]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sparc/kernel/process_64.c
Merge tag 'usb-3.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[mirror_ubuntu-artful-kernel.git] / arch / sparc / kernel / process_64.c
1 /* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/perf_event.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33 #include <linux/nmi.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
51 #include <asm/pcr.h>
52
53 #include "kstack.h"
54
55 static void sparc64_yield(int cpu)
56 {
57 if (tlb_type != hypervisor) {
58 touch_nmi_watchdog();
59 return;
60 }
61
62 clear_thread_flag(TIF_POLLING_NRFLAG);
63 smp_mb__after_clear_bit();
64
65 while (!need_resched() && !cpu_is_offline(cpu)) {
66 unsigned long pstate;
67
68 /* Disable interrupts. */
69 __asm__ __volatile__(
70 "rdpr %%pstate, %0\n\t"
71 "andn %0, %1, %0\n\t"
72 "wrpr %0, %%g0, %%pstate"
73 : "=&r" (pstate)
74 : "i" (PSTATE_IE));
75
76 if (!need_resched() && !cpu_is_offline(cpu))
77 sun4v_cpu_yield();
78
79 /* Re-enable interrupts. */
80 __asm__ __volatile__(
81 "rdpr %%pstate, %0\n\t"
82 "or %0, %1, %0\n\t"
83 "wrpr %0, %%g0, %%pstate"
84 : "=&r" (pstate)
85 : "i" (PSTATE_IE));
86 }
87
88 set_thread_flag(TIF_POLLING_NRFLAG);
89 }
90
91 /* The idle loop on sparc64. */
92 void cpu_idle(void)
93 {
94 int cpu = smp_processor_id();
95
96 set_thread_flag(TIF_POLLING_NRFLAG);
97
98 while(1) {
99 tick_nohz_idle_enter();
100 rcu_idle_enter();
101
102 while (!need_resched() && !cpu_is_offline(cpu))
103 sparc64_yield(cpu);
104
105 rcu_idle_exit();
106 tick_nohz_idle_exit();
107
108 #ifdef CONFIG_HOTPLUG_CPU
109 if (cpu_is_offline(cpu)) {
110 sched_preempt_enable_no_resched();
111 cpu_play_dead();
112 }
113 #endif
114 schedule_preempt_disabled();
115 }
116 }
117
118 #ifdef CONFIG_COMPAT
119 static void show_regwindow32(struct pt_regs *regs)
120 {
121 struct reg_window32 __user *rw;
122 struct reg_window32 r_w;
123 mm_segment_t old_fs;
124
125 __asm__ __volatile__ ("flushw");
126 rw = compat_ptr((unsigned)regs->u_regs[14]);
127 old_fs = get_fs();
128 set_fs (USER_DS);
129 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
130 set_fs (old_fs);
131 return;
132 }
133
134 set_fs (old_fs);
135 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
136 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
137 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
138 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
139 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
140 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
141 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
142 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
143 }
144 #else
145 #define show_regwindow32(regs) do { } while (0)
146 #endif
147
148 static void show_regwindow(struct pt_regs *regs)
149 {
150 struct reg_window __user *rw;
151 struct reg_window *rwk;
152 struct reg_window r_w;
153 mm_segment_t old_fs;
154
155 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
156 __asm__ __volatile__ ("flushw");
157 rw = (struct reg_window __user *)
158 (regs->u_regs[14] + STACK_BIAS);
159 rwk = (struct reg_window *)
160 (regs->u_regs[14] + STACK_BIAS);
161 if (!(regs->tstate & TSTATE_PRIV)) {
162 old_fs = get_fs();
163 set_fs (USER_DS);
164 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
165 set_fs (old_fs);
166 return;
167 }
168 rwk = &r_w;
169 set_fs (old_fs);
170 }
171 } else {
172 show_regwindow32(regs);
173 return;
174 }
175 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
176 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
177 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
178 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
179 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
180 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
