]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sparc/kernel/smp_64.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/hotplug.h>
10 #include <linux/mm.h>
11 #include <linux/pagemap.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ftrace.h>
27 #include <linux/cpu.h>
28 #include <linux/slab.h>
29 #include <linux/kgdb.h>
30
31 #include <asm/head.h>
32 #include <asm/ptrace.h>
33 #include <linux/atomic.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mmu_context.h>
36 #include <asm/cpudata.h>
37 #include <asm/hvtramp.h>
38 #include <asm/io.h>
39 #include <asm/timer.h>
40 #include <asm/setup.h>
41
42 #include <asm/irq.h>
43 #include <asm/irq_regs.h>
44 #include <asm/page.h>
45 #include <asm/pgtable.h>
46 #include <asm/oplib.h>
47 #include <linux/uaccess.h>
48 #include <asm/starfire.h>
49 #include <asm/tlb.h>
50 #include <asm/sections.h>
51 #include <asm/prom.h>
52 #include <asm/mdesc.h>
53 #include <asm/ldc.h>
54 #include <asm/hypervisor.h>
55 #include <asm/pcr.h>
56
57 #include "cpumap.h"
58 #include "kernel.h"
59
60 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
61 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
62 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
63
64 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
65 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
66
67 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
68 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
69
70 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
71 EXPORT_SYMBOL(cpu_core_map);
72 EXPORT_SYMBOL(cpu_core_sib_map);
73 EXPORT_SYMBOL(cpu_core_sib_cache_map);
74
75 static cpumask_t smp_commenced_mask;
76
77 void smp_info(struct seq_file *m)
78 {
79 int i;
80
81 seq_printf(m, "State:\n");
82 for_each_online_cpu(i)
83 seq_printf(m, "CPU%d:\t\tonline\n", i);
84 }
85
86 void smp_bogo(struct seq_file *m)
87 {
88 int i;
89
90 for_each_online_cpu(i)
91 seq_printf(m,
92 "Cpu%dClkTck\t: %016lx\n",
93 i, cpu_data(i).clock_tick);
94 }
95
96 extern void setup_sparc64_timer(void);
97
98 static volatile unsigned long callin_flag = 0;
99
100 void smp_callin(void)
101 {
102 int cpuid = hard_smp_processor_id();
103
104 __local_per_cpu_offset = __per_cpu_offset(cpuid);
105
106 if (tlb_type == hypervisor)
107 sun4v_ktsb_register();
108
109 __flush_tlb_all();
110
111 setup_sparc64_timer();
112
113 if (cheetah_pcache_forced_on)
114 cheetah_enable_pcache();
115
116 callin_flag = 1;
117 __asm__ __volatile__("membar #Sync\n\t"
118 "flush %%g6" : : : "memory");
119
120 /* Clear this or we will die instantly when we
121 * schedule back to this idler...
122 */
123 current_thread_info()->new_child = 0;
124
125 /* Attach to the address space of init_task. */
126 mmgrab(&init_mm);
127 current->active_mm = &init_mm;
128
129 /* inform the notifiers about the new cpu */
130 notify_cpu_starting(cpuid);
131
132 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
133 rmb();
134
135 set_cpu_online(cpuid, true);
136
137 /* idle thread is expected to have preempt disabled */
138 preempt_disable();
139
140 local_irq_enable();
141
142 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
143 }
144
145 void cpu_panic(void)
146 {
147 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
148 panic("SMP bolixed\n");
149 }
150
151 /* This tick register synchronization scheme is taken entirely from
152 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
153 *
154 * The only change I've made is to rework it so that the master
155 * initiates the synchonization instead of the slave. -DaveM
156 */
157
158 #define MASTER 0
159 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
160
161 #define NUM_ROUNDS 64 /* magic value */
162 #define NUM_ITERS 5 /* likewise */
163
164 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
165 static unsigned long go[SLAVE + 1];
166
167 #define DEBUG_TICK_SYNC 0
168
169 static inline long get_delta (long *rt, long *master)
170 {
171 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
172 unsigned long tcenter, t0, t1, tm;
173 unsigned long i;
174
175 for (i = 0; i < NUM_ITERS; i++) {
176 t0 = tick_ops->get_tick();
177 go[MASTER] = 1;
178 membar_safe("#StoreLoad");
179 while (!(tm = go[SLAVE]))
180 rmb();
181 go[SLAVE] = 0;
182 wmb();
183 t1 = tick_ops->get_tick();
184
185 if (t1 - t0 < best_t1 - best_t0)
186 best_t0 = t0, best_t1 = t1, best_tm = tm;
187 }
188
189 *rt = best_t1 - best_t0;
190 *master = best_tm - best_t0;
191
192 /* average best_t0 and best_t1 without overflow: */
193 tcenter = (best_t0/2 + best_t1/2);
194 if (best_t0 % 2 + best_t1 % 2 == 2)
195 tcenter++;
196 return tcenter - best_tm;
197 }
198
199 void smp_synchronize_tick_client(void)
200 {
201 long i, delta, adj, adjust_latency = 0, done = 0;
202 unsigned long flags, rt, master_time_stamp;
203 #if DEBUG_TICK_SYNC
204 struct {
205 long rt; /* roundtrip time */
206 long master; /* master's timestamp */
207 long diff; /* difference between midpoint and master's timestamp */
208 long lat; /* estimate of itc adjustment latency */
209 } t[NUM_ROUNDS];
