]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/sparc/kernel/smp_64.c
Merge tag 'for-linus-4.14-ofs2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-focal-kernel.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/hotplug.h>
10 #include <linux/mm.h>
11 #include <linux/pagemap.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ftrace.h>
27 #include <linux/cpu.h>
28 #include <linux/slab.h>
29 #include <linux/kgdb.h>
30
31 #include <asm/head.h>
32 #include <asm/ptrace.h>
33 #include <linux/atomic.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mmu_context.h>
36 #include <asm/cpudata.h>
37 #include <asm/hvtramp.h>
38 #include <asm/io.h>
39 #include <asm/timer.h>
40 #include <asm/setup.h>
41
42 #include <asm/irq.h>
43 #include <asm/irq_regs.h>
44 #include <asm/page.h>
45 #include <asm/pgtable.h>
46 #include <asm/oplib.h>
47 #include <linux/uaccess.h>
48 #include <asm/starfire.h>
49 #include <asm/tlb.h>
50 #include <asm/sections.h>
51 #include <asm/prom.h>
52 #include <asm/mdesc.h>
53 #include <asm/ldc.h>
54 #include <asm/hypervisor.h>
55 #include <asm/pcr.h>
56
57 #include "cpumap.h"
58 #include "kernel.h"
59
60 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
61 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
62 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
63
64 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
65 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
66
67 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
68 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
69
70 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
71 EXPORT_SYMBOL(cpu_core_map);
72 EXPORT_SYMBOL(cpu_core_sib_map);
73 EXPORT_SYMBOL(cpu_core_sib_cache_map);
74
75 static cpumask_t smp_commenced_mask;
76
77 static DEFINE_PER_CPU(bool, poke);
78 static bool cpu_poke;
79
80 void smp_info(struct seq_file *m)
81 {
82 int i;
83
84 seq_printf(m, "State:\n");
85 for_each_online_cpu(i)
86 seq_printf(m, "CPU%d:\t\tonline\n", i);
87 }
88
89 void smp_bogo(struct seq_file *m)
90 {
91 int i;
92
93 for_each_online_cpu(i)
94 seq_printf(m,
95 "Cpu%dClkTck\t: %016lx\n",
96 i, cpu_data(i).clock_tick);
97 }
98
99 extern void setup_sparc64_timer(void);
100
101 static volatile unsigned long callin_flag = 0;
102
103 void smp_callin(void)
104 {
105 int cpuid = hard_smp_processor_id();
106
107 __local_per_cpu_offset = __per_cpu_offset(cpuid);
108
109 if (tlb_type == hypervisor)
110 sun4v_ktsb_register();
111
112 __flush_tlb_all();
113
114 setup_sparc64_timer();
115
116 if (cheetah_pcache_forced_on)
117 cheetah_enable_pcache();
118
119 callin_flag = 1;
120 __asm__ __volatile__("membar #Sync\n\t"
121 "flush %%g6" : : : "memory");
122
123 /* Clear this or we will die instantly when we
124 * schedule back to this idler...
125 */
126 current_thread_info()->new_child = 0;
127
128 /* Attach to the address space of init_task. */
129 mmgrab(&init_mm);
130 current->active_mm = &init_mm;
131
132 /* inform the notifiers about the new cpu */
133 notify_cpu_starting(cpuid);
134
135 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
136 rmb();
137
138 set_cpu_online(cpuid, true);
139
140 /* idle thread is expected to have preempt disabled */
141 preempt_disable();
142
143 local_irq_enable();
144
145 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
146 }
147
148 void cpu_panic(void)
149 {
150 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
151 panic("SMP bolixed\n");
152 }
153
154 /* This tick register synchronization scheme is taken entirely from
155 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
156 *
157 * The only change I've made is to rework it so that the master
158 * initiates the synchonization instead of the slave. -DaveM
159 */
160
161 #define MASTER 0
162 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
163
164 #define NUM_ROUNDS 64 /* magic value */
165 #define NUM_ITERS 5 /* likewise */
166
167 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
168 static unsigned long go[SLAVE + 1];
169
170 #define DEBUG_TICK_SYNC 0
171
172 static inline long get_delta (long *rt, long *master)
173 {
174 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
175 unsigned long tcenter, t0, t1, tm;
176 unsigned long i;
177
178 for (i = 0; i < NUM_ITERS; i++) {
179 t0 = tick_ops->get_tick();
180 go[MASTER] = 1;
181 membar_safe("#StoreLoad");
182 while (!(tm = go[SLAVE]))
183 rmb();
184 go[SLAVE] = 0;
185 wmb();
186 t1 = tick_ops->get_tick();
187
188 if (t1 - t0 < best_t1 - best_t0)
189 best_t0 = t0, best_t1 = t1, best_tm = tm;
190 }
191
192 *rt = best_t1 - best_t0;
193 *master = best_tm - best_t0;
194
195 /* average best_t0 and best_t1 without overflow: */
196 tcenter = (best_t0/2 + best_t1/2);
197 if (best_t0 % 2 + best_t1 % 2 == 2)
198 tcenter++;
199 return tcenter - best_tm;
200 }
201
202 void smp_synchronize_tick_client(void)
203 {
204 long i, delta, adj, adjust_latency = 0, done = 0;
205 unsigned long flags, rt, master_time_stamp;
206 #if DEBUG_TICK_SYNC
207 struct {
208 long rt; /* roundtrip time */
209 long master; /* master's timestamp */
210 long diff; /* difference between midpoint and master's timestamp */