181 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
182 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
183 if (regs->tstate & TSTATE_PRIV)
184 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
185 }
186
187 void show_regs(struct pt_regs *regs)
188 {
189 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
190 regs->tpc, regs->tnpc, regs->y, print_tainted());
191 printk("TPC: <%pS>\n", (void *) regs->tpc);
192 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
193 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
194 regs->u_regs[3]);
195 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
196 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
197 regs->u_regs[7]);
198 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
199 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
200 regs->u_regs[11]);
201 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
202 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
203 regs->u_regs[15]);
204 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
205 show_regwindow(regs);
206 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
207 }
208
209 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
210 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
211
212 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
213 int this_cpu)
214 {
215 struct global_reg_snapshot *rp;
216
217 flushw_all();
218
219 rp = &global_cpu_snapshot[this_cpu].reg;
220
221 rp->tstate = regs->tstate;
222 rp->tpc = regs->tpc;
223 rp->tnpc = regs->tnpc;
224 rp->o7 = regs->u_regs[UREG_I7];
225
226 if (regs->tstate & TSTATE_PRIV) {
227 struct reg_window *rw;
228
229 rw = (struct reg_window *)
230 (regs->u_regs[UREG_FP] + STACK_BIAS);
231 if (kstack_valid(tp, (unsigned long) rw)) {
232 rp->i7 = rw->ins[7];
233 rw = (struct reg_window *)
234 (rw->ins[6] + STACK_BIAS);
235 if (kstack_valid(tp, (unsigned long) rw))
236 rp->rpc = rw->ins[7];
237 }
238 } else {
239 rp->i7 = 0;
240 rp->rpc = 0;
241 }
242 rp->thread = tp;
243 }
244
245 /* In order to avoid hangs we do not try to synchronize with the
246 * global register dump client cpus. The last store they make is to
247 * the thread pointer, so do a short poll waiting for that to become
248 * non-NULL.
249 */
250 static void __global_reg_poll(struct global_reg_snapshot *gp)
251 {
252 int limit = 0;
253
254 while (!gp->thread && ++limit < 100) {
255 barrier();
256 udelay(1);
257 }
258 }
259
260 void arch_trigger_all_cpu_backtrace(void)
261 {
262 struct thread_info *tp = current_thread_info();
263 struct pt_regs *regs = get_irq_regs();
264 unsigned long flags;
265 int this_cpu, cpu;
266
267 if (!regs)
268 regs = tp->kregs;
269
270 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
271
272 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
273
274 this_cpu = raw_smp_processor_id();
275
276 __global_reg_self(tp, regs, this_cpu);
277
278 smp_fetch_global_regs();
279
280 for_each_online_cpu(cpu) {
281 struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
282
283 __global_reg_poll(gp);
284
285 tp = gp->thread;
286 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
287 (cpu == this_cpu ? '*' : ' '), cpu,
288 gp->tstate, gp->tpc, gp->tnpc,
289 ((tp && tp->task) ? tp->task->comm : "NULL"),
290 ((tp && tp->task) ? tp->task->pid : -1));
291
292 if (gp->tstate & TSTATE_PRIV) {
293 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
294 (void *) gp->tpc,
295 (void *) gp->o7,
296 (void *) gp->i7,
297 (void *) gp->rpc);
298 } else {
299 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
300 gp->tpc, gp->o7, gp->i7, gp->rpc);
301 }
302 }
303
304 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
305
306 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
307 }
308
309 #ifdef CONFIG_MAGIC_SYSRQ
310
311 static void sysrq_handle_globreg(int key)
