]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/sparc/kernel/smp_64.c
percpu, x86: Add arch-specific this_cpu_cmpxchg_double() support
[mirror_ubuntu-bionic-kernel.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <asm/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52
53 #include "cpumap.h"
54
55 int sparc64_multi_core __read_mostly;
56
57 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
58 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
59 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
60
61 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
62 EXPORT_SYMBOL(cpu_core_map);
63
64 static cpumask_t smp_commenced_mask;
65
66 void smp_info(struct seq_file *m)
67 {
68 int i;
69
70 seq_printf(m, "State:\n");
71 for_each_online_cpu(i)
72 seq_printf(m, "CPU%d:\t\tonline\n", i);
73 }
74
75 void smp_bogo(struct seq_file *m)
76 {
77 int i;
78
79 for_each_online_cpu(i)
80 seq_printf(m,
81 "Cpu%dClkTck\t: %016lx\n",
82 i, cpu_data(i).clock_tick);
83 }
84
85 extern void setup_sparc64_timer(void);
86
87 static volatile unsigned long callin_flag = 0;
88
89 void __cpuinit smp_callin(void)
90 {
91 int cpuid = hard_smp_processor_id();
92
93 __local_per_cpu_offset = __per_cpu_offset(cpuid);
94
95 if (tlb_type == hypervisor)
96 sun4v_ktsb_register();
97
98 __flush_tlb_all();
99
100 setup_sparc64_timer();
101
102 if (cheetah_pcache_forced_on)
103 cheetah_enable_pcache();
104
105 local_irq_enable();
106
107 callin_flag = 1;
108 __asm__ __volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
110
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
113 */
114 current_thread_info()->new_child = 0;
115
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm.mm_count);
118 current->active_mm = &init_mm;
119
120 /* inform the notifiers about the new cpu */
121 notify_cpu_starting(cpuid);
122
123 while (!cpu_isset(cpuid, smp_commenced_mask))
124 rmb();
125
126 ipi_call_lock_irq();
127 cpu_set(cpuid, cpu_online_map);
128 ipi_call_unlock_irq();
129
130 /* idle thread is expected to have preempt disabled */
131 preempt_disable();
132 }
133
134 void cpu_panic(void)
135 {
136 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
137 panic("SMP bolixed\n");
138 }
139
140 /* This tick register synchronization scheme is taken entirely from
141 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
142 *
143 * The only change I've made is to rework it so that the master
144 * initiates the synchonization instead of the slave. -DaveM
145 */
146
147 #define MASTER 0
148 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
149
150 #define NUM_ROUNDS 64 /* magic value */
151 #define NUM_ITERS 5 /* likewise */
152
153 static DEFINE_SPINLOCK(itc_sync_lock);
154 static unsigned long go[SLAVE + 1];
155
156 #define DEBUG_TICK_SYNC 0
157
158 static inline long get_delta (long *rt, long *master)
159 {
160 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
161 unsigned long tcenter, t0, t1, tm;
162 unsigned long i;
163
164 for (i = 0; i < NUM_ITERS; i++) {
165 t0 = tick_ops->get_tick();
166 go[MASTER] = 1;
167 membar_safe("#StoreLoad");
168 while (!(tm = go[SLAVE]))
169 rmb();
170 go[SLAVE] = 0;
171 wmb();
172 t1 = tick_ops->get_tick();
173
174 if (t1 - t0 < best_t1 - best_t0)
175 best_t0 = t0, best_t1 = t1, best_tm = tm;
176 }
177
178 *rt = best_t1 - best_t0;
179 *master = best_tm - best_t0;
180
181 /* average best_t0 and best_t1 without overflow: */
182 tcenter = (best_t0/2 + best_t1/2);
183 if (best_t0 % 2 + best_t1 % 2 == 2)
184 tcenter++;
185 return tcenter - best_tm;
186 }
187
188 void smp_synchronize_tick_client(void)
189 {
190 long i, delta, adj, adjust_latency = 0, done = 0;
191 unsigned long flags, rt, master_time_stamp, bound;
192 #if DEBUG_TICK_SYNC
193 struct {
194 long rt; /* roundtrip time */
195 long master; /* master's timestamp */
196 long diff; /* difference between midpoint and master's timestamp */
197 long lat; /* estimate of itc adjustment latency */
198 } t[NUM_ROUNDS];
199 #endif
200
201 go[MASTER] = 1;
202
203 while (go[MASTER])
204 rmb();
205
206 local_irq_save(flags);
207 {
208 for (i = 0; i < NUM_ROUNDS; i++) {
209 delta = get_delta(&rt, &master_time_stamp);
210 if (delta == 0) {
211 done = 1; /* let's lock on to this... */
212 bound = rt;
213 }
214
215 if (!done) {
216 if (i > 0) {
217 adjust_latency += -delta;
218 adj = -delta + adjust_latency/4;
219 } else
220 adj = -delta;
221
222 tick_ops->add_tick(adj);
223 }
224 #if DEBUG_TICK_SYNC
225 t[i].rt = rt;
226 t[i].master = master_time_stamp;
227 t[i].diff = delta;
228 t[i].lat = adjust_latency/4;
229 #endif
230 }
231 }
232 local_irq_restore(flags);
233
234 #if DEBUG_TICK_SYNC
