]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sparc/kernel/smp_64.c
Merge tag 'mvebu-fixes-4.13-2' of git://git.infradead.org/linux-mvebu into fixes
[mirror_ubuntu-artful-kernel.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/hotplug.h>
10 #include <linux/mm.h>
11 #include <linux/pagemap.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ftrace.h>
27 #include <linux/cpu.h>
28 #include <linux/slab.h>
29 #include <linux/kgdb.h>
30
31 #include <asm/head.h>
32 #include <asm/ptrace.h>
33 #include <linux/atomic.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mmu_context.h>
36 #include <asm/cpudata.h>
37 #include <asm/hvtramp.h>
38 #include <asm/io.h>
39 #include <asm/timer.h>
40 #include <asm/setup.h>
41
42 #include <asm/irq.h>
43 #include <asm/irq_regs.h>
44 #include <asm/page.h>
45 #include <asm/pgtable.h>
46 #include <asm/oplib.h>
47 #include <linux/uaccess.h>
48 #include <asm/starfire.h>
49 #include <asm/tlb.h>
50 #include <asm/sections.h>
51 #include <asm/prom.h>
52 #include <asm/mdesc.h>
53 #include <asm/ldc.h>
54 #include <asm/hypervisor.h>
55 #include <asm/pcr.h>
56
57 #include "cpumap.h"
58 #include "kernel.h"
59
60 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
61 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
62 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
63
64 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
65 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
66
67 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
68 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
69
70 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
71 EXPORT_SYMBOL(cpu_core_map);
72 EXPORT_SYMBOL(cpu_core_sib_map);
73 EXPORT_SYMBOL(cpu_core_sib_cache_map);
74
75 static cpumask_t smp_commenced_mask;
76
77 void smp_info(struct seq_file *m)
78 {
79 int i;
80
81 seq_printf(m, "State:\n");
82 for_each_online_cpu(i)
83 seq_printf(m, "CPU%d:\t\tonline\n", i);
84 }
85
86 void smp_bogo(struct seq_file *m)
87 {
88 int i;
89
90 for_each_online_cpu(i)
91 seq_printf(m,
92 "Cpu%dClkTck\t: %016lx\n",
93 i, cpu_data(i).clock_tick);
94 }
95
96 extern void setup_sparc64_timer(void);
97
98 static volatile unsigned long callin_flag = 0;
99
100 void smp_callin(void)
101 {
102 int cpuid = hard_smp_processor_id();
103
104 __local_per_cpu_offset = __per_cpu_offset(cpuid);
105
106 if (tlb_type == hypervisor)
107 sun4v_ktsb_register();
108
109 __flush_tlb_all();
110
111 setup_sparc64_timer();
112
113 if (cheetah_pcache_forced_on)
114 cheetah_enable_pcache();
115
116 callin_flag = 1;
117 __asm__ __volatile__("membar #Sync\n\t"
118 "flush %%g6" : : : "memory");
119
120 /* Clear this or we will die instantly when we
121 * schedule back to this idler...
122 */
123 current_thread_info()->new_child = 0;
124
125 /* Attach to the address space of init_task. */
126 mmgrab(&init_mm);
127 current->active_mm = &init_mm;
128
129 /* inform the notifiers about the new cpu */
130 notify_cpu_starting(cpuid);
131
132 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
133 rmb();
134
135 set_cpu_online(cpuid, true);
136
137 /* idle thread is expected to have preempt disabled */
138 preempt_disable();
139
140 local_irq_enable();
141
142 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
143 }
144
145 void cpu_panic(void)
146 {
147 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
148 panic("SMP bolixed\n");
149 }
150
151 /* This tick register synchronization scheme is taken entirely from
152 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
153 *
154 * The only change I've made is to rework it so that the master
155 * initiates the synchonization instead of the slave. -DaveM
156 */
157
158 #define MASTER 0
159 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
160
161 #define NUM_ROUNDS 64 /* magic value */
162 #define NUM_ITERS 5 /* likewise */
163
164 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
165 static unsigned long go[SLAVE + 1];
166
167 #define DEBUG_TICK_SYNC 0
168
169 static inline long get_delta (long *rt, long *master)
170 {
171 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
172 unsigned long tcenter, t0, t1, tm;
173 unsigned long i;
174
175 for (i = 0; i < NUM_ITERS; i++) {
176 t0 = tick_ops->get_tick();
177 go[MASTER] = 1;
178 membar_safe("#StoreLoad");
179 while (!(tm = go[SLAVE]))
180 rmb();
181 go[SLAVE] = 0;
182 wmb();
183 t1 = tick_ops->get_tick();
184
185 if (t1 - t0 < best_t1 - best_t0)
186 best_t0 = t0, best_t1 = t1, best_tm = tm;
187 }
188
189 *rt = best_t1 - best_t0;
190 *master = best_tm - best_t0;
191
192 /* average best_t0 and best_t1 without overflow: */
193 tcenter = (best_t0/2 + best_t1/2);
194 if (best_t0 % 2 + best_t1 % 2 == 2)
195 tcenter++;
196 return tcenter - best_tm;
197 }
198
199 void smp_synchronize_tick_client(void)
200 {
201 long i, delta, adj, adjust_latency = 0, done = 0;
202 unsigned long flags, rt, master_time_stamp;
203 #if DEBUG_TICK_SYNC
204 struct {
205 long rt; /* roundtrip time */
206 long master; /* master's timestamp */
207 long diff; /* difference between midpoint and master's timestamp */