211 long lat; /* estimate of itc adjustment latency */
212 } t[NUM_ROUNDS];
213 #endif
214
215 go[MASTER] = 1;
216
217 while (go[MASTER])
218 rmb();
219
220 local_irq_save(flags);
221 {
222 for (i = 0; i < NUM_ROUNDS; i++) {
223 delta = get_delta(&rt, &master_time_stamp);
224 if (delta == 0)
225 done = 1; /* let's lock on to this... */
226
227 if (!done) {
228 if (i > 0) {
229 adjust_latency += -delta;
230 adj = -delta + adjust_latency/4;
231 } else
232 adj = -delta;
233
234 tick_ops->add_tick(adj);
235 }
236 #if DEBUG_TICK_SYNC
237 t[i].rt = rt;
238 t[i].master = master_time_stamp;
239 t[i].diff = delta;
240 t[i].lat = adjust_latency/4;
241 #endif
242 }
243 }
244 local_irq_restore(flags);
245
246 #if DEBUG_TICK_SYNC
247 for (i = 0; i < NUM_ROUNDS; i++)
248 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
249 t[i].rt, t[i].master, t[i].diff, t[i].lat);
250 #endif
251
252 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
253 "(last diff %ld cycles, maxerr %lu cycles)\n",
254 smp_processor_id(), delta, rt);
255 }
256
257 static void smp_start_sync_tick_client(int cpu);
258
259 static void smp_synchronize_one_tick(int cpu)
260 {
261 unsigned long flags, i;
262
263 go[MASTER] = 0;
264
265 smp_start_sync_tick_client(cpu);
266
267 /* wait for client to be ready */
268 while (!go[MASTER])
269 rmb();
270
271 /* now let the client proceed into his loop */
272 go[MASTER] = 0;
273 membar_safe("#StoreLoad");
274
275 raw_spin_lock_irqsave(&itc_sync_lock, flags);
276 {
277 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
278 while (!go[MASTER])
279 rmb();
280 go[MASTER] = 0;
281 wmb();
282 go[SLAVE] = tick_ops->get_tick();
283 membar_safe("#StoreLoad");
284 }
285 }
286 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
287 }
288
289 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
290 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
291 void **descrp)
292 {
293 extern unsigned long sparc64_ttable_tl0;
294 extern unsigned long kern_locked_tte_data;
295 struct hvtramp_descr *hdesc;
296 unsigned long trampoline_ra;
297 struct trap_per_cpu *tb;
298 u64 tte_vaddr, tte_data;
299 unsigned long hv_err;
300 int i;
301
302 hdesc = kzalloc(sizeof(*hdesc) +
303 (sizeof(struct hvtramp_mapping) *
304 num_kernel_image_mappings - 1),
305 GFP_KERNEL);
306 if (!hdesc) {
307 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
308 "hvtramp_descr.\n");
309 return;
310 }
311 *descrp = hdesc;
312
313 hdesc->cpu = cpu;
314 hdesc->num_mappings = num_kernel_image_mappings;
315
316 tb = &trap_block[cpu];
317
318 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
319 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
320
321 hdesc->thread_reg = thread_reg;
322
323 tte_vaddr = (unsigned long) KERNBASE;
324 tte_data = kern_locked_tte_data;
325
326 for (i = 0; i < hdesc->num_mappings; i++) {
327 hdesc->maps[i].vaddr = tte_vaddr;
328 hdesc->maps[i].tte = tte_data;
329 tte_vaddr += 0x400000;
330 tte_data += 0x400000;
331 }
332
333 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
334
335 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
336 kimage_addr_to_ra(&sparc64_ttable_tl0),
337 __pa(hdesc));
338 if (hv_err)
339 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
340 "gives error %lu\n", hv_err);
341 }
342 #endif
343
344 extern unsigned long sparc64_cpu_startup;
345
346 /* The OBP cpu startup callback truncates the 3rd arg cookie to
347 * 32-bits (I think) so to be safe we have it read the pointer
348 * contained here so we work on >4GB machines. -DaveM
349 */
350 static struct thread_info *cpu_new_thread = NULL;
351
352 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
353 {
354 unsigned long entry =
355 (unsigned long)(&sparc64_cpu_startup);
356 unsigned long cookie =
357 (unsigned long)(&cpu_new_thread);
358 void *descr = NULL;
359 int timeout, ret;
360
361 callin_flag = 0;
362 cpu_new_thread = task_thread_info(idle);
363
364 if (tlb_type == hypervisor) {
365 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
366 if (ldom_domaining_enabled)
367 ldom_startcpu_cpuid(cpu,
368 (unsigned long) cpu_new_thread,
369 &descr);
370 else
371 #endif
372 prom_startcpu_cpuid(cpu, entry, cookie);
373 } else {
374 struct device_node *dp = of_find_node_by_cpuid(cpu);
375
376 prom_startcpu(dp->phandle, entry, cookie);
377 }
378
379 for (timeout = 0; timeout < 50000; timeout++) {
380 if (callin_flag)
381 break;
382 udelay(100);
383 }
384
385 if (callin_flag) {
386 ret = 0;
387 } else {
388 printk("Processor %d is stuck.\n", cpu);
389 ret = -ENODEV;
390 }
391 cpu_new_thread = NULL;
392
393 kfree(descr);
394
395 return ret;
396 }
397
398 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
399 {
400 u64 result, target;
401 int stuck, tmp;
402
403 if (this_is_starfire) {
404 /* map to real upaid */
405 cpu = (((cpu & 0x3c) << 1) |
406 ((cpu & 0x40) >> 4) |
407 (cpu & 0x3));
408 }
409
410 target = (cpu << 14) | 0x70;
411 again:
412 /* Ok, this is the real Spitfire Errata #54.
413 * One must read back from a UDB internal register
414 * after writes to the UDB interrupt dispatch, but
415 * before the membar Sync for that write.