210 #endif
211
212 go[MASTER] = 1;
213
214 while (go[MASTER])
215 rmb();
216
217 local_irq_save(flags);
218 {
219 for (i = 0; i < NUM_ROUNDS; i++) {
220 delta = get_delta(&rt, &master_time_stamp);
221 if (delta == 0)
222 done = 1; /* let's lock on to this... */
223
224 if (!done) {
225 if (i > 0) {
226 adjust_latency += -delta;
227 adj = -delta + adjust_latency/4;
228 } else
229 adj = -delta;
230
231 tick_ops->add_tick(adj);
232 }
233 #if DEBUG_TICK_SYNC
234 t[i].rt = rt;
235 t[i].master = master_time_stamp;
236 t[i].diff = delta;
237 t[i].lat = adjust_latency/4;
238 #endif
239 }
240 }
241 local_irq_restore(flags);
242
243 #if DEBUG_TICK_SYNC
244 for (i = 0; i < NUM_ROUNDS; i++)
245 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
246 t[i].rt, t[i].master, t[i].diff, t[i].lat);
247 #endif
248
249 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
250 "(last diff %ld cycles, maxerr %lu cycles)\n",
251 smp_processor_id(), delta, rt);
252 }
253
254 static void smp_start_sync_tick_client(int cpu);
255
256 static void smp_synchronize_one_tick(int cpu)
257 {
258 unsigned long flags, i;
259
260 go[MASTER] = 0;
261
262 smp_start_sync_tick_client(cpu);
263
264 /* wait for client to be ready */
265 while (!go[MASTER])
266 rmb();
267
268 /* now let the client proceed into his loop */
269 go[MASTER] = 0;
270 membar_safe("#StoreLoad");
271
272 raw_spin_lock_irqsave(&itc_sync_lock, flags);
273 {
274 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
275 while (!go[MASTER])
276 rmb();
277 go[MASTER] = 0;
278 wmb();
279 go[SLAVE] = tick_ops->get_tick();
280 membar_safe("#StoreLoad");
281 }
282 }
283 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
284 }
285
286 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
287 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
288 void **descrp)
289 {
290 extern unsigned long sparc64_ttable_tl0;
291 extern unsigned long kern_locked_tte_data;
292 struct hvtramp_descr *hdesc;
293 unsigned long trampoline_ra;
294 struct trap_per_cpu *tb;
295 u64 tte_vaddr, tte_data;
296 unsigned long hv_err;
297 int i;
298
299 hdesc = kzalloc(sizeof(*hdesc) +
300 (sizeof(struct hvtramp_mapping) *
301 num_kernel_image_mappings - 1),
302 GFP_KERNEL);
303 if (!hdesc) {
304 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
305 "hvtramp_descr.\n");
306 return;
307 }
308 *descrp = hdesc;
309
310 hdesc->cpu = cpu;
311 hdesc->num_mappings = num_kernel_image_mappings;
312
313 tb = &trap_block[cpu];
314
315 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
316 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
317
318 hdesc->thread_reg = thread_reg;
319
320 tte_vaddr = (unsigned long) KERNBASE;
321 tte_data = kern_locked_tte_data;
322
323 for (i = 0; i < hdesc->num_mappings; i++) {
324 hdesc->maps[i].vaddr = tte_vaddr;
325 hdesc->maps[i].tte = tte_data;
326 tte_vaddr += 0x400000;
327 tte_data += 0x400000;
328 }
329
330 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
331
332 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
333 kimage_addr_to_ra(&sparc64_ttable_tl0),
334 __pa(hdesc));
335 if (hv_err)
336 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
337 "gives error %lu\n", hv_err);
338 }
339 #endif
340
341 extern unsigned long sparc64_cpu_startup;
342
343 /* The OBP cpu startup callback truncates the 3rd arg cookie to
344 * 32-bits (I think) so to be safe we have it read the pointer
345 * contained here so we work on >4GB machines. -DaveM
346 */
347 static struct thread_info *cpu_new_thread = NULL;
348
349 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
350 {
351 unsigned long entry =
352 (unsigned long)(&sparc64_cpu_startup);
353 unsigned long cookie =
354 (unsigned long)(&cpu_new_thread);
355 void *descr = NULL;
356 int timeout, ret;
357
358 callin_flag = 0;
359 cpu_new_thread = task_thread_info(idle);
360
361 if (tlb_type == hypervisor) {
362 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
363 if (ldom_domaining_enabled)
364 ldom_startcpu_cpuid(cpu,
365 (unsigned long) cpu_new_thread,
366 &descr);
367 else
368 #endif
369 prom_startcpu_cpuid(cpu, entry, cookie);
370 } else {
371 struct device_node *dp = of_find_node_by_cpuid(cpu);
372
373 prom_startcpu(dp->phandle, entry, cookie);
374 }
375
376 for (timeout = 0; timeout < 50000; timeout++) {
377 if (callin_flag)
378 break;
379 udelay(100);
380 }
381
382 if (callin_flag) {
383 ret = 0;
384 } else {
385 printk("Processor %d is stuck.\n", cpu);
386 ret = -ENODEV;
387 }
388 cpu_new_thread = NULL;
389
390 kfree(descr);
391
392 return ret;
393 }
394
395 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
396 {
397 u64 result, target;
398 int stuck, tmp;
399
400 if (this_is_starfire) {
401 /* map to real upaid */
402 cpu = (((cpu & 0x3c) << 1) |
403 ((cpu & 0x40) >> 4) |
404 (cpu & 0x3));
405 }
406
407 target = (cpu << 14) | 0x70;
408 again:
409 /* Ok, this is the real Spitfire Errata #54.
410 * One must read back from a UDB internal register
411 * after writes to the UDB interrupt dispatch, but
412 * before the membar Sync for that write.