235 for (i = 0; i < NUM_ROUNDS; i++)
236 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
237 t[i].rt, t[i].master, t[i].diff, t[i].lat);
238 #endif
239
240 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
241 "(last diff %ld cycles, maxerr %lu cycles)\n",
242 smp_processor_id(), delta, rt);
243 }
244
245 static void smp_start_sync_tick_client(int cpu);
246
247 static void smp_synchronize_one_tick(int cpu)
248 {
249 unsigned long flags, i;
250
251 go[MASTER] = 0;
252
253 smp_start_sync_tick_client(cpu);
254
255 /* wait for client to be ready */
256 while (!go[MASTER])
257 rmb();
258
259 /* now let the client proceed into his loop */
260 go[MASTER] = 0;
261 membar_safe("#StoreLoad");
262
263 spin_lock_irqsave(&itc_sync_lock, flags);
264 {
265 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
266 while (!go[MASTER])
267 rmb();
268 go[MASTER] = 0;
269 wmb();
270 go[SLAVE] = tick_ops->get_tick();
271 membar_safe("#StoreLoad");
272 }
273 }
274 spin_unlock_irqrestore(&itc_sync_lock, flags);
275 }
276
277 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
278 /* XXX Put this in some common place. XXX */
279 static unsigned long kimage_addr_to_ra(void *p)
280 {
281 unsigned long val = (unsigned long) p;
282
283 return kern_base + (val - KERNBASE);
284 }
285
286 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
287 {
288 extern unsigned long sparc64_ttable_tl0;
289 extern unsigned long kern_locked_tte_data;
290 struct hvtramp_descr *hdesc;
291 unsigned long trampoline_ra;
292 struct trap_per_cpu *tb;
293 u64 tte_vaddr, tte_data;
294 unsigned long hv_err;
295 int i;
296
297 hdesc = kzalloc(sizeof(*hdesc) +
298 (sizeof(struct hvtramp_mapping) *
299 num_kernel_image_mappings - 1),
300 GFP_KERNEL);
301 if (!hdesc) {
302 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
303 "hvtramp_descr.\n");
304 return;
305 }
306 *descrp = hdesc;
307
308 hdesc->cpu = cpu;
309 hdesc->num_mappings = num_kernel_image_mappings;
310
311 tb = &trap_block[cpu];
312
313 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
314 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
315
316 hdesc->thread_reg = thread_reg;
317
318 tte_vaddr = (unsigned long) KERNBASE;
319 tte_data = kern_locked_tte_data;
320
321 for (i = 0; i < hdesc->num_mappings; i++) {
322 hdesc->maps[i].vaddr = tte_vaddr;
323 hdesc->maps[i].tte = tte_data;
324 tte_vaddr += 0x400000;
325 tte_data += 0x400000;
326 }
327
328 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
329
330 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
331 kimage_addr_to_ra(&sparc64_ttable_tl0),
332 __pa(hdesc));
333 if (hv_err)
334 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
335 "gives error %lu\n", hv_err);
336 }
337 #endif
338
339 extern unsigned long sparc64_cpu_startup;
340
341 /* The OBP cpu startup callback truncates the 3rd arg cookie to
342 * 32-bits (I think) so to be safe we have it read the pointer
343 * contained here so we work on >4GB machines. -DaveM
344 */
345 static struct thread_info *cpu_new_thread = NULL;
346
347 static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
348 {
349 unsigned long entry =
350 (unsigned long)(&sparc64_cpu_startup);
351 unsigned long cookie =
352 (unsigned long)(&cpu_new_thread);
353 struct task_struct *p;
354 void *descr = NULL;
355 int timeout, ret;
356
357 p = fork_idle(cpu);
358 if (IS_ERR(p))
359 return PTR_ERR(p);
360 callin_flag = 0;
361 cpu_new_thread = task_thread_info(p);
362
363 if (tlb_type == hypervisor) {
364 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
365 if (ldom_domaining_enabled)
366 ldom_startcpu_cpuid(cpu,
367 (unsigned long) cpu_new_thread,
368 &descr);
369 else
370 #endif
371 prom_startcpu_cpuid(cpu, entry, cookie);
372 } else {
373 struct device_node *dp = of_find_node_by_cpuid(cpu);
374
375 prom_startcpu(dp->phandle, entry, cookie);
376 }
377
378 for (timeout = 0; timeout < 50000; timeout++) {
379 if (callin_flag)
380 break;
381 udelay(100);
382 }
383
384 if (callin_flag) {
385 ret = 0;
386 } else {
387 printk("Processor %d is stuck.\n", cpu);
388 ret = -ENODEV;
389 }
390 cpu_new_thread = NULL;
391
392 kfree(descr);
393
394 return ret;
395 }
396
397 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
398 {
399 u64 result, target;
400 int stuck, tmp;
401
402 if (this_is_starfire) {
403 /* map to real upaid */
404 cpu = (((cpu & 0x3c) << 1) |
405 ((cpu & 0x40) >> 4) |
406 (cpu & 0x3));
407 }
408
409 target = (cpu << 14) | 0x70;
410 again:
411 /* Ok, this is the real Spitfire Errata #54.
412 * One must read back from a UDB internal register
413 * after writes to the UDB interrupt dispatch, but
414 * before the membar Sync for that write.