416 * So we use the high UDB control register (ASI 0x7f,
417 * ADDR 0x20) for the dummy read. -DaveM
418 */
419 tmp = 0x40;
420 __asm__ __volatile__(
421 "wrpr %1, %2, %%pstate\n\t"
422 "stxa %4, [%0] %3\n\t"
423 "stxa %5, [%0+%8] %3\n\t"
424 "add %0, %8, %0\n\t"
425 "stxa %6, [%0+%8] %3\n\t"
426 "membar #Sync\n\t"
427 "stxa %%g0, [%7] %3\n\t"
428 "membar #Sync\n\t"
429 "mov 0x20, %%g1\n\t"
430 "ldxa [%%g1] 0x7f, %%g0\n\t"
431 "membar #Sync"
432 : "=r" (tmp)
433 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
434 "r" (data0), "r" (data1), "r" (data2), "r" (target),
435 "r" (0x10), "0" (tmp)
436 : "g1");
437
438 /* NOTE: PSTATE_IE is still clear. */
439 stuck = 100000;
440 do {
441 __asm__ __volatile__("ldxa [%%g0] %1, %0"
442 : "=r" (result)
443 : "i" (ASI_INTR_DISPATCH_STAT));
444 if (result == 0) {
445 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
446 : : "r" (pstate));
447 return;
448 }
449 stuck -= 1;
450 if (stuck == 0)
451 break;
452 } while (result & 0x1);
453 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
454 : : "r" (pstate));
455 if (stuck == 0) {
456 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
457 smp_processor_id(), result);
458 } else {
459 udelay(2);
460 goto again;
461 }
462 }
463
464 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
465 {
466 u64 *mondo, data0, data1, data2;
467 u16 *cpu_list;
468 u64 pstate;
469 int i;
470
471 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
472 cpu_list = __va(tb->cpu_list_pa);
473 mondo = __va(tb->cpu_mondo_block_pa);
474 data0 = mondo[0];
475 data1 = mondo[1];
476 data2 = mondo[2];
477 for (i = 0; i < cnt; i++)
478 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
479 }
480
481 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
482 * packet, but we have no use for that. However we do take advantage of
483 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
484 */
485 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
486 {
487 int nack_busy_id, is_jbus, need_more;
488 u64 *mondo, pstate, ver, busy_mask;
489 u16 *cpu_list;
490
491 cpu_list = __va(tb->cpu_list_pa);
492 mondo = __va(tb->cpu_mondo_block_pa);
493
494 /* Unfortunately, someone at Sun had the brilliant idea to make the
495 * busy/nack fields hard-coded by ITID number for this Ultra-III
496 * derivative processor.
497 */
498 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
499 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
500 (ver >> 32) == __SERRANO_ID);
501
502 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
503
504 retry:
505 need_more = 0;
506 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
507 : : "r" (pstate), "i" (PSTATE_IE));
508
509 /* Setup the dispatch data registers. */
510 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
511 "stxa %1, [%4] %6\n\t"
512 "stxa %2, [%5] %6\n\t"
513 "membar #Sync\n\t"
514 : /* no outputs */
515 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
516 "r" (0x40), "r" (0x50), "r" (0x60),
517 "i" (ASI_INTR_W));
518
519 nack_busy_id = 0;
520 busy_mask = 0;
521 {
522 int i;
523
524 for (i = 0; i < cnt; i++) {
525 u64 target, nr;
526
527 nr = cpu_list[i];
528 if (nr == 0xffff)
529 continue;
530
531 target = (nr << 14) | 0x70;
532 if (is_jbus) {
533 busy_mask |= (0x1UL << (nr * 2));
534 } else {
535 target |= (nack_busy_id << 24);
536 busy_mask |= (0x1UL <<
537 (nack_busy_id * 2));
538 }
539 __asm__ __volatile__(
540 "stxa %%g0, [%0] %1\n\t"
541 "membar #Sync\n\t"
542 : /* no outputs */
543 : "r" (target), "i" (ASI_INTR_W));
544 nack_busy_id++;
545 if (nack_busy_id == 32) {
546 need_more = 1;
547 break;
548 }
549 }
550 }
551
552 /* Now, poll for completion. */
553 {
554 u64 dispatch_stat, nack_mask;
555 long stuck;
556
557 stuck = 100000 * nack_busy_id;
558 nack_mask = busy_mask << 1;
559 do {
560 __asm__ __volatile__("ldxa [%%g0] %1, %0"
561 : "=r" (dispatch_stat)
562 : "i" (ASI_INTR_DISPATCH_STAT));
563 if (!(dispatch_stat & (busy_mask | nack_mask))) {
564 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
565 : : "r" (pstate));
566 if (unlikely(need_more)) {
567 int i, this_cnt = 0;
568 for (i = 0; i < cnt; i++) {
569 if (cpu_list[i] == 0xffff)
570 continue;
571 cpu_list[i] = 0xffff;
572 this_cnt++;
573 if (this_cnt == 32)
574 break;
575 }
576 goto retry;
577 }
578 return;
579 }
580 if (!--stuck)
581 break;
582 } while (dispatch_stat & busy_mask);
583
584 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
585 : : "r" (pstate));
586
587 if (dispatch_stat & busy_mask) {
588 /* Busy bits will not clear, continue instead
589 * of freezing up on this cpu.
590 */
591 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
592 smp_processor_id(), dispatch_stat);
593 } else {
594 int i, this_busy_nack = 0;
595
596 /* Delay some random time with interrupts enabled
597 * to prevent deadlock.
598 */
599 udelay(2 * nack_busy_id);
600
601 /* Clear out the mask bits for cpus which did not
602 * NACK us.
603 */
604 for (i = 0; i < cnt; i++) {
605 u64 check_mask, nr;
606
607 nr = cpu_list[i];
608 if (nr == 0xffff)
609 continue;
610
611 if (is_jbus)
612 check_mask = (0x2UL << (2*nr));
613 else
614 check_mask = (0x2UL <<
615 this_busy_nack);
616 if ((dispatch_stat & check_mask) == 0)
617 cpu_list[i] = 0xffff;
618 this_busy_nack += 2;
619 if (this_busy_nack == 64)
620 break;
621 }
622
623 goto retry;
624 }
625 }
626 }
627
628 #define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid])
629 #define MONDO_USEC_WAIT_MIN 2
630 #define MONDO_USEC_WAIT_MAX 100
631 #define MONDO_RETRY_LIMIT 500000
632
633 /* Multi-cpu list version.
634 *
635 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
636 * Sometimes not all cpus receive the mondo, requiring us to re-send
637 * the mondo until all cpus have received, or cpus are truly stuck
638 * unable to receive mondo, and we timeout.
639 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
640 * perform guest service, such as PCIe error handling. Consider the
641 * service time, 1 second overall wait is reasonable for 1 cpu.
642 * Here two in-between mondo check wait time are defined: 2 usec for
643 * single cpu quick turn around and up to 100usec for large cpu count.