312 {
313 arch_trigger_all_cpu_backtrace();
314 }
315
316 static struct sysrq_key_op sparc_globalreg_op = {
317 .handler = sysrq_handle_globreg,
318 .help_msg = "global-regs(Y)",
319 .action_msg = "Show Global CPU Regs",
320 };
321
322 static void __global_pmu_self(int this_cpu)
323 {
324 struct global_pmu_snapshot *pp;
325 int i, num;
326
327 pp = &global_cpu_snapshot[this_cpu].pmu;
328
329 num = 1;
330 if (tlb_type == hypervisor &&
331 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
332 num = 4;
333
334 for (i = 0; i < num; i++) {
335 pp->pcr[i] = pcr_ops->read_pcr(i);
336 pp->pic[i] = pcr_ops->read_pic(i);
337 }
338 }
339
340 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
341 {
342 int limit = 0;
343
344 while (!pp->pcr[0] && ++limit < 100) {
345 barrier();
346 udelay(1);
347 }
348 }
349
350 static void pmu_snapshot_all_cpus(void)
351 {
352 unsigned long flags;
353 int this_cpu, cpu;
354
355 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
356
357 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
358
359 this_cpu = raw_smp_processor_id();
360
361 __global_pmu_self(this_cpu);
362
363 smp_fetch_global_pmu();
364
365 for_each_online_cpu(cpu) {
366 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
367
368 __global_pmu_poll(pp);
369
370 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
371 (cpu == this_cpu ? '*' : ' '), cpu,
372 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
373 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
374 }
375
376 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
377
378 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
379 }
380
381 static void sysrq_handle_globpmu(int key)
382 {
383 pmu_snapshot_all_cpus();
384 }
385
386 static struct sysrq_key_op sparc_globalpmu_op = {
387 .handler = sysrq_handle_globpmu,
388 .help_msg = "global-pmu(X)",
389 .action_msg = "Show Global PMU Regs",
390 };
391
392 static int __init sparc_sysrq_init(void)
393 {
394 int ret = register_sysrq_key('y', &sparc_globalreg_op);
395
396 if (!ret)
397 ret = register_sysrq_key('x', &sparc_globalpmu_op);
398 return ret;
399 }
400
401 core_initcall(sparc_sysrq_init);
402
403 #endif
404
405 unsigned long thread_saved_pc(struct task_struct *tsk)
406 {
407 struct thread_info *ti = task_thread_info(tsk);
408 unsigned long ret = 0xdeadbeefUL;
409
410 if (ti && ti->ksp) {
411 unsigned long *sp;
412 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
413 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
414 sp[14]) {
415 unsigned long *fp;
416 fp = (unsigned long *)(sp[14] + STACK_BIAS);
417 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
418 ret = fp[15];
419 }
420 }
421 return ret;
422 }
423
424 /* Free current thread data structures etc.. */
425 void exit_thread(void)
426 {
427 struct thread_info *t = current_thread_info();
428
429 if (t->utraps) {
430 if (t->utraps[0] < 2)
431 kfree (t->utraps);
432 else
433 t->utraps[0]--;
434 }
435 }
436
437 void flush_thread(void)
438 {
439 struct thread_info *t = current_thread_info();
440 struct mm_struct *mm;
441
442 mm = t->task->mm;
443 if (mm)
444 tsb_context_switch(mm);
445
446 set_thread_wsaved(0);
447
448 /* Clear FPU register state. */
449 t->fpsaved[0] = 0;
450 }
451
452 /* It's a bit more tricky when 64-bit tasks are involved... */
453 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
454 {
455 unsigned long fp, distance, rval;
456
457 if (!(test_thread_flag(TIF_32BIT))) {
458 csp += STACK_BIAS;
459 psp += STACK_BIAS;
460 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
461 fp += STACK_BIAS;
462 } else
463 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
464
465 /* Now align the stack as this is mandatory in the Sparc ABI
466 * due to how register windows work. This hides the
467 * restriction from thread libraries etc.