415 * So we use the high UDB control register (ASI 0x7f,
416 * ADDR 0x20) for the dummy read. -DaveM
417 */
418 tmp = 0x40;
419 __asm__ __volatile__(
420 "wrpr %1, %2, %%pstate\n\t"
421 "stxa %4, [%0] %3\n\t"
422 "stxa %5, [%0+%8] %3\n\t"
423 "add %0, %8, %0\n\t"
424 "stxa %6, [%0+%8] %3\n\t"
425 "membar #Sync\n\t"
426 "stxa %%g0, [%7] %3\n\t"
427 "membar #Sync\n\t"
428 "mov 0x20, %%g1\n\t"
429 "ldxa [%%g1] 0x7f, %%g0\n\t"
430 "membar #Sync"
431 : "=r" (tmp)
432 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
433 "r" (data0), "r" (data1), "r" (data2), "r" (target),
434 "r" (0x10), "0" (tmp)
435 : "g1");
436
437 /* NOTE: PSTATE_IE is still clear. */
438 stuck = 100000;
439 do {
440 __asm__ __volatile__("ldxa [%%g0] %1, %0"
441 : "=r" (result)
442 : "i" (ASI_INTR_DISPATCH_STAT));
443 if (result == 0) {
444 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
445 : : "r" (pstate));
446 return;
447 }
448 stuck -= 1;
449 if (stuck == 0)
450 break;
451 } while (result & 0x1);
452 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
453 : : "r" (pstate));
454 if (stuck == 0) {
455 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
456 smp_processor_id(), result);
457 } else {
458 udelay(2);
459 goto again;
460 }
461 }
462
463 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
464 {
465 u64 *mondo, data0, data1, data2;
466 u16 *cpu_list;
467 u64 pstate;
468 int i;
469
470 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
471 cpu_list = __va(tb->cpu_list_pa);
472 mondo = __va(tb->cpu_mondo_block_pa);
473 data0 = mondo[0];
474 data1 = mondo[1];
475 data2 = mondo[2];
476 for (i = 0; i < cnt; i++)
477 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
478 }
479
480 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
481 * packet, but we have no use for that. However we do take advantage of
482 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
483 */
484 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
485 {
486 int nack_busy_id, is_jbus, need_more;
487 u64 *mondo, pstate, ver, busy_mask;
488 u16 *cpu_list;
489
490 cpu_list = __va(tb->cpu_list_pa);
491 mondo = __va(tb->cpu_mondo_block_pa);
492
493 /* Unfortunately, someone at Sun had the brilliant idea to make the
494 * busy/nack fields hard-coded by ITID number for this Ultra-III
495 * derivative processor.
496 */
497 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
498 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
499 (ver >> 32) == __SERRANO_ID);
500
501 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
502
503 retry:
504 need_more = 0;
505 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
506 : : "r" (pstate), "i" (PSTATE_IE));
507
508 /* Setup the dispatch data registers. */
509 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
510 "stxa %1, [%4] %6\n\t"
511 "stxa %2, [%5] %6\n\t"
512 "membar #Sync\n\t"
513 : /* no outputs */
514 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
515 "r" (0x40), "r" (0x50), "r" (0x60),
516 "i" (ASI_INTR_W));
517
518 nack_busy_id = 0;
519 busy_mask = 0;
520 {
521 int i;
522
523 for (i = 0; i < cnt; i++) {
524 u64 target, nr;
525
526 nr = cpu_list[i];
527 if (nr == 0xffff)
528 continue;
529
530 target = (nr << 14) | 0x70;
531 if (is_jbus) {
532 busy_mask |= (0x1UL << (nr * 2));
533 } else {
534 target |= (nack_busy_id << 24);
535 busy_mask |= (0x1UL <<
536 (nack_busy_id * 2));
537 }
538 __asm__ __volatile__(
539 "stxa %%g0, [%0] %1\n\t"
540 "membar #Sync\n\t"
541 : /* no outputs */
542 : "r" (target), "i" (ASI_INTR_W));
543 nack_busy_id++;
544 if (nack_busy_id == 32) {
545 need_more = 1;
546 break;
547 }
548 }
549 }
550
551 /* Now, poll for completion. */
552 {
553 u64 dispatch_stat, nack_mask;
554 long stuck;
555
556 stuck = 100000 * nack_busy_id;
557 nack_mask = busy_mask << 1;
558 do {
559 __asm__ __volatile__("ldxa [%%g0] %1, %0"
560 : "=r" (dispatch_stat)
561 : "i" (ASI_INTR_DISPATCH_STAT));
562 if (!(dispatch_stat & (busy_mask | nack_mask))) {
563 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
564 : : "r" (pstate));
565 if (unlikely(need_more)) {
566 int i, this_cnt = 0;
567 for (i = 0; i < cnt; i++) {
568 if (cpu_list[i] == 0xffff)
569 continue;
570 cpu_list[i] = 0xffff;
571 this_cnt++;
572 if (this_cnt == 32)
573 break;
574 }
575 goto retry;
576 }
577 return;
578 }
579 if (!--stuck)
580 break;
581 } while (dispatch_stat & busy_mask);
582
583 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
584 : : "r" (pstate));
585
586 if (dispatch_stat & busy_mask) {
587 /* Busy bits will not clear, continue instead
588 * of freezing up on this cpu.
589 */
590 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
591 smp_processor_id(), dispatch_stat);
592 } else {
593 int i, this_busy_nack = 0;
594
595 /* Delay some random time with interrupts enabled
596 * to prevent deadlock.