208 long lat; /* estimate of itc adjustment latency */
209 } t[NUM_ROUNDS];
210 #endif
211
212 go[MASTER] = 1;
213
214 while (go[MASTER])
215 rmb();
216
217 local_irq_save(flags);
218 {
219 for (i = 0; i < NUM_ROUNDS; i++) {
220 delta = get_delta(&rt, &master_time_stamp);
221 if (delta == 0)
222 done = 1; /* let's lock on to this... */
223
224 if (!done) {
225 if (i > 0) {
226 adjust_latency += -delta;
227 adj = -delta + adjust_latency/4;
228 } else
229 adj = -delta;
230
231 tick_ops->add_tick(adj);
232 }
233 #if DEBUG_TICK_SYNC
234 t[i].rt = rt;
235 t[i].master = master_time_stamp;
236 t[i].diff = delta;
237 t[i].lat = adjust_latency/4;
238 #endif
239 }
240 }
241 local_irq_restore(flags);
242
243 #if DEBUG_TICK_SYNC
244 for (i = 0; i < NUM_ROUNDS; i++)
245 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
246 t[i].rt, t[i].master, t[i].diff, t[i].lat);
247 #endif
248
249 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
250 "(last diff %ld cycles, maxerr %lu cycles)\n",
251 smp_processor_id(), delta, rt);
252 }
253
254 static void smp_start_sync_tick_client(int cpu);
255
256 static void smp_synchronize_one_tick(int cpu)
257 {
258 unsigned long flags, i;
259
260 go[MASTER] = 0;
261
262 smp_start_sync_tick_client(cpu);
263
264 /* wait for client to be ready */
265 while (!go[MASTER])
266 rmb();
267
268 /* now let the client proceed into his loop */
269 go[MASTER] = 0;
270 membar_safe("#StoreLoad");
271
272 raw_spin_lock_irqsave(&itc_sync_lock, flags);
273 {
274 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
275 while (!go[MASTER])
276 rmb();
277 go[MASTER] = 0;
278 wmb();
279 go[SLAVE] = tick_ops->get_tick();
280 membar_safe("#StoreLoad");
281 }
282 }
283 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
284 }
285
286 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
287 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
288 void **descrp)
289 {
290 extern unsigned long sparc64_ttable_tl0;
291 extern unsigned long kern_locked_tte_data;
292 struct hvtramp_descr *hdesc;
293 unsigned long trampoline_ra;
294 struct trap_per_cpu *tb;
295 u64 tte_vaddr, tte_data;
296 unsigned long hv_err;
297 int i;
298
299 hdesc = kzalloc(sizeof(*hdesc) +
300 (sizeof(struct hvtramp_mapping) *
301 num_kernel_image_mappings - 1),
302 GFP_KERNEL);
303 if (!hdesc) {
304 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
305 "hvtramp_descr.\n");
306 return;
307 }
308 *descrp = hdesc;
309
310 hdesc->cpu = cpu;
311 hdesc->num_mappings = num_kernel_image_mappings;
312
313 tb = &trap_block[cpu];
314
315 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
316 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
317
318 hdesc->thread_reg = thread_reg;
319
320 tte_vaddr = (unsigned long) KERNBASE;
321 tte_data = kern_locked_tte_data;
322
323 for (i = 0; i < hdesc->num_mappings; i++) {
324 hdesc->maps[i].vaddr = tte_vaddr;
325 hdesc->maps[i].tte = tte_data;
326 tte_vaddr += 0x400000;
327 tte_data += 0x400000;
328 }
329
330 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
331
332 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
333 kimage_addr_to_ra(&sparc64_ttable_tl0),
334 __pa(hdesc));
335 if (hv_err)
336 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
337 "gives error %lu\n", hv_err);
338 }
339 #endif
340
341 extern unsigned long sparc64_cpu_startup;
342
343 /* The OBP cpu startup callback truncates the 3rd arg cookie to
344 * 32-bits (I think) so to be safe we have it read the pointer
345 * contained here so we work on >4GB machines. -DaveM
346 */
347 static struct thread_info *cpu_new_thread = NULL;
348
349 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
350 {
351 unsigned long entry =
352 (unsigned long)(&sparc64_cpu_startup);
353 unsigned long cookie =
354 (unsigned long)(&cpu_new_thread);
355 void *descr = NULL;
356 int timeout, ret;
357
358 callin_flag = 0;
359 cpu_new_thread = task_thread_info(idle);
360
361 if (tlb_type == hypervisor) {
362 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
363 if (ldom_domaining_enabled)
364 ldom_startcpu_cpuid(cpu,
365 (unsigned long) cpu_new_thread,
366 &descr);
367 else
368 #endif
369 prom_startcpu_cpuid(cpu, entry, cookie);
370 } else {
371 struct device_node *dp = of_find_node_by_cpuid(cpu);
372
373 prom_startcpu(dp->phandle, entry, cookie);
374 }
375
376 for (timeout = 0; timeout < 50000; timeout++) {
377 if (callin_flag)
378 break;
379 udelay(100);
380 }
381
382 if (callin_flag) {
383 ret = 0;
384 } else {
385 printk("Processor %d is stuck.\n", cpu);
386 ret = -ENODEV;
387 }
388 cpu_new_thread = NULL;
389
390 kfree(descr);
391
392 return ret;
393 }
394
395 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
396 {
397 u64 result, target;
398 int stuck, tmp;
399
400 if (this_is_starfire) {
401 /* map to real upaid */
402 cpu = (((cpu & 0x3c) << 1) |
403 ((cpu & 0x40) >> 4) |
404 (cpu & 0x3));
405 }
406
407 target = (cpu << 14) | 0x70;
408 again:
409 /* Ok, this is the real Spitfire Errata #54.
410 * One must read back from a UDB internal register
411 * after writes to the UDB interrupt dispatch, but
412 * before the membar Sync for that write.