413 * So we use the high UDB control register (ASI 0x7f,
414 * ADDR 0x20) for the dummy read. -DaveM
415 */
416 tmp = 0x40;
417 __asm__ __volatile__(
418 "wrpr %1, %2, %%pstate\n\t"
419 "stxa %4, [%0] %3\n\t"
420 "stxa %5, [%0+%8] %3\n\t"
421 "add %0, %8, %0\n\t"
422 "stxa %6, [%0+%8] %3\n\t"
423 "membar #Sync\n\t"
424 "stxa %%g0, [%7] %3\n\t"
425 "membar #Sync\n\t"
426 "mov 0x20, %%g1\n\t"
427 "ldxa [%%g1] 0x7f, %%g0\n\t"
428 "membar #Sync"
429 : "=r" (tmp)
430 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
431 "r" (data0), "r" (data1), "r" (data2), "r" (target),
432 "r" (0x10), "0" (tmp)
433 : "g1");
434
435 /* NOTE: PSTATE_IE is still clear. */
436 stuck = 100000;
437 do {
438 __asm__ __volatile__("ldxa [%%g0] %1, %0"
439 : "=r" (result)
440 : "i" (ASI_INTR_DISPATCH_STAT));
441 if (result == 0) {
442 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
443 : : "r" (pstate));
444 return;
445 }
446 stuck -= 1;
447 if (stuck == 0)
448 break;
449 } while (result & 0x1);
450 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
451 : : "r" (pstate));
452 if (stuck == 0) {
453 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
454 smp_processor_id(), result);
455 } else {
456 udelay(2);
457 goto again;
458 }
459 }
460
461 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
462 {
463 u64 *mondo, data0, data1, data2;
464 u16 *cpu_list;
465 u64 pstate;
466 int i;
467
468 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
469 cpu_list = __va(tb->cpu_list_pa);
470 mondo = __va(tb->cpu_mondo_block_pa);
471 data0 = mondo[0];
472 data1 = mondo[1];
473 data2 = mondo[2];
474 for (i = 0; i < cnt; i++)
475 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
476 }
477
478 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
479 * packet, but we have no use for that. However we do take advantage of
480 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
481 */
482 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
483 {
484 int nack_busy_id, is_jbus, need_more;
485 u64 *mondo, pstate, ver, busy_mask;
486 u16 *cpu_list;
487
488 cpu_list = __va(tb->cpu_list_pa);
489 mondo = __va(tb->cpu_mondo_block_pa);
490
491 /* Unfortunately, someone at Sun had the brilliant idea to make the
492 * busy/nack fields hard-coded by ITID number for this Ultra-III
493 * derivative processor.
494 */
495 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
496 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
497 (ver >> 32) == __SERRANO_ID);
498
499 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
500
501 retry:
502 need_more = 0;
503 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
504 : : "r" (pstate), "i" (PSTATE_IE));
505
506 /* Setup the dispatch data registers. */
507 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
508 "stxa %1, [%4] %6\n\t"
509 "stxa %2, [%5] %6\n\t"
510 "membar #Sync\n\t"
511 : /* no outputs */
512 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
513 "r" (0x40), "r" (0x50), "r" (0x60),
514 "i" (ASI_INTR_W));
515
516 nack_busy_id = 0;
517 busy_mask = 0;
518 {
519 int i;
520
521 for (i = 0; i < cnt; i++) {
522 u64 target, nr;
523
524 nr = cpu_list[i];
525 if (nr == 0xffff)
526 continue;
527
528 target = (nr << 14) | 0x70;
529 if (is_jbus) {
530 busy_mask |= (0x1UL << (nr * 2));
531 } else {
532 target |= (nack_busy_id << 24);
533 busy_mask |= (0x1UL <<
534 (nack_busy_id * 2));
535 }
536 __asm__ __volatile__(
537 "stxa %%g0, [%0] %1\n\t"
538 "membar #Sync\n\t"
539 : /* no outputs */
540 : "r" (target), "i" (ASI_INTR_W));
541 nack_busy_id++;
542 if (nack_busy_id == 32) {
543 need_more = 1;
544 break;
545 }
546 }
547 }
548
549 /* Now, poll for completion. */
550 {
551 u64 dispatch_stat, nack_mask;
552 long stuck;
553
554 stuck = 100000 * nack_busy_id;
555 nack_mask = busy_mask << 1;
556 do {
557 __asm__ __volatile__("ldxa [%%g0] %1, %0"
558 : "=r" (dispatch_stat)
559 : "i" (ASI_INTR_DISPATCH_STAT));
560 if (!(dispatch_stat & (busy_mask | nack_mask))) {
561 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
562 : : "r" (pstate));
563 if (unlikely(need_more)) {
564 int i, this_cnt = 0;
565 for (i = 0; i < cnt; i++) {
566 if (cpu_list[i] == 0xffff)
567 continue;
568 cpu_list[i] = 0xffff;
569 this_cnt++;
570 if (this_cnt == 32)
571 break;
572 }
573 goto retry;
574 }
575 return;
576 }
577 if (!--stuck)
578 break;
579 } while (dispatch_stat & busy_mask);
580
581 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
582 : : "r" (pstate));
583
584 if (dispatch_stat & busy_mask) {
585 /* Busy bits will not clear, continue instead
586 * of freezing up on this cpu.
587 */
588 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
589 smp_processor_id(), dispatch_stat);
590 } else {
591 int i, this_busy_nack = 0;
592
593 /* Delay some random time with interrupts enabled
594 * to prevent deadlock.
595 */
596 udelay(2 * nack_busy_id);
597
598 /* Clear out the mask bits for cpus which did not
599 * NACK us.