644 * Deliver mondo to large number of cpus could take longer, we adjusts
645 * the retry count as long as target cpus are making forward progress.
646 */
647 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
648 {
649 int this_cpu, tot_cpus, prev_sent, i, rem;
650 int usec_wait, retries, tot_retries;
651 u16 first_cpu = 0xffff;
652 unsigned long xc_rcvd = 0;
653 unsigned long status;
654 int ecpuerror_id = 0;
655 int enocpu_id = 0;
656 u16 *cpu_list;
657 u16 cpu;
658
659 this_cpu = smp_processor_id();
660 cpu_list = __va(tb->cpu_list_pa);
661 usec_wait = cnt * MONDO_USEC_WAIT_MIN;
662 if (usec_wait > MONDO_USEC_WAIT_MAX)
663 usec_wait = MONDO_USEC_WAIT_MAX;
664 retries = tot_retries = 0;
665 tot_cpus = cnt;
666 prev_sent = 0;
667
668 do {
669 int n_sent, mondo_delivered, target_cpu_busy;
670
671 status = sun4v_cpu_mondo_send(cnt,
672 tb->cpu_list_pa,
673 tb->cpu_mondo_block_pa);
674
675 /* HV_EOK means all cpus received the xcall, we're done. */
676 if (likely(status == HV_EOK))
677 goto xcall_done;
678
679 /* If not these non-fatal errors, panic */
680 if (unlikely((status != HV_EWOULDBLOCK) &&
681 (status != HV_ECPUERROR) &&
682 (status != HV_ENOCPU)))
683 goto fatal_errors;
684
685 /* First, see if we made any forward progress.
686 *
687 * Go through the cpu_list, count the target cpus that have
688 * received our mondo (n_sent), and those that did not (rem).
689 * Re-pack cpu_list with the cpus remain to be retried in the
690 * front - this simplifies tracking the truly stalled cpus.
691 *
692 * The hypervisor indicates successful sends by setting
693 * cpu list entries to the value 0xffff.
694 *
695 * EWOULDBLOCK means some target cpus did not receive the
696 * mondo and retry usually helps.
697 *
698 * ECPUERROR means at least one target cpu is in error state,
699 * it's usually safe to skip the faulty cpu and retry.
700 *
701 * ENOCPU means one of the target cpu doesn't belong to the
702 * domain, perhaps offlined which is unexpected, but not
703 * fatal and it's okay to skip the offlined cpu.
704 */
705 rem = 0;
706 n_sent = 0;
707 for (i = 0; i < cnt; i++) {
708 cpu = cpu_list[i];
709 if (likely(cpu == 0xffff)) {
710 n_sent++;
711 } else if ((status == HV_ECPUERROR) &&
712 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
713 ecpuerror_id = cpu + 1;
714 } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
715 enocpu_id = cpu + 1;
716 } else {
717 cpu_list[rem++] = cpu;
718 }
719 }
720
721 /* No cpu remained, we're done. */
722 if (rem == 0)
723 break;
724
725 /* Otherwise, update the cpu count for retry. */
726 cnt = rem;
727
728 /* Record the overall number of mondos received by the
729 * first of the remaining cpus.
730 */
731 if (first_cpu != cpu_list[0]) {
732 first_cpu = cpu_list[0];
733 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
734 }
735
736 /* Was any mondo delivered successfully? */
737 mondo_delivered = (n_sent > prev_sent);
738 prev_sent = n_sent;
739
740 /* or, was any target cpu busy processing other mondos? */
741 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
742 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
743
744 /* Retry count is for no progress. If we're making progress,
745 * reset the retry count.
746 */
747 if (likely(mondo_delivered || target_cpu_busy)) {
748 tot_retries += retries;
749 retries = 0;
750 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
751 goto fatal_mondo_timeout;
752 }
753
754 /* Delay a little bit to let other cpus catch up on
755 * their cpu mondo queue work.
756 */
757 if (!mondo_delivered)
758 udelay(usec_wait);
759
760 retries++;
761 } while (1);
762
763 xcall_done:
764 if (unlikely(ecpuerror_id > 0)) {
765 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
766 this_cpu, ecpuerror_id - 1);
767 } else if (unlikely(enocpu_id > 0)) {
768 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
769 this_cpu, enocpu_id - 1);
770 }
771 return;
772
773 fatal_errors:
774 /* fatal errors include bad alignment, etc */
775 pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
776 this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
777 panic("Unexpected SUN4V mondo error %lu\n", status);
778
779 fatal_mondo_timeout:
780 /* some cpus being non-responsive to the cpu mondo */
781 pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
782 this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
783 panic("SUN4V mondo timeout panic\n");
784 }
785
786 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
787
788 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
789 {
790 struct trap_per_cpu *tb;
791 int this_cpu, i, cnt;
792 unsigned long flags;
793 u16 *cpu_list;
794 u64 *mondo;
795
796 /* We have to do this whole thing with interrupts fully disabled.
797 * Otherwise if we send an xcall from interrupt context it will
798 * corrupt both our mondo block and cpu list state.
799 *
800 * One consequence of this is that we cannot use timeout mechanisms
801 * that depend upon interrupts being delivered locally. So, for
802 * example, we cannot sample jiffies and expect it to advance.
803 *
804 * Fortunately, udelay() uses %stick/%tick so we can use that.
805 */
806 local_irq_save(flags);
807
808 this_cpu = smp_processor_id();
809 tb = &trap_block[this_cpu];
810
811 mondo = __va(tb->cpu_mondo_block_pa);
812 mondo[0] = data0;
813 mondo[1] = data1;
814 mondo[2] = data2;
815 wmb();
816
817 cpu_list = __va(tb->cpu_list_pa);
818
819 /* Setup the initial cpu list. */
820 cnt = 0;
821 for_each_cpu(i, mask) {
822 if (i == this_cpu || !cpu_online(i))
823 continue;
824 cpu_list[cnt++] = i;
825 }
826
827 if (cnt)
828 xcall_deliver_impl(tb, cnt);
829
830 local_irq_restore(flags);
831 }
832
833 /* Send cross call to all processors mentioned in MASK_P
834 * except self. Really, there are only two cases currently,
835 * "cpu_online_mask" and "mm_cpumask(mm)".