413 * So we use the high UDB control register (ASI 0x7f,
414 * ADDR 0x20) for the dummy read. -DaveM
415 */
416 tmp = 0x40;
417 __asm__ __volatile__(
418 "wrpr %1, %2, %%pstate\n\t"
419 "stxa %4, [%0] %3\n\t"
420 "stxa %5, [%0+%8] %3\n\t"
421 "add %0, %8, %0\n\t"
422 "stxa %6, [%0+%8] %3\n\t"
423 "membar #Sync\n\t"
424 "stxa %%g0, [%7] %3\n\t"
425 "membar #Sync\n\t"
426 "mov 0x20, %%g1\n\t"
427 "ldxa [%%g1] 0x7f, %%g0\n\t"
428 "membar #Sync"
429 : "=r" (tmp)
430 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
431 "r" (data0), "r" (data1), "r" (data2), "r" (target),
432 "r" (0x10), "0" (tmp)
433 : "g1");
434
435 /* NOTE: PSTATE_IE is still clear. */
436 stuck = 100000;
437 do {
438 __asm__ __volatile__("ldxa [%%g0] %1, %0"
439 : "=r" (result)
440 : "i" (ASI_INTR_DISPATCH_STAT));
441 if (result == 0) {
442 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
443 : : "r" (pstate));
444 return;
445 }
446 stuck -= 1;
447 if (stuck == 0)
448 break;
449 } while (result & 0x1);
450 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
451 : : "r" (pstate));
452 if (stuck == 0) {
453 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
454 smp_processor_id(), result);
455 } else {
456 udelay(2);
457 goto again;
458 }
459 }
460
461 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
462 {
463 u64 *mondo, data0, data1, data2;
464 u16 *cpu_list;
465 u64 pstate;
466 int i;
467
468 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
469 cpu_list = __va(tb->cpu_list_pa);
470 mondo = __va(tb->cpu_mondo_block_pa);
471 data0 = mondo[0];
472 data1 = mondo[1];
473 data2 = mondo[2];
474 for (i = 0; i < cnt; i++)
475 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
476 }
477
478 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
479 * packet, but we have no use for that. However we do take advantage of
480 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
481 */
482 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
483 {
484 int nack_busy_id, is_jbus, need_more;
485 u64 *mondo, pstate, ver, busy_mask;
486 u16 *cpu_list;
487
488 cpu_list = __va(tb->cpu_list_pa);
489 mondo = __va(tb->cpu_mondo_block_pa);
490
491 /* Unfortunately, someone at Sun had the brilliant idea to make the
492 * busy/nack fields hard-coded by ITID number for this Ultra-III
493 * derivative processor.
494 */
495 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
496 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
497 (ver >> 32) == __SERRANO_ID);
498
499 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
500
501 retry:
502 need_more = 0;
503 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
504 : : "r" (pstate), "i" (PSTATE_IE));
505
506 /* Setup the dispatch data registers. */
507 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
508 "stxa %1, [%4] %6\n\t"
509 "stxa %2, [%5] %6\n\t"
510 "membar #Sync\n\t"
511 : /* no outputs */
512 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
513 "r" (0x40), "r" (0x50), "r" (0x60),
514 "i" (ASI_INTR_W));
515
516 nack_busy_id = 0;
517 busy_mask = 0;
518 {
519 int i;
520
521 for (i = 0; i < cnt; i++) {
522 u64 target, nr;
523
524 nr = cpu_list[i];
525 if (nr == 0xffff)
526 continue;
527
528 target = (nr << 14) | 0x70;
529 if (is_jbus) {
530 busy_mask |= (0x1UL << (nr * 2));
531 } else {
532 target |= (nack_busy_id << 24);
533 busy_mask |= (0x1UL <<
534 (nack_busy_id * 2));
535 }
536 __asm__ __volatile__(
537 "stxa %%g0, [%0] %1\n\t"
538 "membar #Sync\n\t"
539 : /* no outputs */
540 : "r" (target), "i" (ASI_INTR_W));
541 nack_busy_id++;
542 if (nack_busy_id == 32) {
543 need_more = 1;
544 break;
545 }
546 }
547 }
548
549 /* Now, poll for completion. */
550 {
551 u64 dispatch_stat, nack_mask;
552 long stuck;
553
554 stuck = 100000 * nack_busy_id;
555 nack_mask = busy_mask << 1;
556 do {
557 __asm__ __volatile__("ldxa [%%g0] %1, %0"
558 : "=r" (dispatch_stat)
559 : "i" (ASI_INTR_DISPATCH_STAT));
560 if (!(dispatch_stat & (busy_mask | nack_mask))) {
561 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
562 : : "r" (pstate));
563 if (unlikely(need_more)) {
564 int i, this_cnt = 0;
565 for (i = 0; i < cnt; i++) {
566 if (cpu_list[i] == 0xffff)
567 continue;
568 cpu_list[i] = 0xffff;
569 this_cnt++;
570 if (this_cnt == 32)
571 break;
572 }
573 goto retry;
574 }
575 return;
576 }
577 if (!--stuck)
578 break;
579 } while (dispatch_stat & busy_mask);
580
581 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
582 : : "r" (pstate));
583
584 if (dispatch_stat & busy_mask) {
585 /* Busy bits will not clear, continue instead
586 * of freezing up on this cpu.
587 */
588 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
589 smp_processor_id(), dispatch_stat);
590 } else {
591 int i, this_busy_nack = 0;
592
593 /* Delay some random time with interrupts enabled
594 * to prevent deadlock.
595 */
596 udelay(2 * nack_busy_id);
597
598 /* Clear out the mask bits for cpus which did not
599 * NACK us.
600 */
601 for (i = 0; i < cnt; i++) {
602 u64 check_mask, nr;
603
604 nr = cpu_list[i];
605 if (nr == 0xffff)
606 continue;
607
608 if (is_jbus)
609 check_mask = (0x2UL << (2*nr));
610 else
611 check_mask = (0x2UL <<
612 this_busy_nack);
613 if ((dispatch_stat & check_mask) == 0)
614 cpu_list[i] = 0xffff;
615 this_busy_nack += 2;
616 if (this_busy_nack == 64)
617 break;
618 }
619
620 goto retry;
621 }
622 }
623 }
624
625 #define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid])
626 #define MONDO_USEC_WAIT_MIN 2
627 #define MONDO_USEC_WAIT_MAX 100
628 #define MONDO_RETRY_LIMIT 500000
629
630 /* Multi-cpu list version.