597 */
598 udelay(2 * nack_busy_id);
599
600 /* Clear out the mask bits for cpus which did not
601 * NACK us.
602 */
603 for (i = 0; i < cnt; i++) {
604 u64 check_mask, nr;
605
606 nr = cpu_list[i];
607 if (nr == 0xffff)
608 continue;
609
610 if (is_jbus)
611 check_mask = (0x2UL << (2*nr));
612 else
613 check_mask = (0x2UL <<
614 this_busy_nack);
615 if ((dispatch_stat & check_mask) == 0)
616 cpu_list[i] = 0xffff;
617 this_busy_nack += 2;
618 if (this_busy_nack == 64)
619 break;
620 }
621
622 goto retry;
623 }
624 }
625 }
626
627 /* Multi-cpu list version. */
628 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
629 {
630 int retries, this_cpu, prev_sent, i, saw_cpu_error;
631 unsigned long status;
632 u16 *cpu_list;
633
634 this_cpu = smp_processor_id();
635
636 cpu_list = __va(tb->cpu_list_pa);
637
638 saw_cpu_error = 0;
639 retries = 0;
640 prev_sent = 0;
641 do {
642 int forward_progress, n_sent;
643
644 status = sun4v_cpu_mondo_send(cnt,
645 tb->cpu_list_pa,
646 tb->cpu_mondo_block_pa);
647
648 /* HV_EOK means all cpus received the xcall, we're done. */
649 if (likely(status == HV_EOK))
650 break;
651
652 /* First, see if we made any forward progress.
653 *
654 * The hypervisor indicates successful sends by setting
655 * cpu list entries to the value 0xffff.
656 */
657 n_sent = 0;
658 for (i = 0; i < cnt; i++) {
659 if (likely(cpu_list[i] == 0xffff))
660 n_sent++;
661 }
662
663 forward_progress = 0;
664 if (n_sent > prev_sent)
665 forward_progress = 1;
666
667 prev_sent = n_sent;
668
669 /* If we get a HV_ECPUERROR, then one or more of the cpus
670 * in the list are in error state. Use the cpu_state()
671 * hypervisor call to find out which cpus are in error state.
672 */
673 if (unlikely(status == HV_ECPUERROR)) {
674 for (i = 0; i < cnt; i++) {
675 long err;
676 u16 cpu;
677
678 cpu = cpu_list[i];
679 if (cpu == 0xffff)
680 continue;
681
682 err = sun4v_cpu_state(cpu);
683 if (err == HV_CPU_STATE_ERROR) {
684 saw_cpu_error = (cpu + 1);
685 cpu_list[i] = 0xffff;
686 }
687 }
688 } else if (unlikely(status != HV_EWOULDBLOCK))
689 goto fatal_mondo_error;
690
691 /* Don't bother rewriting the CPU list, just leave the
692 * 0xffff and non-0xffff entries in there and the
693 * hypervisor will do the right thing.
694 *
695 * Only advance timeout state if we didn't make any
696 * forward progress.
697 */
698 if (unlikely(!forward_progress)) {
699 if (unlikely(++retries > 10000))
700 goto fatal_mondo_timeout;
701
702 /* Delay a little bit to let other cpus catch up
703 * on their cpu mondo queue work.
704 */
705 udelay(2 * cnt);
706 }
707 } while (1);
708
709 if (unlikely(saw_cpu_error))
710 goto fatal_mondo_cpu_error;
711
712 return;
713
714 fatal_mondo_cpu_error:
715 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
716 "(including %d) were in error state\n",
717 this_cpu, saw_cpu_error - 1);
718 return;
719
720 fatal_mondo_timeout:
721 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
722 " progress after %d retries.\n",
723 this_cpu, retries);
724 goto dump_cpu_list_and_out;
725
726 fatal_mondo_error:
727 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
728 this_cpu, status);
729 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
730 "mondo_block_pa(%lx)\n",
731 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
732
733 dump_cpu_list_and_out:
734 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
735 for (i = 0; i < cnt; i++)
736 printk("%u ", cpu_list[i]);
737 printk("]\n");
738 }
739
740 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
741
742 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
743 {
744 struct trap_per_cpu *tb;
745 int this_cpu, i, cnt;
746 unsigned long flags;
747 u16 *cpu_list;
748 u64 *mondo;
749
750 /* We have to do this whole thing with interrupts fully disabled.
751 * Otherwise if we send an xcall from interrupt context it will
752 * corrupt both our mondo block and cpu list state.
753 *
754 * One consequence of this is that we cannot use timeout mechanisms
755 * that depend upon interrupts being delivered locally. So, for
756 * example, we cannot sample jiffies and expect it to advance.
757 *
758 * Fortunately, udelay() uses %stick/%tick so we can use that.
759 */
760 local_irq_save(flags);
761
762 this_cpu = smp_processor_id();
763 tb = &trap_block[this_cpu];
764
765 mondo = __va(tb->cpu_mondo_block_pa);
766 mondo[0] = data0;
767 mondo[1] = data1;
768 mondo[2] = data2;
769 wmb();
770
771 cpu_list = __va(tb->cpu_list_pa);
772
773 /* Setup the initial cpu list. */
774 cnt = 0;
775 for_each_cpu(i, mask) {
776 if (i == this_cpu || !cpu_online(i))
777 continue;
778 cpu_list[cnt++] = i;
779 }
780
781 if (cnt)
782 xcall_deliver_impl(tb, cnt);
783
784 local_irq_restore(flags);
785 }
786
787 /* Send cross call to all processors mentioned in MASK_P
788 * except self. Really, there are only two cases currently,
789 * "&cpu_online_map" and "&mm->cpu_vm_mask".