468 */
469 csp &= ~15UL;
470
471 distance = fp - psp;
472 rval = (csp - distance);
473 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
474 rval = 0;
475 else if (test_thread_flag(TIF_32BIT)) {
476 if (put_user(((u32)csp),
477 &(((struct reg_window32 __user *)rval)->ins[6])))
478 rval = 0;
479 } else {
480 if (put_user(((u64)csp - STACK_BIAS),
481 &(((struct reg_window __user *)rval)->ins[6])))
482 rval = 0;
483 else
484 rval = rval - STACK_BIAS;
485 }
486
487 return rval;
488 }
489
490 /* Standard stuff. */
491 static inline void shift_window_buffer(int first_win, int last_win,
492 struct thread_info *t)
493 {
494 int i;
495
496 for (i = first_win; i < last_win; i++) {
497 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
498 memcpy(&t->reg_window[i], &t->reg_window[i+1],
499 sizeof(struct reg_window));
500 }
501 }
502
503 void synchronize_user_stack(void)
504 {
505 struct thread_info *t = current_thread_info();
506 unsigned long window;
507
508 flush_user_windows();
509 if ((window = get_thread_wsaved()) != 0) {
510 int winsize = sizeof(struct reg_window);
511 int bias = 0;
512
513 if (test_thread_flag(TIF_32BIT))
514 winsize = sizeof(struct reg_window32);
515 else
516 bias = STACK_BIAS;
517
518 window -= 1;
519 do {
520 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
521 struct reg_window *rwin = &t->reg_window[window];
522
523 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
524 shift_window_buffer(window, get_thread_wsaved() - 1, t);
525 set_thread_wsaved(get_thread_wsaved() - 1);
526 }
527 } while (window--);
528 }
529 }
530
531 static void stack_unaligned(unsigned long sp)
532 {
533 siginfo_t info;
534
535 info.si_signo = SIGBUS;
536 info.si_errno = 0;
537 info.si_code = BUS_ADRALN;
538 info.si_addr = (void __user *) sp;
539 info.si_trapno = 0;
540 force_sig_info(SIGBUS, &info, current);
541 }
542
543 void fault_in_user_windows(void)
544 {
545 struct thread_info *t = current_thread_info();
546 unsigned long window;
547 int winsize = sizeof(struct reg_window);
548 int bias = 0;
549
550 if (test_thread_flag(TIF_32BIT))
551 winsize = sizeof(struct reg_window32);
552 else
553 bias = STACK_BIAS;
554
555 flush_user_windows();
556 window = get_thread_wsaved();
557
558 if (likely(window != 0)) {
559 window -= 1;
560 do {
561 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
562 struct reg_window *rwin = &t->reg_window[window];
563
564 if (unlikely(sp & 0x7UL))
565 stack_unaligned(sp);
566
567 if (unlikely(copy_to_user((char __user *)sp,
568 rwin, winsize)))
569 goto barf;
570 } while (window--);
571 }
572 set_thread_wsaved(0);
573 return;
574
575 barf:
576 set_thread_wsaved(window + 1);
577 do_exit(SIGILL);
578 }
579
580 asmlinkage long sparc_do_fork(unsigned long clone_flags,
581 unsigned long stack_start,
582 struct pt_regs *regs,
583 unsigned long stack_size)
584 {
585 int __user *parent_tid_ptr, *child_tid_ptr;
586 unsigned long orig_i1 = regs->u_regs[UREG_I1];
587 long ret;
588
589 #ifdef CONFIG_COMPAT
590 if (test_thread_flag(TIF_32BIT)) {
591 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
592 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
593 } else
594 #endif
595 {
596 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
597 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
598 }
599
600 ret = do_fork(clone_flags, stack_start,
601 regs, stack_size,
602 parent_tid_ptr, child_tid_ptr);
603
604 /* If we get an error and potentially restart the system
605 * call, we're screwed because copy_thread() clobbered
606 * the parent's %o1. So detect that case and restore it
607 * here.