600 */
601 for (i = 0; i < cnt; i++) {
602 u64 check_mask, nr;
603
604 nr = cpu_list[i];
605 if (nr == 0xffff)
606 continue;
607
608 if (is_jbus)
609 check_mask = (0x2UL << (2*nr));
610 else
611 check_mask = (0x2UL <<
612 this_busy_nack);
613 if ((dispatch_stat & check_mask) == 0)
614 cpu_list[i] = 0xffff;
615 this_busy_nack += 2;
616 if (this_busy_nack == 64)
617 break;
618 }
619
620 goto retry;
621 }
622 }
623 }
624
625 /* Multi-cpu list version. */
626 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
627 {
628 int retries, this_cpu, prev_sent, i, saw_cpu_error;
629 unsigned long status;
630 u16 *cpu_list;
631
632 this_cpu = smp_processor_id();
633
634 cpu_list = __va(tb->cpu_list_pa);
635
636 saw_cpu_error = 0;
637 retries = 0;
638 prev_sent = 0;
639 do {
640 int forward_progress, n_sent;
641
642 status = sun4v_cpu_mondo_send(cnt,
643 tb->cpu_list_pa,
644 tb->cpu_mondo_block_pa);
645
646 /* HV_EOK means all cpus received the xcall, we're done. */
647 if (likely(status == HV_EOK))
648 break;
649
650 /* First, see if we made any forward progress.
651 *
652 * The hypervisor indicates successful sends by setting
653 * cpu list entries to the value 0xffff.
654 */
655 n_sent = 0;
656 for (i = 0; i < cnt; i++) {
657 if (likely(cpu_list[i] == 0xffff))
658 n_sent++;
659 }
660
661 forward_progress = 0;
662 if (n_sent > prev_sent)
663 forward_progress = 1;
664
665 prev_sent = n_sent;
666
667 /* If we get a HV_ECPUERROR, then one or more of the cpus
668 * in the list are in error state. Use the cpu_state()
669 * hypervisor call to find out which cpus are in error state.
670 */
671 if (unlikely(status == HV_ECPUERROR)) {
672 for (i = 0; i < cnt; i++) {
673 long err;
674 u16 cpu;
675
676 cpu = cpu_list[i];
677 if (cpu == 0xffff)
678 continue;
679
680 err = sun4v_cpu_state(cpu);
681 if (err == HV_CPU_STATE_ERROR) {
682 saw_cpu_error = (cpu + 1);
683 cpu_list[i] = 0xffff;
684 }
685 }
686 } else if (unlikely(status != HV_EWOULDBLOCK))
687 goto fatal_mondo_error;
688
689 /* Don't bother rewriting the CPU list, just leave the
690 * 0xffff and non-0xffff entries in there and the
691 * hypervisor will do the right thing.
692 *
693 * Only advance timeout state if we didn't make any
694 * forward progress.
695 */
696 if (unlikely(!forward_progress)) {
697 if (unlikely(++retries > 10000))
698 goto fatal_mondo_timeout;
699
700 /* Delay a little bit to let other cpus catch up
701 * on their cpu mondo queue work.
702 */
703 udelay(2 * cnt);
704 }
705 } while (1);
706
707 if (unlikely(saw_cpu_error))
708 goto fatal_mondo_cpu_error;
709
710 return;
711
712 fatal_mondo_cpu_error:
713 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
714 "(including %d) were in error state\n",
715 this_cpu, saw_cpu_error - 1);
716 return;
717
718 fatal_mondo_timeout:
719 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
720 " progress after %d retries.\n",
721 this_cpu, retries);
722 goto dump_cpu_list_and_out;
723
724 fatal_mondo_error:
725 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
726 this_cpu, status);
727 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
728 "mondo_block_pa(%lx)\n",
729 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
730
731 dump_cpu_list_and_out:
732 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
733 for (i = 0; i < cnt; i++)
734 printk("%u ", cpu_list[i]);
735 printk("]\n");
736 }
737
738 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
739
740 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
741 {
742 struct trap_per_cpu *tb;
743 int this_cpu, i, cnt;
744 unsigned long flags;
745 u16 *cpu_list;
746 u64 *mondo;
747
748 /* We have to do this whole thing with interrupts fully disabled.
749 * Otherwise if we send an xcall from interrupt context it will
750 * corrupt both our mondo block and cpu list state.
751 *
752 * One consequence of this is that we cannot use timeout mechanisms
753 * that depend upon interrupts being delivered locally. So, for
754 * example, we cannot sample jiffies and expect it to advance.
755 *
756 * Fortunately, udelay() uses %stick/%tick so we can use that.
757 */
758 local_irq_save(flags);
759
760 this_cpu = smp_processor_id();
761 tb = &trap_block[this_cpu];
762
763 mondo = __va(tb->cpu_mondo_block_pa);
764 mondo[0] = data0;
765 mondo[1] = data1;
766 mondo[2] = data2;
767 wmb();
768
769 cpu_list = __va(tb->cpu_list_pa);
770
771 /* Setup the initial cpu list. */
772 cnt = 0;
773 for_each_cpu(i, mask) {
774 if (i == this_cpu || !cpu_online(i))
775 continue;
776 cpu_list[cnt++] = i;
777 }
778
779 if (cnt)
780 xcall_deliver_impl(tb, cnt);
781
782 local_irq_restore(flags);
783 }
784
785 /* Send cross call to all processors mentioned in MASK_P
786 * except self. Really, there are only two cases currently,
787 * "cpu_online_mask" and "mm_cpumask(mm)".