790 */
791 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
792 {
793 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
794
795 xcall_deliver(data0, data1, data2, mask);
796 }
797
798 /* Send cross call to all processors except self. */
799 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
800 {
801 smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
802 }
803
804 extern unsigned long xcall_sync_tick;
805
806 static void smp_start_sync_tick_client(int cpu)
807 {
808 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
809 &cpumask_of_cpu(cpu));
810 }
811
812 extern unsigned long xcall_call_function;
813
814 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
815 {
816 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
817 }
818
819 extern unsigned long xcall_call_function_single;
820
821 void arch_send_call_function_single_ipi(int cpu)
822 {
823 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
824 &cpumask_of_cpu(cpu));
825 }
826
827 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
828 {
829 clear_softint(1 << irq);
830 generic_smp_call_function_interrupt();
831 }
832
833 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
834 {
835 clear_softint(1 << irq);
836 generic_smp_call_function_single_interrupt();
837 }
838
839 static void tsb_sync(void *info)
840 {
841 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
842 struct mm_struct *mm = info;
843
844 /* It is not valid to test "currrent->active_mm == mm" here.
845 *
846 * The value of "current" is not changed atomically with
847 * switch_mm(). But that's OK, we just need to check the
848 * current cpu's trap block PGD physical address.
849 */
850 if (tp->pgd_paddr == __pa(mm->pgd))
851 tsb_context_switch(mm);
852 }
853
854 void smp_tsb_sync(struct mm_struct *mm)
855 {
856 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
857 }
858
859 extern unsigned long xcall_flush_tlb_mm;
860 extern unsigned long xcall_flush_tlb_pending;
861 extern unsigned long xcall_flush_tlb_kernel_range;
862 extern unsigned long xcall_fetch_glob_regs;
863 extern unsigned long xcall_receive_signal;
864 extern unsigned long xcall_new_mmu_context_version;
865 #ifdef CONFIG_KGDB
866 extern unsigned long xcall_kgdb_capture;
867 #endif
868
869 #ifdef DCACHE_ALIASING_POSSIBLE
870 extern unsigned long xcall_flush_dcache_page_cheetah;
871 #endif
872 extern unsigned long xcall_flush_dcache_page_spitfire;
873
874 #ifdef CONFIG_DEBUG_DCFLUSH
875 extern atomic_t dcpage_flushes;
876 extern atomic_t dcpage_flushes_xcall;
877 #endif
878
879 static inline void __local_flush_dcache_page(struct page *page)
880 {
881 #ifdef DCACHE_ALIASING_POSSIBLE
882 __flush_dcache_page(page_address(page),
883 ((tlb_type == spitfire) &&
884 page_mapping(page) != NULL));
885 #else
886 if (page_mapping(page) != NULL &&
887 tlb_type == spitfire)
888 __flush_icache_page(__pa(page_address(page)));
889 #endif
890 }
891
892 void smp_flush_dcache_page_impl(struct page *page, int cpu)
893 {
894 int this_cpu;
895
896 if (tlb_type == hypervisor)
897 return;
898
899 #ifdef CONFIG_DEBUG_DCFLUSH
900 atomic_inc(&dcpage_flushes);
901 #endif
902
903 this_cpu = get_cpu();
904
905 if (cpu == this_cpu) {
906 __local_flush_dcache_page(page);
907 } else if (cpu_online(cpu)) {
908 void *pg_addr = page_address(page);
909 u64 data0 = 0;
910
911 if (tlb_type == spitfire) {
912 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
913 if (page_mapping(page) != NULL)
914 data0 |= ((u64)1 << 32);
915 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
916 #ifdef DCACHE_ALIASING_POSSIBLE
917 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
918 #endif
919 }
920 if (data0) {
921 xcall_deliver(data0, __pa(pg_addr),
922 (u64) pg_addr, &cpumask_of_cpu(cpu));
923 #ifdef CONFIG_DEBUG_DCFLUSH
924 atomic_inc(&dcpage_flushes_xcall);
925 #endif
926 }
927 }
928
929 put_cpu();
930 }
931
932 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
933 {
934 void *pg_addr;
935 int this_cpu;
936 u64 data0;
937
938 if (tlb_type == hypervisor)
939 return;
940
941 this_cpu = get_cpu();
942
943 #ifdef CONFIG_DEBUG_DCFLUSH
944 atomic_inc(&dcpage_flushes);
945 #endif
946 data0 = 0;
947 pg_addr = page_address(page);
948 if (tlb_type == spitfire) {
949 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
950 if (page_mapping(page) != NULL)
951 data0 |= ((u64)1 << 32);
952 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
953 #ifdef DCACHE_ALIASING_POSSIBLE
954 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
955 #endif
956 }
957 if (data0) {
958 xcall_deliver(data0, __pa(pg_addr),
959 (u64) pg_addr, &cpu_online_map);
960 #ifdef CONFIG_DEBUG_DCFLUSH
961 atomic_inc(&dcpage_flushes_xcall);
962 #endif
963 }
964 __local_flush_dcache_page(page);
965
966 put_cpu();
967 }
968
969 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
970 {
971 struct mm_struct *mm;
972 unsigned long flags;
973
974 clear_softint(1 << irq);
975
976 /* See if we need to allocate a new TLB context because
977 * the version of the one we are using is now out of date.