631 *
632 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
633 * Sometimes not all cpus receive the mondo, requiring us to re-send
634 * the mondo until all cpus have received, or cpus are truly stuck
635 * unable to receive mondo, and we timeout.
636 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
637 * perform guest service, such as PCIe error handling. Consider the
638 * service time, 1 second overall wait is reasonable for 1 cpu.
639 * Here two in-between mondo check wait time are defined: 2 usec for
640 * single cpu quick turn around and up to 100usec for large cpu count.
641 * Deliver mondo to large number of cpus could take longer, we adjusts
642 * the retry count as long as target cpus are making forward progress.
643 */
644 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
645 {
646 int this_cpu, tot_cpus, prev_sent, i, rem;
647 int usec_wait, retries, tot_retries;
648 u16 first_cpu = 0xffff;
649 unsigned long xc_rcvd = 0;
650 unsigned long status;
651 int ecpuerror_id = 0;
652 int enocpu_id = 0;
653 u16 *cpu_list;
654 u16 cpu;
655
656 this_cpu = smp_processor_id();
657 cpu_list = __va(tb->cpu_list_pa);
658 usec_wait = cnt * MONDO_USEC_WAIT_MIN;
659 if (usec_wait > MONDO_USEC_WAIT_MAX)
660 usec_wait = MONDO_USEC_WAIT_MAX;
661 retries = tot_retries = 0;
662 tot_cpus = cnt;
663 prev_sent = 0;
664
665 do {
666 int n_sent, mondo_delivered, target_cpu_busy;
667
668 status = sun4v_cpu_mondo_send(cnt,
669 tb->cpu_list_pa,
670 tb->cpu_mondo_block_pa);
671
672 /* HV_EOK means all cpus received the xcall, we're done. */
673 if (likely(status == HV_EOK))
674 goto xcall_done;
675
676 /* If not these non-fatal errors, panic */
677 if (unlikely((status != HV_EWOULDBLOCK) &&
678 (status != HV_ECPUERROR) &&
679 (status != HV_ENOCPU)))
680 goto fatal_errors;
681
682 /* First, see if we made any forward progress.
683 *
684 * Go through the cpu_list, count the target cpus that have
685 * received our mondo (n_sent), and those that did not (rem).
686 * Re-pack cpu_list with the cpus remain to be retried in the
687 * front - this simplifies tracking the truly stalled cpus.
688 *
689 * The hypervisor indicates successful sends by setting
690 * cpu list entries to the value 0xffff.
691 *
692 * EWOULDBLOCK means some target cpus did not receive the
693 * mondo and retry usually helps.
694 *
695 * ECPUERROR means at least one target cpu is in error state,
696 * it's usually safe to skip the faulty cpu and retry.
697 *
698 * ENOCPU means one of the target cpu doesn't belong to the
699 * domain, perhaps offlined which is unexpected, but not
700 * fatal and it's okay to skip the offlined cpu.
701 */
702 rem = 0;
703 n_sent = 0;
704 for (i = 0; i < cnt; i++) {
705 cpu = cpu_list[i];
706 if (likely(cpu == 0xffff)) {
707 n_sent++;
708 } else if ((status == HV_ECPUERROR) &&
709 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
710 ecpuerror_id = cpu + 1;
711 } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
712 enocpu_id = cpu + 1;
713 } else {
714 cpu_list[rem++] = cpu;
715 }
716 }
717
718 /* No cpu remained, we're done. */
719 if (rem == 0)
720 break;
721
722 /* Otherwise, update the cpu count for retry. */
723 cnt = rem;
724
725 /* Record the overall number of mondos received by the
726 * first of the remaining cpus.
727 */
728 if (first_cpu != cpu_list[0]) {
729 first_cpu = cpu_list[0];
730 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
731 }
732
733 /* Was any mondo delivered successfully? */
734 mondo_delivered = (n_sent > prev_sent);
735 prev_sent = n_sent;
736
737 /* or, was any target cpu busy processing other mondos? */
738 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
739 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
740
741 /* Retry count is for no progress. If we're making progress,
742 * reset the retry count.
743 */
744 if (likely(mondo_delivered || target_cpu_busy)) {
745 tot_retries += retries;
746 retries = 0;
747 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
748 goto fatal_mondo_timeout;
749 }
750
751 /* Delay a little bit to let other cpus catch up on
752 * their cpu mondo queue work.
753 */
754 if (!mondo_delivered)
755 udelay(usec_wait);
756
757 retries++;
758 } while (1);
759
760 xcall_done:
761 if (unlikely(ecpuerror_id > 0)) {
762 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
763 this_cpu, ecpuerror_id - 1);
764 } else if (unlikely(enocpu_id > 0)) {
765 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
766 this_cpu, enocpu_id - 1);
767 }
768 return;
769
770 fatal_errors:
771 /* fatal errors include bad alignment, etc */
772 pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
773 this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
774 panic("Unexpected SUN4V mondo error %lu\n", status);
775
776 fatal_mondo_timeout:
777 /* some cpus being non-responsive to the cpu mondo */
778 pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
779 this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
780 panic("SUN4V mondo timeout panic\n");
781 }
782
783 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
784
785 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
786 {
787 struct trap_per_cpu *tb;
788 int this_cpu, i, cnt;
789 unsigned long flags;
790 u16 *cpu_list;
791 u64 *mondo;
792
793 /* We have to do this whole thing with interrupts fully disabled.
794 * Otherwise if we send an xcall from interrupt context it will
795 * corrupt both our mondo block and cpu list state.
796 *
797 * One consequence of this is that we cannot use timeout mechanisms
798 * that depend upon interrupts being delivered locally. So, for
799 * example, we cannot sample jiffies and expect it to advance.