608 */
609 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
610 regs->u_regs[UREG_I1] = orig_i1;
611
612 return ret;
613 }
614
615 /* Copy a Sparc thread. The fork() return value conventions
616 * under SunOS are nothing short of bletcherous:
617 * Parent --> %o0 == childs pid, %o1 == 0
618 * Child --> %o0 == parents pid, %o1 == 1
619 */
620 int copy_thread(unsigned long clone_flags, unsigned long sp,
621 unsigned long unused,
622 struct task_struct *p, struct pt_regs *regs)
623 {
624 struct thread_info *t = task_thread_info(p);
625 struct sparc_stackf *parent_sf;
626 unsigned long child_stack_sz;
627 char *child_trap_frame;
628 int kernel_thread;
629
630 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
631 parent_sf = ((struct sparc_stackf *) regs) - 1;
632
633 /* Calculate offset to stack_frame & pt_regs */
634 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
635 (kernel_thread ? STACKFRAME_SZ : 0));
636 child_trap_frame = (task_stack_page(p) +
637 (THREAD_SIZE - child_stack_sz));
638 memcpy(child_trap_frame, parent_sf, child_stack_sz);
639
640 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
641 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
642 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
643 t->new_child = 1;
644 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
645 t->kregs = (struct pt_regs *) (child_trap_frame +
646 sizeof(struct sparc_stackf));
647 t->fpsaved[0] = 0;
648
649 if (kernel_thread) {
650 struct sparc_stackf *child_sf = (struct sparc_stackf *)
651 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
652
653 /* Zero terminate the stack backtrace. */
654 child_sf->fp = NULL;
655 t->kregs->u_regs[UREG_FP] =
656 ((unsigned long) child_sf) - STACK_BIAS;
657
658 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
659 t->kregs->u_regs[UREG_G6] = (unsigned long) t;
660 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
661 } else {
662 if (t->flags & _TIF_32BIT) {
663 sp &= 0x00000000ffffffffUL;
664 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
665 }
666 t->kregs->u_regs[UREG_FP] = sp;
667 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
668 if (sp != regs->u_regs[UREG_FP]) {
669 unsigned long csp;
670
671 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
672 if (!csp)
673 return -EFAULT;
674 t->kregs->u_regs[UREG_FP] = csp;
675 }
676 if (t->utraps)
677 t->utraps[0]++;
678 }
679
680 /* Set the return value for the child. */
681 t->kregs->u_regs[UREG_I0] = current->pid;
682 t->kregs->u_regs[UREG_I1] = 1;
683
684 /* Set the second return value for the parent. */
685 regs->u_regs[UREG_I1] = 0;
686
687 if (clone_flags & CLONE_SETTLS)
688 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
689
690 return 0;
691 }
692
693 /*
694 * This is the mechanism for creating a new kernel thread.
695 *
696 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
697 * who haven't done an "execve()") should use this: it will work within
698 * a system call from a "real" process, but the process memory space will
699 * not be freed until both the parent and the child have exited.
700 */
701 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
702 {
703 long retval;
704
705 /* If the parent runs before fn(arg) is called by the child,
706 * the input registers of this function can be clobbered.
707 * So we stash 'fn' and 'arg' into global registers which
708 * will not be modified by the parent.
709 */
710 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
711 "mov %5, %%g3\n\t" /* Save ARG into global */
712 "mov %1, %%g1\n\t" /* Clone syscall nr. */
713 "mov %2, %%o0\n\t" /* Clone flags. */
714 "mov 0, %%o1\n\t" /* usp arg == 0 */
715 "t 0x6d\n\t" /* Linux/Sparc clone(). */
716 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
717 " mov %%o0, %0\n\t"
718 "jmpl %%g2, %%o7\n\t" /* Call the function. */
719 " mov %%g3, %%o0\n\t" /* Set arg in delay. */
720 "mov %3, %%g1\n\t"
721 "t 0x6d\n\t" /* Linux/Sparc exit(). */
722 /* Notreached by child. */
723 "1:" :
724 "=r" (retval) :
725 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
726 "i" (__NR_exit), "r" (fn), "r" (arg) :
727 "g1", "g2", "g3", "o0", "o1", "memory", "cc");
728 return retval;
729 }
730 EXPORT_SYMBOL(kernel_thread);
731
732 typedef struct {
733 union {
734 unsigned int pr_regs[32];
735 unsigned long pr_dregs[16];
736 } pr_fr;
737 unsigned int __unused;
738 unsigned int pr_fsr;
739 unsigned char pr_qcnt;
740 unsigned char pr_q_entrysize;
741 unsigned char pr_en;
742 unsigned int pr_q[64];
743 } elf_fpregset_t32;
744
745 /*
746 * fill in the fpu structure for a core dump.