978 */
979 mm = current->active_mm;
980 if (unlikely(!mm || (mm == &init_mm)))
981 return;
982
983 spin_lock_irqsave(&mm->context.lock, flags);
984
985 if (unlikely(!CTX_VALID(mm->context)))
986 get_new_mmu_context(mm);
987
988 spin_unlock_irqrestore(&mm->context.lock, flags);
989
990 load_secondary_context(mm);
991 __flush_tlb_mm(CTX_HWBITS(mm->context),
992 SECONDARY_CONTEXT);
993 }
994
995 void smp_new_mmu_context_version(void)
996 {
997 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
998 }
999
1000 #ifdef CONFIG_KGDB
1001 void kgdb_roundup_cpus(unsigned long flags)
1002 {
1003 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1004 }
1005 #endif
1006
1007 void smp_fetch_global_regs(void)
1008 {
1009 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1010 }
1011
1012 /* We know that the window frames of the user have been flushed
1013 * to the stack before we get here because all callers of us
1014 * are flush_tlb_*() routines, and these run after flush_cache_*()
1015 * which performs the flushw.
1016 *
1017 * The SMP TLB coherency scheme we use works as follows:
1018 *
1019 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1020 * space has (potentially) executed on, this is the heuristic
1021 * we use to avoid doing cross calls.
1022 *
1023 * Also, for flushing from kswapd and also for clones, we
1024 * use cpu_vm_mask as the list of cpus to make run the TLB.
1025 *
1026 * 2) TLB context numbers are shared globally across all processors
1027 * in the system, this allows us to play several games to avoid
1028 * cross calls.
1029 *
1030 * One invariant is that when a cpu switches to a process, and
1031 * that processes tsk->active_mm->cpu_vm_mask does not have the
1032 * current cpu's bit set, that tlb context is flushed locally.
1033 *
1034 * If the address space is non-shared (ie. mm->count == 1) we avoid
1035 * cross calls when we want to flush the currently running process's
1036 * tlb state. This is done by clearing all cpu bits except the current
1037 * processor's in current->mm->cpu_vm_mask and performing the
1038 * flush locally only. This will force any subsequent cpus which run
1039 * this task to flush the context from the local tlb if the process
1040 * migrates to another cpu (again).
1041 *
1042 * 3) For shared address spaces (threads) and swapping we bite the
1043 * bullet for most cases and perform the cross call (but only to
1044 * the cpus listed in cpu_vm_mask).
1045 *
1046 * The performance gain from "optimizing" away the cross call for threads is
1047 * questionable (in theory the big win for threads is the massive sharing of
1048 * address space state across processors).
1049 */
1050
1051 /* This currently is only used by the hugetlb arch pre-fault
1052 * hook on UltraSPARC-III+ and later when changing the pagesize
1053 * bits of the context register for an address space.
1054 */
1055 void smp_flush_tlb_mm(struct mm_struct *mm)
1056 {
1057 u32 ctx = CTX_HWBITS(mm->context);
1058 int cpu = get_cpu();
1059
1060 if (atomic_read(&mm->mm_users) == 1) {
1061 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1062 goto local_flush_and_out;
1063 }
1064
1065 smp_cross_call_masked(&xcall_flush_tlb_mm,
1066 ctx, 0, 0,
1067 mm_cpumask(mm));
1068
1069 local_flush_and_out:
1070 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1071
1072 put_cpu();
1073 }
1074
1075 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1076 {
1077 u32 ctx = CTX_HWBITS(mm->context);
1078 int cpu = get_cpu();
1079
1080 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1081 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1082 else
1083 smp_cross_call_masked(&xcall_flush_tlb_pending,
1084 ctx, nr, (unsigned long) vaddrs,
1085 mm_cpumask(mm));
1086
1087 __flush_tlb_pending(ctx, nr, vaddrs);
1088
1089 put_cpu();
1090 }
1091
1092 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1093 {
1094 start &= PAGE_MASK;
1095 end = PAGE_ALIGN(end);
1096 if (start != end) {
1097 smp_cross_call(&xcall_flush_tlb_kernel_range,
1098 0, start, end);
1099
1100 __flush_tlb_kernel_range(start, end);
1101 }
1102 }
1103
1104 /* CPU capture. */
1105 /* #define CAPTURE_DEBUG */
1106 extern unsigned long xcall_capture;
1107
1108 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1109 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1110 static unsigned long penguins_are_doing_time;
1111
1112 void smp_capture(void)
1113 {
1114 int result = atomic_add_ret(1, &smp_capture_depth);
1115
1116 if (result == 1) {
1117 int ncpus = num_online_cpus();
1118
1119 #ifdef CAPTURE_DEBUG
1120 printk("CPU[%d]: Sending penguins to jail...",
1121 smp_processor_id());
1122 #endif
1123 penguins_are_doing_time = 1;
1124 atomic_inc(&smp_capture_registry);
1125 smp_cross_call(&xcall_capture, 0, 0, 0);
1126 while (atomic_read(&smp_capture_registry) != ncpus)
1127 rmb();
1128 #ifdef CAPTURE_DEBUG
1129 printk("done\n");
1130 #endif
1131 }
1132 }
1133
1134 void smp_release(void)
1135 {
1136 if (atomic_dec_and_test(&smp_capture_depth)) {
1137 #ifdef CAPTURE_DEBUG
1138 printk("CPU[%d]: Giving pardon to "
1139 "imprisoned penguins\n",
1140 smp_processor_id());
1141 #endif
1142 penguins_are_doing_time = 0;
1143 membar_safe("#StoreLoad");
1144 atomic_dec(&smp_capture_registry);
1145 }
1146 }
1147
1148 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1149 * set, so they can service tlb flush xcalls...