800 *
801 * Fortunately, udelay() uses %stick/%tick so we can use that.
802 */
803 local_irq_save(flags);
804
805 this_cpu = smp_processor_id();
806 tb = &trap_block[this_cpu];
807
808 mondo = __va(tb->cpu_mondo_block_pa);
809 mondo[0] = data0;
810 mondo[1] = data1;
811 mondo[2] = data2;
812 wmb();
813
814 cpu_list = __va(tb->cpu_list_pa);
815
816 /* Setup the initial cpu list. */
817 cnt = 0;
818 for_each_cpu(i, mask) {
819 if (i == this_cpu || !cpu_online(i))
820 continue;
821 cpu_list[cnt++] = i;
822 }
823
824 if (cnt)
825 xcall_deliver_impl(tb, cnt);
826
827 local_irq_restore(flags);
828 }
829
830 /* Send cross call to all processors mentioned in MASK_P
831 * except self. Really, there are only two cases currently,
832 * "cpu_online_mask" and "mm_cpumask(mm)".
833 */
834 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
835 {
836 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
837
838 xcall_deliver(data0, data1, data2, mask);
839 }
840
841 /* Send cross call to all processors except self. */
842 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
843 {
844 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
845 }
846
847 extern unsigned long xcall_sync_tick;
848
849 static void smp_start_sync_tick_client(int cpu)
850 {
851 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
852 cpumask_of(cpu));
853 }
854
855 extern unsigned long xcall_call_function;
856
857 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
858 {
859 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
860 }
861
862 extern unsigned long xcall_call_function_single;
863
864 void arch_send_call_function_single_ipi(int cpu)
865 {
866 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
867 cpumask_of(cpu));
868 }
869
870 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
871 {
872 clear_softint(1 << irq);
873 irq_enter();
874 generic_smp_call_function_interrupt();
875 irq_exit();
876 }
877
878 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
879 {
880 clear_softint(1 << irq);
881 irq_enter();
882 generic_smp_call_function_single_interrupt();
883 irq_exit();
884 }
885
886 static void tsb_sync(void *info)
887 {
888 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
889 struct mm_struct *mm = info;
890
891 /* It is not valid to test "current->active_mm == mm" here.
892 *
893 * The value of "current" is not changed atomically with
894 * switch_mm(). But that's OK, we just need to check the
895 * current cpu's trap block PGD physical address.
896 */
897 if (tp->pgd_paddr == __pa(mm->pgd))
898 tsb_context_switch(mm);
899 }
900
901 void smp_tsb_sync(struct mm_struct *mm)
902 {
903 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
904 }
905
906 extern unsigned long xcall_flush_tlb_mm;
907 extern unsigned long xcall_flush_tlb_page;
908 extern unsigned long xcall_flush_tlb_kernel_range;
909 extern unsigned long xcall_fetch_glob_regs;
910 extern unsigned long xcall_fetch_glob_pmu;
911 extern unsigned long xcall_fetch_glob_pmu_n4;
912 extern unsigned long xcall_receive_signal;
913 extern unsigned long xcall_new_mmu_context_version;
914 #ifdef CONFIG_KGDB
915 extern unsigned long xcall_kgdb_capture;
916 #endif
917
918 #ifdef DCACHE_ALIASING_POSSIBLE
919 extern unsigned long xcall_flush_dcache_page_cheetah;
920 #endif
921 extern unsigned long xcall_flush_dcache_page_spitfire;
922
923 static inline void __local_flush_dcache_page(struct page *page)
924 {
925 #ifdef DCACHE_ALIASING_POSSIBLE
926 __flush_dcache_page(page_address(page),
927 ((tlb_type == spitfire) &&
928 page_mapping(page) != NULL));
929 #else
930 if (page_mapping(page) != NULL &&
931 tlb_type == spitfire)
932 __flush_icache_page(__pa(page_address(page)));
933 #endif
934 }
935
936 void smp_flush_dcache_page_impl(struct page *page, int cpu)
937 {
938 int this_cpu;
939
940 if (tlb_type == hypervisor)
941 return;
942
943 #ifdef CONFIG_DEBUG_DCFLUSH
944 atomic_inc(&dcpage_flushes);
945 #endif
946
947 this_cpu = get_cpu();
948
949 if (cpu == this_cpu) {
950 __local_flush_dcache_page(page);
951 } else if (cpu_online(cpu)) {
952 void *pg_addr = page_address(page);
953 u64 data0 = 0;
954
955 if (tlb_type == spitfire) {
956 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
957 if (page_mapping(page) != NULL)
958 data0 |= ((u64)1 << 32);
959 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
960 #ifdef DCACHE_ALIASING_POSSIBLE
961 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
962 #endif
963 }
964 if (data0) {
965 xcall_deliver(data0, __pa(pg_addr),
966 (u64) pg_addr, cpumask_of(cpu));
967 #ifdef CONFIG_DEBUG_DCFLUSH
968 atomic_inc(&dcpage_flushes_xcall);
969 #endif
970 }
971 }
972
973 put_cpu();
974 }
975
976 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
977 {
978 void *pg_addr;
979 u64 data0;
980
981 if (tlb_type == hypervisor)
982 return;
983
984 preempt_disable();
985
986 #ifdef CONFIG_DEBUG_DCFLUSH
987 atomic_inc(&dcpage_flushes);
988 #endif
989 data0 = 0;
990 pg_addr = page_address(page);
991 if (tlb_type == spitfire) {
992 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
993 if (page_mapping(page) != NULL)
994 data0 |= ((u64)1 << 32);
995 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
996 #ifdef DCACHE_ALIASING_POSSIBLE
997 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
998 #endif
999 }
1000 if (data0) {
1001 xcall_deliver(data0, __pa(pg_addr),
1002 (u64) pg_addr, cpu_online_mask);
1003 #ifdef CONFIG_DEBUG_DCFLUSH
1004 atomic_inc(&dcpage_flushes_xcall);
1005 #endif
1006 }
1007 __local_flush_dcache_page(page);
1008
1009 preempt_enable();
1010 }
1011
1012 #ifdef CONFIG_KGDB
1013 void kgdb_roundup_cpus(unsigned long flags)
1014 {
1015 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1016 }
1017 #endif
1018
1019 void smp_fetch_global_regs(void)
1020 {
1021 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1022 }
1023
1024 void smp_fetch_global_pmu(void)
1025 {
1026 if (tlb_type == hypervisor &&
1027 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1028 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1029 else
1030 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1031 }
1032
1033 /* We know that the window frames of the user have been flushed
1034 * to the stack before we get here because all callers of us
1035 * are flush_tlb_*() routines, and these run after flush_cache_*()
1036 * which performs the flushw.