788 */
789 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
790 {
791 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
792
793 xcall_deliver(data0, data1, data2, mask);
794 }
795
796 /* Send cross call to all processors except self. */
797 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
798 {
799 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
800 }
801
802 extern unsigned long xcall_sync_tick;
803
804 static void smp_start_sync_tick_client(int cpu)
805 {
806 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
807 cpumask_of(cpu));
808 }
809
810 extern unsigned long xcall_call_function;
811
812 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
813 {
814 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
815 }
816
817 extern unsigned long xcall_call_function_single;
818
819 void arch_send_call_function_single_ipi(int cpu)
820 {
821 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
822 cpumask_of(cpu));
823 }
824
825 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
826 {
827 clear_softint(1 << irq);
828 irq_enter();
829 generic_smp_call_function_interrupt();
830 irq_exit();
831 }
832
833 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
834 {
835 clear_softint(1 << irq);
836 irq_enter();
837 generic_smp_call_function_single_interrupt();
838 irq_exit();
839 }
840
841 static void tsb_sync(void *info)
842 {
843 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
844 struct mm_struct *mm = info;
845
846 /* It is not valid to test "current->active_mm == mm" here.
847 *
848 * The value of "current" is not changed atomically with
849 * switch_mm(). But that's OK, we just need to check the
850 * current cpu's trap block PGD physical address.
851 */
852 if (tp->pgd_paddr == __pa(mm->pgd))
853 tsb_context_switch(mm);
854 }
855
856 void smp_tsb_sync(struct mm_struct *mm)
857 {
858 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
859 }
860
861 extern unsigned long xcall_flush_tlb_mm;
862 extern unsigned long xcall_flush_tlb_page;
863 extern unsigned long xcall_flush_tlb_kernel_range;
864 extern unsigned long xcall_fetch_glob_regs;
865 extern unsigned long xcall_fetch_glob_pmu;
866 extern unsigned long xcall_fetch_glob_pmu_n4;
867 extern unsigned long xcall_receive_signal;
868 extern unsigned long xcall_new_mmu_context_version;
869 #ifdef CONFIG_KGDB
870 extern unsigned long xcall_kgdb_capture;
871 #endif
872
873 #ifdef DCACHE_ALIASING_POSSIBLE
874 extern unsigned long xcall_flush_dcache_page_cheetah;
875 #endif
876 extern unsigned long xcall_flush_dcache_page_spitfire;
877
878 static inline void __local_flush_dcache_page(struct page *page)
879 {
880 #ifdef DCACHE_ALIASING_POSSIBLE
881 __flush_dcache_page(page_address(page),
882 ((tlb_type == spitfire) &&
883 page_mapping(page) != NULL));
884 #else
885 if (page_mapping(page) != NULL &&
886 tlb_type == spitfire)
887 __flush_icache_page(__pa(page_address(page)));
888 #endif
889 }
890
891 void smp_flush_dcache_page_impl(struct page *page, int cpu)
892 {
893 int this_cpu;
894
895 if (tlb_type == hypervisor)
896 return;
897
898 #ifdef CONFIG_DEBUG_DCFLUSH
899 atomic_inc(&dcpage_flushes);
900 #endif
901
902 this_cpu = get_cpu();
903
904 if (cpu == this_cpu) {
905 __local_flush_dcache_page(page);
906 } else if (cpu_online(cpu)) {
907 void *pg_addr = page_address(page);
908 u64 data0 = 0;
909
910 if (tlb_type == spitfire) {
911 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
912 if (page_mapping(page) != NULL)
913 data0 |= ((u64)1 << 32);
914 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
915 #ifdef DCACHE_ALIASING_POSSIBLE
916 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
917 #endif
918 }
919 if (data0) {
920 xcall_deliver(data0, __pa(pg_addr),
921 (u64) pg_addr, cpumask_of(cpu));
922 #ifdef CONFIG_DEBUG_DCFLUSH
923 atomic_inc(&dcpage_flushes_xcall);
924 #endif
925 }
926 }
927
928 put_cpu();
929 }
930
931 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
932 {
933 void *pg_addr;
934 u64 data0;
935
936 if (tlb_type == hypervisor)
937 return;
938
939 preempt_disable();
940
941 #ifdef CONFIG_DEBUG_DCFLUSH
942 atomic_inc(&dcpage_flushes);
943 #endif
944 data0 = 0;
945 pg_addr = page_address(page);
946 if (tlb_type == spitfire) {
947 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
948 if (page_mapping(page) != NULL)
949 data0 |= ((u64)1 << 32);
950 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
951 #ifdef DCACHE_ALIASING_POSSIBLE
952 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
953 #endif
954 }
955 if (data0) {
956 xcall_deliver(data0, __pa(pg_addr),
957 (u64) pg_addr, cpu_online_mask);
958 #ifdef CONFIG_DEBUG_DCFLUSH
959 atomic_inc(&dcpage_flushes_xcall);
960 #endif
961 }
962 __local_flush_dcache_page(page);
963
964 preempt_enable();
965 }
966
967 #ifdef CONFIG_KGDB
968 void kgdb_roundup_cpus(unsigned long flags)
969 {
970 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
971 }
972 #endif
973
974 void smp_fetch_global_regs(void)
975 {
976 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
977 }
978
979 void smp_fetch_global_pmu(void)
980 {
981 if (tlb_type == hypervisor &&
982 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
983 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
984 else
985 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
986 }
987
988 /* We know that the window frames of the user have been flushed
989 * to the stack before we get here because all callers of us
990 * are flush_tlb_*() routines, and these run after flush_cache_*()
991 * which performs the flushw.