1150 */
1151 extern void prom_world(int);
1152
1153 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1154 {
1155 clear_softint(1 << irq);
1156
1157 preempt_disable();
1158
1159 __asm__ __volatile__("flushw");
1160 prom_world(1);
1161 atomic_inc(&smp_capture_registry);
1162 membar_safe("#StoreLoad");
1163 while (penguins_are_doing_time)
1164 rmb();
1165 atomic_dec(&smp_capture_registry);
1166 prom_world(0);
1167
1168 preempt_enable();
1169 }
1170
1171 /* /proc/profile writes can call this, don't __init it please. */
1172 int setup_profiling_timer(unsigned int multiplier)
1173 {
1174 return -EINVAL;
1175 }
1176
1177 void __init smp_prepare_cpus(unsigned int max_cpus)
1178 {
1179 }
1180
1181 void __devinit smp_prepare_boot_cpu(void)
1182 {
1183 }
1184
1185 void __init smp_setup_processor_id(void)
1186 {
1187 if (tlb_type == spitfire)
1188 xcall_deliver_impl = spitfire_xcall_deliver;
1189 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1190 xcall_deliver_impl = cheetah_xcall_deliver;
1191 else
1192 xcall_deliver_impl = hypervisor_xcall_deliver;
1193 }
1194
1195 void __devinit smp_fill_in_sib_core_maps(void)
1196 {
1197 unsigned int i;
1198
1199 for_each_present_cpu(i) {
1200 unsigned int j;
1201
1202 cpus_clear(cpu_core_map[i]);
1203 if (cpu_data(i).core_id == 0) {
1204 cpu_set(i, cpu_core_map[i]);
1205 continue;
1206 }
1207
1208 for_each_present_cpu(j) {
1209 if (cpu_data(i).core_id ==
1210 cpu_data(j).core_id)
1211 cpu_set(j, cpu_core_map[i]);
1212 }
1213 }
1214
1215 for_each_present_cpu(i) {
1216 unsigned int j;
1217
1218 cpus_clear(per_cpu(cpu_sibling_map, i));
1219 if (cpu_data(i).proc_id == -1) {
1220 cpu_set(i, per_cpu(cpu_sibling_map, i));
1221 continue;
1222 }
1223
1224 for_each_present_cpu(j) {
1225 if (cpu_data(i).proc_id ==
1226 cpu_data(j).proc_id)
1227 cpu_set(j, per_cpu(cpu_sibling_map, i));
1228 }
1229 }
1230 }
1231
1232 int __cpuinit __cpu_up(unsigned int cpu)
1233 {
1234 int ret = smp_boot_one_cpu(cpu);
1235
1236 if (!ret) {
1237 cpu_set(cpu, smp_commenced_mask);
1238 while (!cpu_isset(cpu, cpu_online_map))
1239 mb();
1240 if (!cpu_isset(cpu, cpu_online_map)) {
1241 ret = -ENODEV;
1242 } else {
1243 /* On SUN4V, writes to %tick and %stick are
1244 * not allowed.