747 */
748 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
749 {
750 unsigned long *kfpregs = current_thread_info()->fpregs;
751 unsigned long fprs = current_thread_info()->fpsaved[0];
752
753 if (test_thread_flag(TIF_32BIT)) {
754 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
755
756 if (fprs & FPRS_DL)
757 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
758 sizeof(unsigned int) * 32);
759 else
760 memset(&fpregs32->pr_fr.pr_regs[0], 0,
761 sizeof(unsigned int) * 32);
762 fpregs32->pr_qcnt = 0;
763 fpregs32->pr_q_entrysize = 8;
764 memset(&fpregs32->pr_q[0], 0,
765 (sizeof(unsigned int) * 64));
766 if (fprs & FPRS_FEF) {
767 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
768 fpregs32->pr_en = 1;
769 } else {
770 fpregs32->pr_fsr = 0;
771 fpregs32->pr_en = 0;
772 }
773 } else {
774 if(fprs & FPRS_DL)
775 memcpy(&fpregs->pr_regs[0], kfpregs,
776 sizeof(unsigned int) * 32);
777 else
778 memset(&fpregs->pr_regs[0], 0,
779 sizeof(unsigned int) * 32);
780 if(fprs & FPRS_DU)
781 memcpy(&fpregs->pr_regs[16], kfpregs+16,
782 sizeof(unsigned int) * 32);
783 else
784 memset(&fpregs->pr_regs[16], 0,
785 sizeof(unsigned int) * 32);
786 if(fprs & FPRS_FEF) {
787 fpregs->pr_fsr = current_thread_info()->xfsr[0];
788 fpregs->pr_gsr = current_thread_info()->gsr[0];
789 } else {
790 fpregs->pr_fsr = fpregs->pr_gsr = 0;
791 }
792 fpregs->pr_fprs = fprs;
793 }
794 return 1;
795 }
796 EXPORT_SYMBOL(dump_fpu);
797
798 /*
799 * sparc_execve() executes a new program after the asm stub has set
800 * things up for us. This should basically do what I want it to.
801 */
802 asmlinkage int sparc_execve(struct pt_regs *regs)
803 {
804 int error, base = 0;
805 struct filename *filename;
806
807 /* User register window flush is done by entry.S */
808
809 /* Check for indirect call. */
810 if (regs->u_regs[UREG_G1] == 0)
811 base = 1;
812
813 filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
814 error = PTR_ERR(filename);
815 if (IS_ERR(filename))
816 goto out;
817 error = do_execve(filename->name,
818 (const char __user *const __user *)
819 regs->u_regs[base + UREG_I1],
820 (const char __user *const __user *)
821 regs->u_regs[base + UREG_I2], regs);
822 putname(filename);
823 if (!error) {
824 fprs_write(0);
825 current_thread_info()->xfsr[0] = 0;
826 current_thread_info()->fpsaved[0] = 0;
827 regs->tstate &= ~TSTATE_PEF;
828 }
829 out:
830 return error;
831 }
832
833 unsigned long get_wchan(struct task_struct *task)
834 {
835 unsigned long pc, fp, bias = 0;
836 struct thread_info *tp;
837 struct reg_window *rw;
838 unsigned long ret = 0;
839 int count = 0;
840
841 if (!task || task == current ||
842 task->state == TASK_RUNNING)
843 goto out;
844
845 tp = task_thread_info(task);
846 bias = STACK_BIAS;
847 fp = task_thread_info(task)->ksp + bias;
848
849 do {
850 if (!kstack_valid(tp, fp))
851 break;
852 rw = (struct reg_window *) fp;
853 pc = rw->ins[7];
854 if (!in_sched_functions(pc)) {
855 ret = pc;
856 goto out;
857 }
858 fp = rw->ins[6] + bias;
859 } while (++count < 16);
860
861 out:
862 return ret;
863 }