836 */
837 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
838 {
839 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
840
841 xcall_deliver(data0, data1, data2, mask);
842 }
843
844 /* Send cross call to all processors except self. */
845 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
846 {
847 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
848 }
849
850 extern unsigned long xcall_sync_tick;
851
852 static void smp_start_sync_tick_client(int cpu)
853 {
854 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
855 cpumask_of(cpu));
856 }
857
858 extern unsigned long xcall_call_function;
859
860 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
861 {
862 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
863 }
864
865 extern unsigned long xcall_call_function_single;
866
867 void arch_send_call_function_single_ipi(int cpu)
868 {
869 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
870 cpumask_of(cpu));
871 }
872
873 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
874 {
875 clear_softint(1 << irq);
876 irq_enter();
877 generic_smp_call_function_interrupt();
878 irq_exit();
879 }
880
881 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
882 {
883 clear_softint(1 << irq);
884 irq_enter();
885 generic_smp_call_function_single_interrupt();
886 irq_exit();
887 }
888
889 static void tsb_sync(void *info)
890 {
891 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
892 struct mm_struct *mm = info;
893
894 /* It is not valid to test "current->active_mm == mm" here.
895 *
896 * The value of "current" is not changed atomically with
897 * switch_mm(). But that's OK, we just need to check the
898 * current cpu's trap block PGD physical address.
899 */
900 if (tp->pgd_paddr == __pa(mm->pgd))
901 tsb_context_switch(mm);
902 }
903
904 void smp_tsb_sync(struct mm_struct *mm)
905 {
906 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
907 }
908
909 extern unsigned long xcall_flush_tlb_mm;
910 extern unsigned long xcall_flush_tlb_page;
911 extern unsigned long xcall_flush_tlb_kernel_range;
912 extern unsigned long xcall_fetch_glob_regs;
913 extern unsigned long xcall_fetch_glob_pmu;
914 extern unsigned long xcall_fetch_glob_pmu_n4;
915 extern unsigned long xcall_receive_signal;
916 extern unsigned long xcall_new_mmu_context_version;
917 #ifdef CONFIG_KGDB
918 extern unsigned long xcall_kgdb_capture;
919 #endif
920
921 #ifdef DCACHE_ALIASING_POSSIBLE
922 extern unsigned long xcall_flush_dcache_page_cheetah;
923 #endif
924 extern unsigned long xcall_flush_dcache_page_spitfire;
925
926 static inline void __local_flush_dcache_page(struct page *page)
927 {
928 #ifdef DCACHE_ALIASING_POSSIBLE
929 __flush_dcache_page(page_address(page),
930 ((tlb_type == spitfire) &&
931 page_mapping(page) != NULL));
932 #else
933 if (page_mapping(page) != NULL &&
934 tlb_type == spitfire)
935 __flush_icache_page(__pa(page_address(page)));
936 #endif
937 }
938
939 void smp_flush_dcache_page_impl(struct page *page, int cpu)
940 {
941 int this_cpu;
942
943 if (tlb_type == hypervisor)
944 return;
945
946 #ifdef CONFIG_DEBUG_DCFLUSH
947 atomic_inc(&dcpage_flushes);
948 #endif
949
950 this_cpu = get_cpu();
951
952 if (cpu == this_cpu) {
953 __local_flush_dcache_page(page);
954 } else if (cpu_online(cpu)) {
955 void *pg_addr = page_address(page);
956 u64 data0 = 0;
957
958 if (tlb_type == spitfire) {
959 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
960 if (page_mapping(page) != NULL)
961 data0 |= ((u64)1 << 32);
962 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
963 #ifdef DCACHE_ALIASING_POSSIBLE
964 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
965 #endif
966 }
967 if (data0) {
968 xcall_deliver(data0, __pa(pg_addr),
969 (u64) pg_addr, cpumask_of(cpu));
970 #ifdef CONFIG_DEBUG_DCFLUSH
971 atomic_inc(&dcpage_flushes_xcall);
972 #endif
973 }
974 }
975
976 put_cpu();
977 }
978
979 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
980 {
981 void *pg_addr;
982 u64 data0;
983
984 if (tlb_type == hypervisor)
985 return;
986
987 preempt_disable();
988
989 #ifdef CONFIG_DEBUG_DCFLUSH
990 atomic_inc(&dcpage_flushes);
991 #endif
992 data0 = 0;
993 pg_addr = page_address(page);
994 if (tlb_type == spitfire) {
995 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
996 if (page_mapping(page) != NULL)
997 data0 |= ((u64)1 << 32);
998 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
999 #ifdef DCACHE_ALIASING_POSSIBLE
1000 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1001 #endif
1002 }
1003 if (data0) {
1004 xcall_deliver(data0, __pa(pg_addr),
1005 (u64) pg_addr, cpu_online_mask);
1006 #ifdef CONFIG_DEBUG_DCFLUSH
1007 atomic_inc(&dcpage_flushes_xcall);
1008 #endif
1009 }
1010 __local_flush_dcache_page(page);
1011
1012 preempt_enable();
1013 }
1014
1015 #ifdef CONFIG_KGDB
1016 void kgdb_roundup_cpus(unsigned long flags)
1017 {
1018 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1019 }
1020 #endif
1021
1022 void smp_fetch_global_regs(void)
1023 {
1024 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1025 }
1026
1027 void smp_fetch_global_pmu(void)
1028 {
1029 if (tlb_type == hypervisor &&
1030 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1031 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1032 else
1033 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1034 }
1035
1036 /* We know that the window frames of the user have been flushed
1037 * to the stack before we get here because all callers of us
1038 * are flush_tlb_*() routines, and these run after flush_cache_*()
1039 * which performs the flushw.
1040 *
1041 * The SMP TLB coherency scheme we use works as follows:
1042 *
1043 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1044 * space has (potentially) executed on, this is the heuristic
1045 * we use to avoid doing cross calls.
1046 *
1047 * Also, for flushing from kswapd and also for clones, we
1048 * use cpu_vm_mask as the list of cpus to make run the TLB.