992 *
993 * The SMP TLB coherency scheme we use works as follows:
994 *
995 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
996 * space has (potentially) executed on, this is the heuristic
997 * we use to avoid doing cross calls.
998 *
999 * Also, for flushing from kswapd and also for clones, we
1000 * use cpu_vm_mask as the list of cpus to make run the TLB.
1001 *
1002 * 2) TLB context numbers are shared globally across all processors
1003 * in the system, this allows us to play several games to avoid
1004 * cross calls.
1005 *
1006 * One invariant is that when a cpu switches to a process, and
1007 * that processes tsk->active_mm->cpu_vm_mask does not have the
1008 * current cpu's bit set, that tlb context is flushed locally.
1009 *
1010 * If the address space is non-shared (ie. mm->count == 1) we avoid
1011 * cross calls when we want to flush the currently running process's
1012 * tlb state. This is done by clearing all cpu bits except the current
1013 * processor's in current->mm->cpu_vm_mask and performing the
1014 * flush locally only. This will force any subsequent cpus which run
1015 * this task to flush the context from the local tlb if the process
1016 * migrates to another cpu (again).
1017 *
1018 * 3) For shared address spaces (threads) and swapping we bite the
1019 * bullet for most cases and perform the cross call (but only to
1020 * the cpus listed in cpu_vm_mask).
1021 *
1022 * The performance gain from "optimizing" away the cross call for threads is
1023 * questionable (in theory the big win for threads is the massive sharing of
1024 * address space state across processors).
1025 */
1026
1027 /* This currently is only used by the hugetlb arch pre-fault
1028 * hook on UltraSPARC-III+ and later when changing the pagesize
1029 * bits of the context register for an address space.
1030 */
1031 void smp_flush_tlb_mm(struct mm_struct *mm)
1032 {
1033 u32 ctx = CTX_HWBITS(mm->context);
1034 int cpu = get_cpu();
1035
1036 if (atomic_read(&mm->mm_users) == 1) {
1037 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1038 goto local_flush_and_out;
1039 }
1040
1041 smp_cross_call_masked(&xcall_flush_tlb_mm,
1042 ctx, 0, 0,
1043 mm_cpumask(mm));
1044
1045 local_flush_and_out:
1046 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1047
1048 put_cpu();
1049 }
1050
1051 struct tlb_pending_info {
1052 unsigned long ctx;
1053 unsigned long nr;
1054 unsigned long *vaddrs;
1055 };
1056
1057 static void tlb_pending_func(void *info)
1058 {
1059 struct tlb_pending_info *t = info;
1060
1061 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1062 }
1063
1064 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1065 {
1066 u32 ctx = CTX_HWBITS(mm->context);
1067 struct tlb_pending_info info;
1068 int cpu = get_cpu();
1069
1070 info.ctx = ctx;
1071 info.nr = nr;
1072 info.vaddrs = vaddrs;
1073
1074 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1075 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1076 else
1077 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1078 &info, 1);
1079
1080 __flush_tlb_pending(ctx, nr, vaddrs);
1081
1082 put_cpu();
1083 }
1084
1085 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1086 {
1087 unsigned long context = CTX_HWBITS(mm->context);
1088 int cpu = get_cpu();
1089
1090 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1091 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1092 else
1093 smp_cross_call_masked(&xcall_flush_tlb_page,
1094 context, vaddr, 0,
1095 mm_cpumask(mm));
1096 __flush_tlb_page(context, vaddr);
1097
1098 put_cpu();
1099 }
1100
1101 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1102 {
1103 start &= PAGE_MASK;
1104 end = PAGE_ALIGN(end);
1105 if (start != end) {
1106 smp_cross_call(&xcall_flush_tlb_kernel_range,
1107 0, start, end);
1108
1109 __flush_tlb_kernel_range(start, end);
1110 }
1111 }
1112
1113 /* CPU capture. */
1114 /* #define CAPTURE_DEBUG */
1115 extern unsigned long xcall_capture;
1116
1117 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1118 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1119 static unsigned long penguins_are_doing_time;
1120
1121 void smp_capture(void)
1122 {
1123 int result = atomic_add_return(1, &smp_capture_depth);
1124
1125 if (result == 1) {
1126 int ncpus = num_online_cpus();
1127
1128 #ifdef CAPTURE_DEBUG
1129 printk("CPU[%d]: Sending penguins to jail...",
1130 smp_processor_id());
1131 #endif
1132 penguins_are_doing_time = 1;
1133 atomic_inc(&smp_capture_registry);
1134 smp_cross_call(&xcall_capture, 0, 0, 0);
1135 while (atomic_read(&smp_capture_registry) != ncpus)
1136 rmb();
1137 #ifdef CAPTURE_DEBUG
1138 printk("done\n");
1139 #endif
1140 }
1141 }
1142
1143 void smp_release(void)
1144 {
1145 if (atomic_dec_and_test(&smp_capture_depth)) {
1146 #ifdef CAPTURE_DEBUG
1147 printk("CPU[%d]: Giving pardon to "
1148 "imprisoned penguins\n",
1149 smp_processor_id());
1150 #endif
1151 penguins_are_doing_time = 0;
1152 membar_safe("#StoreLoad");
1153 atomic_dec(&smp_capture_registry);
1154 }
1155 }
1156
1157 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1158 * set, so they can service tlb flush xcalls...