1245 */
1246 if (tlb_type != hypervisor)
1247 smp_synchronize_one_tick(cpu);
1248 }
1249 }
1250 return ret;
1251 }
1252
1253 #ifdef CONFIG_HOTPLUG_CPU
1254 void cpu_play_dead(void)
1255 {
1256 int cpu = smp_processor_id();
1257 unsigned long pstate;
1258
1259 idle_task_exit();
1260
1261 if (tlb_type == hypervisor) {
1262 struct trap_per_cpu *tb = &trap_block[cpu];
1263
1264 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1265 tb->cpu_mondo_pa, 0);
1266 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1267 tb->dev_mondo_pa, 0);
1268 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1269 tb->resum_mondo_pa, 0);
1270 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1271 tb->nonresum_mondo_pa, 0);
1272 }
1273
1274 cpu_clear(cpu, smp_commenced_mask);
1275 membar_safe("#Sync");
1276
1277 local_irq_disable();
1278
1279 __asm__ __volatile__(
1280 "rdpr %%pstate, %0\n\t"
1281 "wrpr %0, %1, %%pstate"
1282 : "=r" (pstate)
1283 : "i" (PSTATE_IE));
1284
1285 while (1)
1286 barrier();
1287 }
1288
1289 int __cpu_disable(void)
1290 {
1291 int cpu = smp_processor_id();
1292 cpuinfo_sparc *c;
1293 int i;
1294
1295 for_each_cpu_mask(i, cpu_core_map[cpu])
1296 cpu_clear(cpu, cpu_core_map[i]);
1297 cpus_clear(cpu_core_map[cpu]);
1298
1299 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1300 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1301 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1302
1303 c = &cpu_data(cpu);
1304
1305 c->core_id = 0;
1306 c->proc_id = -1;
1307
1308 smp_wmb();
1309
1310 /* Make sure no interrupts point to this cpu. */
1311 fixup_irqs();
1312
1313 local_irq_enable();
1314 mdelay(1);
1315 local_irq_disable();
1316
1317 ipi_call_lock();
1318 cpu_clear(cpu, cpu_online_map);
1319 ipi_call_unlock();
1320
1321 cpu_map_rebuild();
1322
1323 return 0;
1324 }
1325
1326 void __cpu_die(unsigned int cpu)
1327 {
1328 int i;
1329
1330 for (i = 0; i < 100; i++) {
1331 smp_rmb();
1332 if (!cpu_isset(cpu, smp_commenced_mask))
1333 break;
1334 msleep(100);
1335 }
1336 if (cpu_isset(cpu, smp_commenced_mask)) {
1337 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1338 } else {
1339 #if defined(CONFIG_SUN_LDOMS)
1340 unsigned long hv_err;
1341 int limit = 100;
1342
1343 do {
1344 hv_err = sun4v_cpu_stop(cpu);
1345 if (hv_err == HV_EOK) {
1346 cpu_clear(cpu, cpu_present_map);
1347 break;
1348 }
1349 } while (--limit > 0);
1350 if (limit <= 0) {
1351 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1352 hv_err);
1353 }
1354 #endif
1355 }
1356 }
1357 #endif
1358
1359 void __init smp_cpus_done(unsigned int max_cpus)
1360 {
1361 }
1362
1363 void smp_send_reschedule(int cpu)
1364 {
1365 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1366 &cpumask_of_cpu(cpu));
1367 }
1368
1369 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1370 {
1371 clear_softint(1 << irq);
1372 }
1373
1374 /* This is a nop because we capture all other cpus
1375 * anyways when making the PROM active.
1376 */
1377 void smp_send_stop(void)
1378 {
1379 }
1380
1381 /**
1382 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1383 * @cpu: cpu to allocate for
1384 * @size: size allocation in bytes
1385 * @align: alignment
1386 *
1387 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1388 * does the right thing for NUMA regardless of the current
1389 * configuration.
1390 *
1391 * RETURNS:
1392 * Pointer to the allocated area on success, NULL on failure.
1393 */
1394 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1395 size_t align)
1396 {
1397 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1398 #ifdef CONFIG_NEED_MULTIPLE_NODES
1399 int node = cpu_to_node(cpu);
1400 void *ptr;
1401
1402 if (!node_online(node) || !NODE_DATA(node)) {
1403 ptr = __alloc_bootmem(size, align, goal);
1404 pr_info("cpu %d has no node %d or node-local memory\n",
1405 cpu, node);
1406 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1407 cpu, size, __pa(ptr));
1408 } else {
1409 ptr = __alloc_bootmem_node(NODE_DATA(node),
1410 size, align, goal);
1411 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1412 "%016lx\n", cpu, size, node, __pa(ptr));
1413 }
1414 return ptr;
1415 #else
1416 return __alloc_bootmem(size, align, goal);
1417 #endif
1418 }
1419
1420 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1421 {
1422 free_bootmem(__pa(ptr), size);
1423 }
1424
1425 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1426 {
1427 if (cpu_to_node(from) == cpu_to_node(to))
1428 return LOCAL_DISTANCE;
1429 else
1430 return REMOTE_DISTANCE;
1431 }
1432
1433 static void __init pcpu_populate_pte(unsigned long addr)
1434 {
1435 pgd_t *pgd = pgd_offset_k(addr);
1436 pud_t *pud;
1437 pmd_t *pmd;
1438
1439 pud = pud_offset(pgd, addr);
1440 if (pud_none(*pud)) {
1441 pmd_t *new;
1442
1443 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1444 pud_populate(&init_mm, pud, new);
1445 }
1446
1447 pmd = pmd_offset(pud, addr);
1448 if (!pmd_present(*pmd)) {
1449 pte_t *new;
1450
1451 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1452 pmd_populate_kernel(&init_mm, pmd, new);
1453 }
1454 }
1455
1456 void __init setup_per_cpu_areas(void)
1457 {
1458 unsigned long delta;
1459 unsigned int cpu;
1460 int rc = -EINVAL;
1461
1462 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1463 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1464 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1465 pcpu_cpu_distance,
1466 pcpu_alloc_bootmem,
1467 pcpu_free_bootmem);
1468 if (rc)
1469 pr_warning("PERCPU: %s allocator failed (%d), "
1470 "falling back to page size\n",
1471 pcpu_fc_names[pcpu_chosen_fc], rc);
1472 }
1473 if (rc < 0)
1474 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1475 pcpu_alloc_bootmem,
1476 pcpu_free_bootmem,
1477 pcpu_populate_pte);
1478 if (rc < 0)
1479 panic("cannot initialize percpu area (err=%d)", rc);
1480
1481 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1482 for_each_possible_cpu(cpu)
1483 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1484
1485 /* Setup %g5 for the boot cpu. */
1486 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1487
1488 of_fill_in_cpu_data();
1489 if (tlb_type == hypervisor)
1490 mdesc_fill_in_cpu_data(cpu_all_mask);
1491 }