1049 *
1050 * 2) TLB context numbers are shared globally across all processors
1051 * in the system, this allows us to play several games to avoid
1052 * cross calls.
1053 *
1054 * One invariant is that when a cpu switches to a process, and
1055 * that processes tsk->active_mm->cpu_vm_mask does not have the
1056 * current cpu's bit set, that tlb context is flushed locally.
1057 *
1058 * If the address space is non-shared (ie. mm->count == 1) we avoid
1059 * cross calls when we want to flush the currently running process's
1060 * tlb state. This is done by clearing all cpu bits except the current
1061 * processor's in current->mm->cpu_vm_mask and performing the
1062 * flush locally only. This will force any subsequent cpus which run
1063 * this task to flush the context from the local tlb if the process
1064 * migrates to another cpu (again).
1065 *
1066 * 3) For shared address spaces (threads) and swapping we bite the
1067 * bullet for most cases and perform the cross call (but only to
1068 * the cpus listed in cpu_vm_mask).
1069 *
1070 * The performance gain from "optimizing" away the cross call for threads is
1071 * questionable (in theory the big win for threads is the massive sharing of
1072 * address space state across processors).
1073 */
1074
1075 /* This currently is only used by the hugetlb arch pre-fault
1076 * hook on UltraSPARC-III+ and later when changing the pagesize
1077 * bits of the context register for an address space.
1078 */
1079 void smp_flush_tlb_mm(struct mm_struct *mm)
1080 {
1081 u32 ctx = CTX_HWBITS(mm->context);
1082 int cpu = get_cpu();
1083
1084 if (atomic_read(&mm->mm_users) == 1) {
1085 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1086 goto local_flush_and_out;
1087 }
1088
1089 smp_cross_call_masked(&xcall_flush_tlb_mm,
1090 ctx, 0, 0,
1091 mm_cpumask(mm));
1092
1093 local_flush_and_out:
1094 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1095
1096 put_cpu();
1097 }
1098
1099 struct tlb_pending_info {
1100 unsigned long ctx;
1101 unsigned long nr;
1102 unsigned long *vaddrs;
1103 };
1104
1105 static void tlb_pending_func(void *info)
1106 {
1107 struct tlb_pending_info *t = info;
1108
1109 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1110 }
1111
1112 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1113 {
1114 u32 ctx = CTX_HWBITS(mm->context);
1115 struct tlb_pending_info info;
1116 int cpu = get_cpu();
1117
1118 info.ctx = ctx;
1119 info.nr = nr;
1120 info.vaddrs = vaddrs;
1121
1122 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1123 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1124 else
1125 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1126 &info, 1);
1127
1128 __flush_tlb_pending(ctx, nr, vaddrs);
1129
1130 put_cpu();
1131 }
1132
1133 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1134 {
1135 unsigned long context = CTX_HWBITS(mm->context);
1136 int cpu = get_cpu();
1137
1138 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1139 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1140 else
1141 smp_cross_call_masked(&xcall_flush_tlb_page,
1142 context, vaddr, 0,
1143 mm_cpumask(mm));
1144 __flush_tlb_page(context, vaddr);
1145
1146 put_cpu();
1147 }
1148
1149 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1150 {
1151 start &= PAGE_MASK;
1152 end = PAGE_ALIGN(end);
1153 if (start != end) {
1154 smp_cross_call(&xcall_flush_tlb_kernel_range,
1155 0, start, end);
1156
1157 __flush_tlb_kernel_range(start, end);
1158 }
1159 }
1160
1161 /* CPU capture. */
1162 /* #define CAPTURE_DEBUG */
1163 extern unsigned long xcall_capture;
1164
1165 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1166 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1167 static unsigned long penguins_are_doing_time;
1168
1169 void smp_capture(void)
1170 {
1171 int result = atomic_add_return(1, &smp_capture_depth);
1172
1173 if (result == 1) {
1174 int ncpus = num_online_cpus();
1175
1176 #ifdef CAPTURE_DEBUG
1177 printk("CPU[%d]: Sending penguins to jail...",
1178 smp_processor_id());
1179 #endif
1180 penguins_are_doing_time = 1;
1181 atomic_inc(&smp_capture_registry);
1182 smp_cross_call(&xcall_capture, 0, 0, 0);
1183 while (atomic_read(&smp_capture_registry) != ncpus)
1184 rmb();
1185 #ifdef CAPTURE_DEBUG
1186 printk("done\n");
1187 #endif
1188 }
1189 }
1190
1191 void smp_release(void)
1192 {
1193 if (atomic_dec_and_test(&smp_capture_depth)) {
1194 #ifdef CAPTURE_DEBUG
1195 printk("CPU[%d]: Giving pardon to "
1196 "imprisoned penguins\n",
1197 smp_processor_id());
1198 #endif
1199 penguins_are_doing_time = 0;
1200 membar_safe("#StoreLoad");
1201 atomic_dec(&smp_capture_registry);
1202 }
1203 }
1204
1205 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1206 * set, so they can service tlb flush xcalls...