1037 *
1038 * The SMP TLB coherency scheme we use works as follows:
1039 *
1040 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1041 * space has (potentially) executed on, this is the heuristic
1042 * we use to avoid doing cross calls.
1043 *
1044 * Also, for flushing from kswapd and also for clones, we
1045 * use cpu_vm_mask as the list of cpus to make run the TLB.
1046 *
1047 * 2) TLB context numbers are shared globally across all processors
1048 * in the system, this allows us to play several games to avoid
1049 * cross calls.
1050 *
1051 * One invariant is that when a cpu switches to a process, and
1052 * that processes tsk->active_mm->cpu_vm_mask does not have the
1053 * current cpu's bit set, that tlb context is flushed locally.
1054 *
1055 * If the address space is non-shared (ie. mm->count == 1) we avoid
1056 * cross calls when we want to flush the currently running process's
1057 * tlb state. This is done by clearing all cpu bits except the current
1058 * processor's in current->mm->cpu_vm_mask and performing the
1059 * flush locally only. This will force any subsequent cpus which run
1060 * this task to flush the context from the local tlb if the process
1061 * migrates to another cpu (again).
1062 *
1063 * 3) For shared address spaces (threads) and swapping we bite the
1064 * bullet for most cases and perform the cross call (but only to
1065 * the cpus listed in cpu_vm_mask).
1066 *
1067 * The performance gain from "optimizing" away the cross call for threads is
1068 * questionable (in theory the big win for threads is the massive sharing of
1069 * address space state across processors).
1070 */
1071
1072 /* This currently is only used by the hugetlb arch pre-fault
1073 * hook on UltraSPARC-III+ and later when changing the pagesize
1074 * bits of the context register for an address space.
1075 */
1076 void smp_flush_tlb_mm(struct mm_struct *mm)
1077 {
1078 u32 ctx = CTX_HWBITS(mm->context);
1079 int cpu = get_cpu();
1080
1081 if (atomic_read(&mm->mm_users) == 1) {
1082 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1083 goto local_flush_and_out;
1084 }
1085
1086 smp_cross_call_masked(&xcall_flush_tlb_mm,
1087 ctx, 0, 0,
1088 mm_cpumask(mm));
1089
1090 local_flush_and_out:
1091 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1092
1093 put_cpu();
1094 }
1095
1096 struct tlb_pending_info {
1097 unsigned long ctx;
1098 unsigned long nr;
1099 unsigned long *vaddrs;
1100 };
1101
1102 static void tlb_pending_func(void *info)
1103 {
1104 struct tlb_pending_info *t = info;
1105
1106 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1107 }
1108
1109 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1110 {
1111 u32 ctx = CTX_HWBITS(mm->context);
1112 struct tlb_pending_info info;
1113 int cpu = get_cpu();
1114
1115 info.ctx = ctx;
1116 info.nr = nr;
1117 info.vaddrs = vaddrs;
1118
1119 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1120 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1121 else
1122 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1123 &info, 1);
1124
1125 __flush_tlb_pending(ctx, nr, vaddrs);
1126
1127 put_cpu();
1128 }
1129
1130 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1131 {
1132 unsigned long context = CTX_HWBITS(mm->context);
1133 int cpu = get_cpu();
1134
1135 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1136 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1137 else
1138 smp_cross_call_masked(&xcall_flush_tlb_page,
1139 context, vaddr, 0,
1140 mm_cpumask(mm));
1141 __flush_tlb_page(context, vaddr);
1142
1143 put_cpu();
1144 }
1145
1146 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1147 {
1148 start &= PAGE_MASK;
1149 end = PAGE_ALIGN(end);
1150 if (start != end) {
1151 smp_cross_call(&xcall_flush_tlb_kernel_range,
1152 0, start, end);
1153
1154 __flush_tlb_kernel_range(start, end);
1155 }
1156 }
1157
1158 /* CPU capture. */
1159 /* #define CAPTURE_DEBUG */
1160 extern unsigned long xcall_capture;
1161
1162 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1163 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1164 static unsigned long penguins_are_doing_time;
1165
1166 void smp_capture(void)
1167 {
1168 int result = atomic_add_return(1, &smp_capture_depth);
1169
1170 if (result == 1) {
1171 int ncpus = num_online_cpus();
1172
1173 #ifdef CAPTURE_DEBUG
1174 printk("CPU[%d]: Sending penguins to jail...",
1175 smp_processor_id());
1176 #endif
1177 penguins_are_doing_time = 1;
1178 atomic_inc(&smp_capture_registry);
1179 smp_cross_call(&xcall_capture, 0, 0, 0);
1180 while (atomic_read(&smp_capture_registry) != ncpus)
1181 rmb();
1182 #ifdef CAPTURE_DEBUG
1183 printk("done\n");
1184 #endif
1185 }
1186 }
1187
1188 void smp_release(void)
1189 {
1190 if (atomic_dec_and_test(&smp_capture_depth)) {
1191 #ifdef CAPTURE_DEBUG
1192 printk("CPU[%d]: Giving pardon to "
1193 "imprisoned penguins\n",
1194 smp_processor_id());
1195 #endif
1196 penguins_are_doing_time = 0;
1197 membar_safe("#StoreLoad");
1198 atomic_dec(&smp_capture_registry);
1199 }
1200 }
1201
1202 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1203 * set, so they can service tlb flush xcalls...