1159 */
1160 extern void prom_world(int);
1161
1162 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1163 {
1164 clear_softint(1 << irq);
1165
1166 preempt_disable();
1167
1168 __asm__ __volatile__("flushw");
1169 prom_world(1);
1170 atomic_inc(&smp_capture_registry);
1171 membar_safe("#StoreLoad");
1172 while (penguins_are_doing_time)
1173 rmb();
1174 atomic_dec(&smp_capture_registry);
1175 prom_world(0);
1176
1177 preempt_enable();
1178 }
1179
1180 /* /proc/profile writes can call this, don't __init it please. */
1181 int setup_profiling_timer(unsigned int multiplier)
1182 {
1183 return -EINVAL;
1184 }
1185
1186 void __init smp_prepare_cpus(unsigned int max_cpus)
1187 {
1188 }
1189
1190 void smp_prepare_boot_cpu(void)
1191 {
1192 }
1193
1194 void __init smp_setup_processor_id(void)
1195 {
1196 if (tlb_type == spitfire)
1197 xcall_deliver_impl = spitfire_xcall_deliver;
1198 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1199 xcall_deliver_impl = cheetah_xcall_deliver;
1200 else
1201 xcall_deliver_impl = hypervisor_xcall_deliver;
1202 }
1203
1204 void __init smp_fill_in_cpu_possible_map(void)
1205 {
1206 int possible_cpus = num_possible_cpus();
1207 int i;
1208
1209 if (possible_cpus > nr_cpu_ids)
1210 possible_cpus = nr_cpu_ids;
1211
1212 for (i = 0; i < possible_cpus; i++)
1213 set_cpu_possible(i, true);
1214 for (; i < NR_CPUS; i++)
1215 set_cpu_possible(i, false);
1216 }
1217
1218 void smp_fill_in_sib_core_maps(void)
1219 {
1220 unsigned int i;
1221
1222 for_each_present_cpu(i) {
1223 unsigned int j;
1224
1225 cpumask_clear(&cpu_core_map[i]);
1226 if (cpu_data(i).core_id == 0) {
1227 cpumask_set_cpu(i, &cpu_core_map[i]);
1228 continue;
1229 }
1230
1231 for_each_present_cpu(j) {
1232 if (cpu_data(i).core_id ==
1233 cpu_data(j).core_id)
1234 cpumask_set_cpu(j, &cpu_core_map[i]);
1235 }
1236 }
1237
1238 for_each_present_cpu(i) {
1239 unsigned int j;
1240
1241 for_each_present_cpu(j) {
1242 if (cpu_data(i).max_cache_id ==
1243 cpu_data(j).max_cache_id)
1244 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1245
1246 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1247 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1248 }
1249 }
1250
1251 for_each_present_cpu(i) {
1252 unsigned int j;
1253
1254 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1255 if (cpu_data(i).proc_id == -1) {
1256 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1257 continue;
1258 }
1259
1260 for_each_present_cpu(j) {
1261 if (cpu_data(i).proc_id ==
1262 cpu_data(j).proc_id)
1263 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1264 }
1265 }
1266 }
1267
1268 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1269 {
1270 int ret = smp_boot_one_cpu(cpu, tidle);
1271
1272 if (!ret) {
1273 cpumask_set_cpu(cpu, &smp_commenced_mask);
1274 while (!cpu_online(cpu))
1275 mb();
1276 if (!cpu_online(cpu)) {
1277 ret = -ENODEV;
1278 } else {
1279 /* On SUN4V, writes to %tick and %stick are
1280 * not allowed.
1281 */
1282 if (tlb_type != hypervisor)
1283 smp_synchronize_one_tick(cpu);
1284 }
1285 }
1286 return ret;
1287 }
1288
1289 #ifdef CONFIG_HOTPLUG_CPU
1290 void cpu_play_dead(void)
1291 {
1292 int cpu = smp_processor_id();
1293 unsigned long pstate;
1294
1295 idle_task_exit();
1296
1297 if (tlb_type == hypervisor) {
1298 struct trap_per_cpu *tb = &trap_block[cpu];
1299
1300 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1301 tb->cpu_mondo_pa, 0);
1302 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1303 tb->dev_mondo_pa, 0);
1304 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1305 tb->resum_mondo_pa, 0);
1306 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1307 tb->nonresum_mondo_pa, 0);
1308 }
1309
1310 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1311 membar_safe("#Sync");
1312
1313 local_irq_disable();
1314
1315 __asm__ __volatile__(
1316 "rdpr %%pstate, %0\n\t"
1317 "wrpr %0, %1, %%pstate"
1318 : "=r" (pstate)
1319 : "i" (PSTATE_IE));
1320
1321 while (1)
1322 barrier();
1323 }
1324
1325 int __cpu_disable(void)
1326 {
1327 int cpu = smp_processor_id();
1328 cpuinfo_sparc *c;
1329 int i;
1330
1331 for_each_cpu(i, &cpu_core_map[cpu])
1332 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1333 cpumask_clear(&cpu_core_map[cpu]);
1334
1335 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1336 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1337 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1338
1339 c = &cpu_data(cpu);
1340
1341 c->core_id = 0;
1342 c->proc_id = -1;
1343
1344 smp_wmb();
1345
1346 /* Make sure no interrupts point to this cpu. */
1347 fixup_irqs();
1348
1349 local_irq_enable();
1350 mdelay(1);
1351 local_irq_disable();
1352
1353 set_cpu_online(cpu, false);
1354
1355 cpu_map_rebuild();
1356
1357 return 0;
1358 }
1359
1360 void __cpu_die(unsigned int cpu)
1361 {
1362 int i;
1363
1364 for (i = 0; i < 100; i++) {
1365 smp_rmb();
1366 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1367 break;
1368 msleep(100);
1369 }
1370 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1371 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1372 } else {
