp->task->pid : -1));
286
287 if (gp->tstate & TSTATE_PRIV) {
288 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
289 (void *) gp->tpc,
290 (void *) gp->o7,
291 (void *) gp->i7,
292 (void *) gp->rpc);
293 } else {
294 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
295 gp->tpc, gp->o7, gp->i7, gp->rpc);
296 }
297 }
298
299 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
300
301 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
302 }
303
304 #ifdef CONFIG_MAGIC_SYSRQ
305
306 static void sysrq_handle_globreg(int key)
307 {
308 arch_trigger_all_cpu_backtrace();
309 }
310
311 static struct sysrq_key_op sparc_globalreg_op = {
312 .handler = sysrq_handle_globreg,
313 .help_msg = "Globalregs",
314 .action_msg = "Show Global CPU Regs",
315 };
316
317 static int __init sparc_globreg_init(void)
318 {
319 return register_sysrq_key('y', &sparc_globalreg_op);
320 }
321
322 core_initcall(sparc_globreg_init);
323
324 #endif
325
326 unsigned long thread_saved_pc(struct task_struct *tsk)
327 {
328 struct thread_info *ti = task_thread_info(tsk);
329 unsigned long ret = 0xdeadbeefUL;
330
331 if (ti && ti->ksp) {
332 unsigned long *sp;
333 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
334 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
335 sp[14]) {
336 unsigned long *fp;
337 fp = (unsigned long *)(sp[14] + STACK_BIAS);
338 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
339 ret = fp[15];
340 }
341 }
342 return ret;
343 }
344
345 /* Free current thread data structures etc.. */
346 void exit_thread(void)
347 {
348 struct thread_info *t = current_thread_info();
349
350 if (t->utraps) {
351 if (t->utraps[0] < 2)
352 kfree (t->utraps);
353 else
354 t->utraps[0]--;
355 }
356 }
357
358 void flush_thread(void)
359 {
360 struct thread_info *t = current_thread_info();
361 struct mm_struct *mm;
362
363 mm = t->task->mm;
364 if (mm)
365 tsb_context_switch(mm);
366
367 set_thread_wsaved(0);
368
369 /* Clear FPU register state. */
370 t->fpsaved[0] = 0;
371
372 if (get_thread_current_ds() != ASI_AIUS)
373 set_fs(USER_DS);
374 }
375
376 /* It's a bit more tricky when 64-bit tasks are involved... */
377 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
378 {
379 unsigned long fp, distance, rval;
380
381 if (!(test_thread_flag(TIF_32BIT))) {
382 csp += STACK_BIAS;
383 psp += STACK_BIAS;
384 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
385 fp += STACK_BIAS;
386 } else
387 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
388
389 /* Now align the stack as this is mandatory in the Sparc ABI
390 * due to how register windows work. This hides the
391 * restriction from thread libraries etc.
392 */
393 csp &= ~15UL;
394
395 distance = fp - psp;
396 rval = (csp - distance);
397 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
398 rval = 0;
399 else if (test_thread_flag(TIF_32BIT)) {
400 if (put_user(((u32)csp),
401 &(((struct reg_window32 __user *)rval)->ins[6])))
402 rval = 0;
403 } else {
404 if (put_user(((u64)csp - STACK_BIAS),
405 &(((struct reg_window __user *)rval)->ins[6])))
406 rval = 0;
407 else
408 rval = rval - STACK_BIAS;
409 }
410
411 return rval;
412 }
413
414 /* Standard stuff. */
415 static inline void shift_window_buffer(int first_win, int last_win,
416 struct thread_info *t)
417 {
418 int i;
419
420 for (i = first_win; i < last_win; i++) {
421 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
422 memcpy(&t->reg_window[i], &t->reg_window[i+1],
423 sizeof(struct reg_window));
424 }
425 }
426
427 void synchronize_user_stack(void)
428 {
429 struct thread_info *t = current_thread_info();
430 unsigned long window;
431
432 flush_user_windows();
433 if ((window = get_thread_wsaved()) != 0) {
434 int winsize = sizeof(struct reg_window);
435 int bias = 0;
436
437 if (test_thread_flag(TIF_32BIT))
438 winsize = sizeof(struct reg_window32);
439 else
440 bias = STACK_BIAS;
441
442 window -= 1;
443 do {
444 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
445 struct reg_window *rwin = &t->reg_window[window];
446
447 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
448 shift_window_buffer(window, get_thread_wsaved() - 1, t);
449 set_thread_wsaved(get_thread_wsaved() - 1);
450 }
451 } while (window--);
452 }
453 }
454
455 static void stack_unaligned(unsigned long sp)
456 {
457 siginfo_t info;
458
459 info.si_signo = SIGBUS;
460 info.si_errno = 0;
461 info.si_code = BUS_ADRALN;
462 info.si_addr = (void __user *) sp;
463 info.si_trapno = 0;
464 force_sig_info(SIGBUS, &info, current);
465 }
466
467 void fault_in_user_windows(void)
468 {
469 struct thread_info *t = current_thread_info();
470 unsigned long window;
471 int winsize = sizeof(struct reg_window);
472 int bias = 0;
473
474 if (test_thread_flag(TIF_32BIT))
475 winsize = sizeof(struct reg_window32);
476 else
477 bias = STACK_BIAS;
478
479 flush_user_windows();