1204 */
1205 extern void prom_world(int);
1206
1207 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1208 {
1209 clear_softint(1 << irq);
1210
1211 preempt_disable();
1212
1213 __asm__ __volatile__("flushw");
1214 prom_world(1);
1215 atomic_inc(&smp_capture_registry);
1216 membar_safe("#StoreLoad");
1217 while (penguins_are_doing_time)
1218 rmb();
1219 atomic_dec(&smp_capture_registry);
1220 prom_world(0);
1221
1222 preempt_enable();
1223 }
1224
1225 /* /proc/profile writes can call this, don't __init it please. */
1226 int setup_profiling_timer(unsigned int multiplier)
1227 {
1228 return -EINVAL;
1229 }
1230
1231 void __init smp_prepare_cpus(unsigned int max_cpus)
1232 {
1233 }
1234
1235 void smp_prepare_boot_cpu(void)
1236 {
1237 }
1238
1239 void __init smp_setup_processor_id(void)
1240 {
1241 if (tlb_type == spitfire)
1242 xcall_deliver_impl = spitfire_xcall_deliver;
1243 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1244 xcall_deliver_impl = cheetah_xcall_deliver;
1245 else
1246 xcall_deliver_impl = hypervisor_xcall_deliver;
1247 }
1248
1249 void __init smp_fill_in_cpu_possible_map(void)
1250 {
1251 int possible_cpus = num_possible_cpus();
1252 int i;
1253
1254 if (possible_cpus > nr_cpu_ids)
1255 possible_cpus = nr_cpu_ids;
1256
1257 for (i = 0; i < possible_cpus; i++)
1258 set_cpu_possible(i, true);
1259 for (; i < NR_CPUS; i++)
1260 set_cpu_possible(i, false);
1261 }
1262
1263 void smp_fill_in_sib_core_maps(void)
1264 {
1265 unsigned int i;
1266
1267 for_each_present_cpu(i) {
1268 unsigned int j;
1269
1270 cpumask_clear(&cpu_core_map[i]);
1271 if (cpu_data(i).core_id == 0) {
1272 cpumask_set_cpu(i, &cpu_core_map[i]);
1273 continue;
1274 }
1275
1276 for_each_present_cpu(j) {
1277 if (cpu_data(i).core_id ==
1278 cpu_data(j).core_id)
1279 cpumask_set_cpu(j, &cpu_core_map[i]);
1280 }
1281 }
1282
1283 for_each_present_cpu(i) {
1284 unsigned int j;
1285
1286 for_each_present_cpu(j) {
1287 if (cpu_data(i).max_cache_id ==
1288 cpu_data(j).max_cache_id)
1289 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1290
1291 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1292 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1293 }
1294 }
1295
1296 for_each_present_cpu(i) {
1297 unsigned int j;
1298
1299 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1300 if (cpu_data(i).proc_id == -1) {
1301 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1302 continue;
1303 }
1304
1305 for_each_present_cpu(j) {
1306 if (cpu_data(i).proc_id ==
1307 cpu_data(j).proc_id)
1308 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1309 }
1310 }
1311 }
1312
1313 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1314 {
1315 int ret = smp_boot_one_cpu(cpu, tidle);
1316
1317 if (!ret) {
1318 cpumask_set_cpu(cpu, &smp_commenced_mask);
1319 while (!cpu_online(cpu))
1320 mb();
1321 if (!cpu_online(cpu)) {
1322 ret = -ENODEV;
1323 } else {
1324 /* On SUN4V, writes to %tick and %stick are
1325 * not allowed.
1326 */
1327 if (tlb_type != hypervisor)
1328 smp_synchronize_one_tick(cpu);
1329 }
1330 }
1331 return ret;
1332 }
1333
1334 #ifdef CONFIG_HOTPLUG_CPU
1335 void cpu_play_dead(void)
1336 {
1337 int cpu = smp_processor_id();
1338 unsigned long pstate;
1339
1340 idle_task_exit();
1341
1342 if (tlb_type == hypervisor) {
1343 struct trap_per_cpu *tb = &trap_block[cpu];
1344
1345 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1346 tb->cpu_mondo_pa, 0);
1347 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1348 tb->dev_mondo_pa, 0);
1349 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1350 tb->resum_mondo_pa, 0);
1351 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1352 tb->nonresum_mondo_pa, 0);
1353 }
1354
1355 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1356 membar_safe("#Sync");
1357
1358 local_irq_disable();
1359
1360 __asm__ __volatile__(
1361 "rdpr %%pstate, %0\n\t"
1362 "wrpr %0, %1, %%pstate"
1363 : "=r" (pstate)
1364 : "i" (PSTATE_IE));
1365
1366 while (1)
1367 barrier();
1368 }
1369
1370 int __cpu_disable(void)
1371 {
1372 int cpu = smp_processor_id();
1373 cpuinfo_sparc *c;
1374 int i;
1375
1376 for_each_cpu(i, &cpu_core_map[cpu])
1377 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1378 cpumask_clear(&cpu_core_map[cpu]);
1379
1380 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1381 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1382 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1383
1384 c = &cpu_data(cpu);
1385
1386 c->core_id = 0;
1387 c->proc_id = -1;
1388
1389 smp_wmb();
1390
1391 /* Make sure no interrupts point to this cpu. */
1392 fixup_irqs();
1393
1394 local_irq_enable();
1395 mdelay(1);
1396 local_irq_disable();
1397
1398 set_cpu_online(cpu, false);
1399
1400 cpu_map_rebuild();
1401
1402 return 0;
1403 }
1404
1405 void __cpu_die(unsigned int cpu)
1406 {
1407 int i;
1408
1409 for (i = 0; i < 100; i++) {
1410 smp_rmb();
1411 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1412 break;
1413 msleep(100);
1414 }
1415 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1416 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1417 } else {