1207 */
1208 extern void prom_world(int);
1209
1210 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1211 {
1212 clear_softint(1 << irq);
1213
1214 preempt_disable();
1215
1216 __asm__ __volatile__("flushw");
1217 prom_world(1);
1218 atomic_inc(&smp_capture_registry);
1219 membar_safe("#StoreLoad");
1220 while (penguins_are_doing_time)
1221 rmb();
1222 atomic_dec(&smp_capture_registry);
1223 prom_world(0);
1224
1225 preempt_enable();
1226 }
1227
1228 /* /proc/profile writes can call this, don't __init it please. */
1229 int setup_profiling_timer(unsigned int multiplier)
1230 {
1231 return -EINVAL;
1232 }
1233
1234 void __init smp_prepare_cpus(unsigned int max_cpus)
1235 {
1236 }
1237
1238 void smp_prepare_boot_cpu(void)
1239 {
1240 }
1241
1242 void __init smp_setup_processor_id(void)
1243 {
1244 if (tlb_type == spitfire)
1245 xcall_deliver_impl = spitfire_xcall_deliver;
1246 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1247 xcall_deliver_impl = cheetah_xcall_deliver;
1248 else
1249 xcall_deliver_impl = hypervisor_xcall_deliver;
1250 }
1251
1252 void __init smp_fill_in_cpu_possible_map(void)
1253 {
1254 int possible_cpus = num_possible_cpus();
1255 int i;
1256
1257 if (possible_cpus > nr_cpu_ids)
1258 possible_cpus = nr_cpu_ids;
1259
1260 for (i = 0; i < possible_cpus; i++)
1261 set_cpu_possible(i, true);
1262 for (; i < NR_CPUS; i++)
1263 set_cpu_possible(i, false);
1264 }
1265
1266 void smp_fill_in_sib_core_maps(void)
1267 {
1268 unsigned int i;
1269
1270 for_each_present_cpu(i) {
1271 unsigned int j;
1272
1273 cpumask_clear(&cpu_core_map[i]);
1274 if (cpu_data(i).core_id == 0) {
1275 cpumask_set_cpu(i, &cpu_core_map[i]);
1276 continue;
1277 }
1278
1279 for_each_present_cpu(j) {
1280 if (cpu_data(i).core_id ==
1281 cpu_data(j).core_id)
1282 cpumask_set_cpu(j, &cpu_core_map[i]);
1283 }
1284 }
1285
1286 for_each_present_cpu(i) {
1287 unsigned int j;
1288
1289 for_each_present_cpu(j) {
1290 if (cpu_data(i).max_cache_id ==
1291 cpu_data(j).max_cache_id)
1292 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1293
1294 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1295 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1296 }
1297 }
1298
1299 for_each_present_cpu(i) {
1300 unsigned int j;
1301
1302 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1303 if (cpu_data(i).proc_id == -1) {
1304 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1305 continue;
1306 }
1307
1308 for_each_present_cpu(j) {
1309 if (cpu_data(i).proc_id ==
1310 cpu_data(j).proc_id)
1311 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1312 }
1313 }
1314 }
1315
1316 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1317 {
1318 int ret = smp_boot_one_cpu(cpu, tidle);
1319
1320 if (!ret) {
1321 cpumask_set_cpu(cpu, &smp_commenced_mask);
1322 while (!cpu_online(cpu))
1323 mb();
1324 if (!cpu_online(cpu)) {
1325 ret = -ENODEV;
1326 } else {
1327 /* On SUN4V, writes to %tick and %stick are
1328 * not allowed.
1329 */
1330 if (tlb_type != hypervisor)
1331 smp_synchronize_one_tick(cpu);
1332 }
1333 }
1334 return ret;
1335 }
1336
1337 #ifdef CONFIG_HOTPLUG_CPU
1338 void cpu_play_dead(void)
1339 {
1340 int cpu = smp_processor_id();
1341 unsigned long pstate;
1342
1343 idle_task_exit();
1344
1345 if (tlb_type == hypervisor) {
1346 struct trap_per_cpu *tb = &trap_block[cpu];
1347
1348 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1349 tb->cpu_mondo_pa, 0);
1350 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1351 tb->dev_mondo_pa, 0);
1352 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1353 tb->resum_mondo_pa, 0);
1354 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1355 tb->nonresum_mondo_pa, 0);
1356 }
1357
1358 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1359 membar_safe("#Sync");
1360
1361 local_irq_disable();
1362
1363 __asm__ __volatile__(
1364 "rdpr %%pstate, %0\n\t"
1365 "wrpr %0, %1, %%pstate"
1366 : "=r" (pstate)
1367 : "i" (PSTATE_IE));
1368
1369 while (1)
1370 barrier();
1371 }
1372
1373 int __cpu_disable(void)
1374 {
1375 int cpu = smp_processor_id();
1376 cpuinfo_sparc *c;
1377 int i;
1378
1379 for_each_cpu(i, &cpu_core_map[cpu])
1380 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1381 cpumask_clear(&cpu_core_map[cpu]);
1382
1383 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1384 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1385 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1386
1387 c = &cpu_data(cpu);
1388
1389 c->core_id = 0;
1390 c->proc_id = -1;
1391
1392 smp_wmb();
1393
1394 /* Make sure no interrupts point to this cpu. */
1395 fixup_irqs();
1396
1397 local_irq_enable();
1398 mdelay(1);
1399 local_irq_disable();
1400
1401 set_cpu_online(cpu, false);
1402
1403 cpu_map_rebuild();
1404
1405 return 0;
1406 }
1407
1408 void __cpu_die(unsigned int cpu)
1409 {
1410 int i;
1411
1412 for (i = 0; i < 100; i++) {
1413 smp_rmb();
1414 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1415 break;
1416 msleep(100);
1417 }
1418 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1419 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1420 } else {
1421 #if defined(CONFIG_SUN_LDOMS)
1422 unsigned long hv_err;
1423 int limit = 100;
1424
1425 do {
1426 hv_err = sun4v_cpu_stop(cpu);
1427 if (hv_err == HV_EOK) {
1428 set_cpu_present(cpu, false);
1429 break;
1430 }
1431 } while (--limit > 0);
1432 if (limit <= 0) {
1433 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1434 hv_err);
1435 }
1436 #endif
1437 }
1438 }
1439 #endif
1440
1441 void __init smp_cpus_done(unsigned int max_cpus)
1442 {
1443 }
1444
1445 static void send_cpu_ipi(int cpu)
1446 {
1447 xcall_deliver((u64) &xcall_receive_signal,
1448 0, 0, cpumask_of(cpu));
1449 }
1450
1451 void scheduler_poke(void)
1452 {
1453 if (!cpu_poke)
1454 return;
1455
1456 if (!__this_cpu_read(poke))