480 window = get_thread_wsaved();
481
482 if (likely(window != 0)) {
483 window -= 1;
484 do {
485 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
486 struct reg_window *rwin = &t->reg_window[window];
487
488 if (unlikely(sp & 0x7UL))
489 stack_unaligned(sp);
490
491 if (unlikely(copy_to_user((char __user *)sp,
492 rwin, winsize)))
493 goto barf;
494 } while (window--);
495 }
496 set_thread_wsaved(0);
497 return;
498
499 barf:
500 set_thread_wsaved(window + 1);
501 do_exit(SIGILL);
502 }
503
504 asmlinkage long sparc_do_fork(unsigned long clone_flags,
505 unsigned long stack_start,
506 struct pt_regs *regs,
507 unsigned long stack_size)
508 {
509 int __user *parent_tid_ptr, *child_tid_ptr;
510 unsigned long orig_i1 = regs->u_regs[UREG_I1];
511 long ret;
512
513 #ifdef CONFIG_COMPAT
514 if (test_thread_flag(TIF_32BIT)) {
515 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
516 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
517 } else
518 #endif
519 {
520 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
521 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
522 }
523
524 ret = do_fork(clone_flags, stack_start,
525 regs, stack_size,
526 parent_tid_ptr, child_tid_ptr);
527
528 /* If we get an error and potentially restart the system
529 * call, we're screwed because copy_thread() clobbered
530 * the parent's %o1. So detect that case and restore it
531 * here.
532 */
533 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
534 regs->u_regs[UREG_I1] = orig_i1;
535
536 return ret;
537 }
538
539 /* Copy a Sparc thread. The fork() return value conventions
540 * under SunOS are nothing short of bletcherous:
541 * Parent --> %o0 == childs pid, %o1 == 0
542 * Child --> %o0 == parents pid, %o1 == 1
543 */
544 int copy_thread(unsigned long clone_flags, unsigned long sp,
545 unsigned long unused,
546 struct task_struct *p, struct pt_regs *regs)
547 {
548 struct thread_info *t = task_thread_info(p);
549 struct sparc_stackf *parent_sf;
550 unsigned long child_stack_sz;
551 char *child_trap_frame;
552 int kernel_thread;
553
554 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
555 parent_sf = ((struct sparc_stackf *) regs) - 1;
556
557 /* Calculate offset to stack_frame & pt_regs */
558 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
559 (kernel_thread ? STACKFRAME_SZ : 0));
560 child_trap_frame = (task_stack_page(p) +
561 (THREAD_SIZE - child_stack_sz));
562 memcpy(child_trap_frame, parent_sf, child_stack_sz);
563
564 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
565 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
566 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
567 t->new_child = 1;
568 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
569 t->kregs = (struct pt_regs *) (child_trap_frame +
570 sizeof(struct sparc_stackf));
571 t->fpsaved[0] = 0;
572
573 if (kernel_thread) {
574 struct sparc_stackf *child_sf = (struct sparc_stackf *)
575 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
576
577 /* Zero terminate the stack backtrace. */
578 child_sf->fp = NULL;
579 t->kregs->u_regs[UREG_FP] =
580 ((unsigned long) child_sf) - STACK_BIAS;
581
582 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
583 t->kregs->u_regs[UREG_G6] = (unsigned long) t;
584 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
585 } else {
586 if (t->flags & _TIF_32BIT) {
587 sp &= 0x00000000ffffffffUL;
588 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
589 }
590 t->kregs->u_regs[UREG_FP] = sp;
591 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
592 if (sp != regs->u_regs[UREG_FP]) {
593 unsigned long csp;
594
595 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
596 if (!csp)
597 return -EFAULT;
598 t->kregs->u_regs[UREG_FP] = csp;
599 }
600 if (t->utraps)
601 t->utraps[0]++;
602 }
603
604 /* Set the return value for the child. */
605 t->kregs->u_regs[UREG_I0] = current->pid;
606 t->kregs->u_regs[UREG_I1] = 1;
607
608 /* Set the second return value for the parent. */
609 regs->u_regs[UREG_I1] = 0;
610
611 if (clone_flags & CLONE_SETTLS)
612 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
613
614 return 0;
615 }
616
617 /*
618 * This is the mechanism for creating a new kernel thread.
619 *
620 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
621 * who haven't done an "execve()") should use this: it will work within
622 * a system call from a "real" process, but the process memory space will
623 * not be freed until both the parent and the child have exited.
624 */
625 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
626 {
627 long retval;
628
629 /* If the parent runs before fn(arg) is called by the child,
630 * the input registers of this function can be clobbered.
631 * So we stash 'fn' and 'arg' into global registers which
632 * will not be modified by the parent.