1373 #if defined(CONFIG_SUN_LDOMS)
1374 unsigned long hv_err;
1375 int limit = 100;
1376
1377 do {
1378 hv_err = sun4v_cpu_stop(cpu);
1379 if (hv_err == HV_EOK) {
1380 set_cpu_present(cpu, false);
1381 break;
1382 }
1383 } while (--limit > 0);
1384 if (limit <= 0) {
1385 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1386 hv_err);
1387 }
1388 #endif
1389 }
1390 }
1391 #endif
1392
1393 void __init smp_cpus_done(unsigned int max_cpus)
1394 {
1395 }
1396
1397 void smp_send_reschedule(int cpu)
1398 {
1399 if (cpu == smp_processor_id()) {
1400 WARN_ON_ONCE(preemptible());
1401 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1402 } else {
1403 xcall_deliver((u64) &xcall_receive_signal,
1404 0, 0, cpumask_of(cpu));
1405 }
1406 }
1407
1408 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1409 {
1410 clear_softint(1 << irq);
1411 scheduler_ipi();
1412 }
1413
1414 static void stop_this_cpu(void *dummy)
1415 {
1416 set_cpu_online(smp_processor_id(), false);
1417 prom_stopself();
1418 }
1419
1420 void smp_send_stop(void)
1421 {
1422 int cpu;
1423
1424 if (tlb_type == hypervisor) {
1425 int this_cpu = smp_processor_id();
1426 #ifdef CONFIG_SERIAL_SUNHV
1427 sunhv_migrate_hvcons_irq(this_cpu);
1428 #endif
1429 for_each_online_cpu(cpu) {
1430 if (cpu == this_cpu)
1431 continue;
1432
1433 set_cpu_online(cpu, false);
1434 #ifdef CONFIG_SUN_LDOMS
1435 if (ldom_domaining_enabled) {
1436 unsigned long hv_err;
1437 hv_err = sun4v_cpu_stop(cpu);
1438 if (hv_err)
1439 printk(KERN_ERR "sun4v_cpu_stop() "
1440 "failed err=%lu\n", hv_err);
1441 } else
1442 #endif
1443 prom_stopcpu_cpuid(cpu);
1444 }
1445 } else
1446 smp_call_function(stop_this_cpu, NULL, 0);
1447 }
1448
1449 /**
1450 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1451 * @cpu: cpu to allocate for
1452 * @size: size allocation in bytes
1453 * @align: alignment
1454 *
1455 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1456 * does the right thing for NUMA regardless of the current
1457 * configuration.
1458 *
1459 * RETURNS:
1460 * Pointer to the allocated area on success, NULL on failure.
1461 */
1462 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1463 size_t align)
1464 {
1465 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1466 #ifdef CONFIG_NEED_MULTIPLE_NODES
1467 int node = cpu_to_node(cpu);
1468 void *ptr;
1469
1470 if (!node_online(node) || !NODE_DATA(node)) {
1471 ptr = __alloc_bootmem(size, align, goal);
1472 pr_info("cpu %d has no node %d or node-local memory\n",
1473 cpu, node);
1474 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1475 cpu, size, __pa(ptr));
1476 } else {
1477 ptr = __alloc_bootmem_node(NODE_DATA(node),
1478 size, align, goal);
1479 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1480 "%016lx\n", cpu, size, node, __pa(ptr));
1481 }
1482 return ptr;
1483 #else
1484 return __alloc_bootmem(size, align, goal);
1485 #endif
1486 }
1487
1488 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1489 {
1490 free_bootmem(__pa(ptr), size);
1491 }
1492
1493 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1494 {
1495 if (cpu_to_node(from) == cpu_to_node(to))
1496 return LOCAL_DISTANCE;
1497 else
1498 return REMOTE_DISTANCE;
1499 }
1500
1501 static void __init pcpu_populate_pte(unsigned long addr)
1502 {
1503 pgd_t *pgd = pgd_offset_k(addr);
1504 pud_t *pud;
1505 pmd_t *pmd;
1506
1507 if (pgd_none(*pgd)) {
1508 pud_t *new;
1509
1510 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1511 pgd_populate(&init_mm, pgd, new);
1512 }
1513
1514 pud = pud_offset(pgd, addr);
1515 if (pud_none(*pud)) {
1516 pmd_t *new;
1517
1518 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1519 pud_populate(&init_mm, pud, new);
1520 }
1521
1522 pmd = pmd_offset(pud, addr);
1523 if (!pmd_present(*pmd)) {
1524 pte_t *new;
1525
1526 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1527 pmd_populate_kernel(&init_mm, pmd, new);
1528 }
1529 }
1530
1531 void __init setup_per_cpu_areas(void)
1532 {
1533 unsigned long delta;
1534 unsigned int cpu;
1535 int rc = -EINVAL;
1536
1537 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1538 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1539 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1540 pcpu_cpu_distance,
1541 pcpu_alloc_bootmem,
1542 pcpu_free_bootmem);
1543 if (rc)
1544 pr_warning("PERCPU: %s allocator failed (%d), "
1545 "falling back to page size\n",
1546 pcpu_fc_names[pcpu_chosen_fc], rc);
1547 }
1548 if (rc < 0)
1549 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1550 pcpu_alloc_bootmem,
1551 pcpu_free_bootmem,
1552 pcpu_populate_pte);
1553 if (rc < 0)
1554 panic("cannot initialize percpu area (err=%d)", rc);
1555
1556 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1557 for_each_possible_cpu(cpu)
1558 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1559
1560 /* Setup %g5 for the boot cpu. */
1561 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1562
1563 of_fill_in_cpu_data();
1564 if (tlb_type == hypervisor)
1565 mdesc_fill_in_cpu_data(cpu_all_mask);
1566 }