1457 return;
1458
1459 __this_cpu_write(poke, false);
1460 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1461 }
1462
1463 static unsigned long send_cpu_poke(int cpu)
1464 {
1465 unsigned long hv_err;
1466
1467 per_cpu(poke, cpu) = true;
1468 hv_err = sun4v_cpu_poke(cpu);
1469 if (hv_err != HV_EOK) {
1470 per_cpu(poke, cpu) = false;
1471 pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1472 __func__, hv_err);
1473 }
1474
1475 return hv_err;
1476 }
1477
1478 void smp_send_reschedule(int cpu)
1479 {
1480 if (cpu == smp_processor_id()) {
1481 WARN_ON_ONCE(preemptible());
1482 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1483 return;
1484 }
1485
1486 /* Use cpu poke to resume idle cpu if supported. */
1487 if (cpu_poke && idle_cpu(cpu)) {
1488 unsigned long ret;
1489
1490 ret = send_cpu_poke(cpu);
1491 if (ret == HV_EOK)
1492 return;
1493 }
1494
1495 /* Use IPI in following cases:
1496 * - cpu poke not supported
1497 * - cpu not idle
1498 * - send_cpu_poke() returns with error
1499 */
1500 send_cpu_ipi(cpu);
1501 }
1502
1503 void smp_init_cpu_poke(void)
1504 {
1505 unsigned long major;
1506 unsigned long minor;
1507 int ret;
1508
1509 if (tlb_type != hypervisor)
1510 return;
1511
1512 ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1513 if (ret) {
1514 pr_debug("HV_GRP_CORE is not registered\n");
1515 return;
1516 }
1517
1518 if (major == 1 && minor >= 6) {
1519 /* CPU POKE is registered. */
1520 cpu_poke = true;
1521 return;
1522 }
1523
1524 pr_debug("CPU_POKE not supported\n");
1525 }
1526
1527 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1528 {
1529 clear_softint(1 << irq);
1530 scheduler_ipi();
1531 }
1532
1533 static void stop_this_cpu(void *dummy)
1534 {
1535 set_cpu_online(smp_processor_id(), false);
1536 prom_stopself();
1537 }
1538
1539 void smp_send_stop(void)
1540 {
1541 int cpu;
1542
1543 if (tlb_type == hypervisor) {
1544 int this_cpu = smp_processor_id();
1545 #ifdef CONFIG_SERIAL_SUNHV
1546 sunhv_migrate_hvcons_irq(this_cpu);
1547 #endif
1548 for_each_online_cpu(cpu) {
1549 if (cpu == this_cpu)
1550 continue;
1551
1552 set_cpu_online(cpu, false);
1553 #ifdef CONFIG_SUN_LDOMS
1554 if (ldom_domaining_enabled) {
1555 unsigned long hv_err;
1556 hv_err = sun4v_cpu_stop(cpu);
1557 if (hv_err)
1558 printk(KERN_ERR "sun4v_cpu_stop() "
1559 "failed err=%lu\n", hv_err);
1560 } else
1561 #endif
1562 prom_stopcpu_cpuid(cpu);
1563 }
1564 } else
1565 smp_call_function(stop_this_cpu, NULL, 0);
1566 }
1567
1568 /**
1569 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1570 * @cpu: cpu to allocate for
1571 * @size: size allocation in bytes
1572 * @align: alignment
1573 *
1574 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1575 * does the right thing for NUMA regardless of the current
1576 * configuration.
1577 *
1578 * RETURNS:
1579 * Pointer to the allocated area on success, NULL on failure.
1580 */
1581 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1582 size_t align)
1583 {
1584 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1585 #ifdef CONFIG_NEED_MULTIPLE_NODES
1586 int node = cpu_to_node(cpu);
1587 void *ptr;
1588
1589 if (!node_online(node) || !NODE_DATA(node)) {
1590 ptr = __alloc_bootmem(size, align, goal);
1591 pr_info("cpu %d has no node %d or node-local memory\n",
1592 cpu, node);
1593 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1594 cpu, size, __pa(ptr));
1595 } else {
1596 ptr = __alloc_bootmem_node(NODE_DATA(node),
1597 size, align, goal);
1598 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1599 "%016lx\n", cpu, size, node, __pa(ptr));
1600 }
1601 return ptr;
1602 #else
1603 return __alloc_bootmem(size, align, goal);
1604 #endif
1605 }
1606
1607 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1608 {
1609 free_bootmem(__pa(ptr), size);
1610 }
1611
1612 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1613 {
1614 if (cpu_to_node(from) == cpu_to_node(to))
1615 return LOCAL_DISTANCE;
1616 else
1617 return REMOTE_DISTANCE;
1618 }
1619
1620 static void __init pcpu_populate_pte(unsigned long addr)
1621 {
1622 pgd_t *pgd = pgd_offset_k(addr);
1623 pud_t *pud;
1624 pmd_t *pmd;
1625
1626 if (pgd_none(*pgd)) {
1627 pud_t *new;
1628
1629 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1630 pgd_populate(&init_mm, pgd, new);
1631 }
1632
1633 pud = pud_offset(pgd, addr);
1634 if (pud_none(*pud)) {
1635 pmd_t *new;
1636
1637 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1638 pud_populate(&init_mm, pud, new);
1639 }
1640
1641 pmd = pmd_offset(pud, addr);
1642 if (!pmd_present(*pmd)) {
1643 pte_t *new;
1644
1645 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1646 pmd_populate_kernel(&init_mm, pmd, new);
1647 }
1648 }
1649
1650 void __init setup_per_cpu_areas(void)
1651 {
1652 unsigned long delta;
1653 unsigned int cpu;
1654 int rc = -EINVAL;
1655
1656 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1657 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1658 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1659 pcpu_cpu_distance,
1660 pcpu_alloc_bootmem,
1661 pcpu_free_bootmem);
1662 if (rc)
1663 pr_warning("PERCPU: %s allocator failed (%d), "
1664 "falling back to page size\n",
1665 pcpu_fc_names[pcpu_chosen_fc], rc);
1666 }
1667 if (rc < 0)
1668 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1669 pcpu_alloc_bootmem,
1670 pcpu_free_bootmem,
1671 pcpu_populate_pte);
1672 if (rc < 0)
1673 panic("cannot initialize percpu area (err=%d)", rc);
1674
1675 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1676 for_each_possible_cpu(cpu)
1677 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1678
1679 /* Setup %g5 for the boot cpu. */
1680 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1681
1682 of_fill_in_cpu_data();
1683 if (tlb_type == hypervisor)
1684 mdesc_fill_in_cpu_data(cpu_all_mask);
1685 }