633 */
634 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
635 "mov %5, %%g3\n\t" /* Save ARG into global */
636 "mov %1, %%g1\n\t" /* Clone syscall nr. */
637 "mov %2, %%o0\n\t" /* Clone flags. */
638 "mov 0, %%o1\n\t" /* usp arg == 0 */
639 "t 0x6d\n\t" /* Linux/Sparc clone(). */
640 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
641 " mov %%o0, %0\n\t"
642 "jmpl %%g2, %%o7\n\t" /* Call the function. */
643 " mov %%g3, %%o0\n\t" /* Set arg in delay. */
644 "mov %3, %%g1\n\t"
645 "t 0x6d\n\t" /* Linux/Sparc exit(). */
646 /* Notreached by child. */
647 "1:" :
648 "=r" (retval) :
649 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
650 "i" (__NR_exit), "r" (fn), "r" (arg) :
651 "g1", "g2", "g3", "o0", "o1", "memory", "cc");
652 return retval;
653 }
654 EXPORT_SYMBOL(kernel_thread);
655
656 typedef struct {
657 union {
658 unsigned int pr_regs[32];
659 unsigned long pr_dregs[16];
660 } pr_fr;
661 unsigned int __unused;
662 unsigned int pr_fsr;
663 unsigned char pr_qcnt;
664 unsigned char pr_q_entrysize;
665 unsigned char pr_en;
666 unsigned int pr_q[64];
667 } elf_fpregset_t32;
668
669 /*
670 * fill in the fpu structure for a core dump.
671 */
672 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
673 {
674 unsigned long *kfpregs = current_thread_info()->fpregs;
675 unsigned long fprs = current_thread_info()->fpsaved[0];
676
677 if (test_thread_flag(TIF_32BIT)) {
678 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
679
680 if (fprs & FPRS_DL)
681 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
682 sizeof(unsigned int) * 32);
683 else
684 memset(&fpregs32->pr_fr.pr_regs[0], 0,
685 sizeof(unsigned int) * 32);
686 fpregs32->pr_qcnt = 0;
687 fpregs32->pr_q_entrysize = 8;
688 memset(&fpregs32->pr_q[0], 0,
689 (sizeof(unsigned int) * 64));
690 if (fprs & FPRS_FEF) {
691 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
692 fpregs32->pr_en = 1;
693 } else {
694 fpregs32->pr_fsr = 0;
695 fpregs32->pr_en = 0;
696 }
697 } else {
698 if(fprs & FPRS_DL)
699 memcpy(&fpregs->pr_regs[0], kfpregs,
700 sizeof(unsigned int) * 32);
701 else
702 memset(&fpregs->pr_regs[0], 0,
703 sizeof(unsigned int) * 32);
704 if(fprs & FPRS_DU)
705 memcpy(&fpregs->pr_regs[16], kfpregs+16,
706 sizeof(unsigned int) * 32);
707 else
708 memset(&fpregs->pr_regs[16], 0,
709 sizeof(unsigned int) * 32);
710 if(fprs & FPRS_FEF) {
711 fpregs->pr_fsr = current_thread_info()->xfsr[0];
712 fpregs->pr_gsr = current_thread_info()->gsr[0];
713 } else {
714 fpregs->pr_fsr = fpregs->pr_gsr = 0;
715 }
716 fpregs->pr_fprs = fprs;
717 }
718 return 1;
719 }
720 EXPORT_SYMBOL(dump_fpu);
721
722 /*
723 * sparc_execve() executes a new program after the asm stub has set
724 * things up for us. This should basically do what I want it to.
725 */
726 asmlinkage int sparc_execve(struct pt_regs *regs)
727 {
728 int error, base = 0;
729 char *filename;
730
731 /* User register window flush is done by entry.S */
732
733 /* Check for indirect call. */
734 if (regs->u_regs[UREG_G1] == 0)
735 base = 1;
736
737 filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
738 error = PTR_ERR(filename);
739 if (IS_ERR(filename))
740 goto out;
741 error = do_execve(filename,
742 (const char __user *const __user *)
743 regs->u_regs[base + UREG_I1],
744 (const char __user *const __user *)
745 regs->u_regs[base + UREG_I2], regs);
746 putname(filename);
747 if (!error) {
748 fprs_write(0);
749 current_thread_info()->xfsr[0] = 0;
750 current_thread_info()->fpsaved[0] = 0;
751 regs->tstate &= ~TSTATE_PEF;
752 }
753 out:
754 return error;
755 }
756
757 unsigned long get_wchan(struct task_struct *task)
758 {
759 unsigned long pc, fp, bias = 0;
760 struct thread_info *tp;
761 struct reg_window *rw;
762 unsigned long ret = 0;
763 int count = 0;
764
765 if (!task || task == current ||
766 task->state == TASK_RUNNING)
767 goto out;
768
769 tp = task_thread_info(task);
770 bias = STACK_BIAS;
771 fp = task_thread_info(task)->ksp + bias;
772
773 do {
774 if (!kstack_valid(tp, fp))
775 break;
776 rw = (struct reg_window *) fp;
777 pc = rw->ins[7];
778 if (!in_sched_functions(pc)) {
779 ret = pc;
780 goto out;
781 }
782 fp = rw->ins[6] + bias;
783 } while (++count < 16);
784
785 out:
786 return ret;
787 }