1418 #if defined(CONFIG_SUN_LDOMS)
1419 unsigned long hv_err;
1420 int limit = 100;
1421
1422 do {
1423 hv_err = sun4v_cpu_stop(cpu);
1424 if (hv_err == HV_EOK) {
1425 set_cpu_present(cpu, false);
1426 break;
1427 }
1428 } while (--limit > 0);
1429 if (limit <= 0) {
1430 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1431 hv_err);
1432 }
1433 #endif
1434 }
1435 }
1436 #endif
1437
1438 void __init smp_cpus_done(unsigned int max_cpus)
1439 {
1440 }
1441
1442 void smp_send_reschedule(int cpu)
1443 {
1444 if (cpu == smp_processor_id()) {
1445 WARN_ON_ONCE(preemptible());
1446 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1447 } else {
1448 xcall_deliver((u64) &xcall_receive_signal,
1449 0, 0, cpumask_of(cpu));
1450 }
1451 }
1452
1453 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1454 {
1455 clear_softint(1 << irq);
1456 scheduler_ipi();
1457 }
1458
1459 static void stop_this_cpu(void *dummy)
1460 {
1461 set_cpu_online(smp_processor_id(), false);
1462 prom_stopself();
1463 }
1464
1465 void smp_send_stop(void)
1466 {
1467 int cpu;
1468
1469 if (tlb_type == hypervisor) {
1470 int this_cpu = smp_processor_id();
1471 #ifdef CONFIG_SERIAL_SUNHV
1472 sunhv_migrate_hvcons_irq(this_cpu);
1473 #endif
1474 for_each_online_cpu(cpu) {
1475 if (cpu == this_cpu)
1476 continue;
1477
1478 set_cpu_online(cpu, false);
1479 #ifdef CONFIG_SUN_LDOMS
1480 if (ldom_domaining_enabled) {
1481 unsigned long hv_err;
1482 hv_err = sun4v_cpu_stop(cpu);
1483 if (hv_err)
1484 printk(KERN_ERR "sun4v_cpu_stop() "
1485 "failed err=%lu\n", hv_err);
1486 } else
1487 #endif
1488 prom_stopcpu_cpuid(cpu);
1489 }
1490 } else
1491 smp_call_function(stop_this_cpu, NULL, 0);
1492 }
1493
1494 /**
1495 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1496 * @cpu: cpu to allocate for
1497 * @size: size allocation in bytes
1498 * @align: alignment
1499 *
1500 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1501 * does the right thing for NUMA regardless of the current
1502 * configuration.
1503 *
1504 * RETURNS:
1505 * Pointer to the allocated area on success, NULL on failure.
1506 */
1507 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1508 size_t align)
1509 {
1510 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1511 #ifdef CONFIG_NEED_MULTIPLE_NODES
1512 int node = cpu_to_node(cpu);
1513 void *ptr;
1514
1515 if (!node_online(node) || !NODE_DATA(node)) {
1516 ptr = __alloc_bootmem(size, align, goal);
1517 pr_info("cpu %d has no node %d or node-local memory\n",
1518 cpu, node);
1519 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1520 cpu, size, __pa(ptr));
1521 } else {
1522 ptr = __alloc_bootmem_node(NODE_DATA(node),
1523 size, align, goal);
1524 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1525 "%016lx\n", cpu, size, node, __pa(ptr));
1526 }
1527 return ptr;
1528 #else
1529 return __alloc_bootmem(size, align, goal);
1530 #endif
1531 }
1532
1533 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1534 {
1535 free_bootmem(__pa(ptr), size);
1536 }
1537
1538 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1539 {
1540 if (cpu_to_node(from) == cpu_to_node(to))
1541 return LOCAL_DISTANCE;
1542 else
1543 return REMOTE_DISTANCE;
1544 }
1545
1546 static void __init pcpu_populate_pte(unsigned long addr)
1547 {
1548 pgd_t *pgd = pgd_offset_k(addr);
1549 pud_t *pud;
1550 pmd_t *pmd;
1551
1552 if (pgd_none(*pgd)) {
1553 pud_t *new;
1554
1555 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1556 pgd_populate(&init_mm, pgd, new);
1557 }
1558
1559 pud = pud_offset(pgd, addr);
1560 if (pud_none(*pud)) {
1561 pmd_t *new;
1562
1563 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1564 pud_populate(&init_mm, pud, new);
1565 }
1566
1567 pmd = pmd_offset(pud, addr);
1568 if (!pmd_present(*pmd)) {
1569 pte_t *new;
1570
1571 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1572 pmd_populate_kernel(&init_mm, pmd, new);
1573 }
1574 }
1575
1576 void __init setup_per_cpu_areas(void)
1577 {
1578 unsigned long delta;
1579 unsigned int cpu;
1580 int rc = -EINVAL;
1581
1582 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1583 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1584 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1585 pcpu_cpu_distance,
1586 pcpu_alloc_bootmem,
1587 pcpu_free_bootmem);
1588 if (rc)
1589 pr_warning("PERCPU: %s allocator failed (%d), "
1590 "falling back to page size\n",
1591 pcpu_fc_names[pcpu_chosen_fc], rc);
1592 }
1593 if (rc < 0)
1594 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1595 pcpu_alloc_bootmem,
1596 pcpu_free_bootmem,
1597 pcpu_populate_pte);
1598 if (rc < 0)
1599 panic("cannot initialize percpu area (err=%d)", rc);
1600
1601 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1602 for_each_possible_cpu(cpu)
1603 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1604
1605 /* Setup %g5 for the boot cpu. */
1606 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1607
1608 of_fill_in_cpu_data();
1609 if (tlb_type == hypervisor)
1610 mdesc_fill_in_cpu_data(cpu_all_mask);
1611 }