]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/sparc/kernel/smp_64.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / arch / sparc / kernel / smp_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* smp.c: Sparc64 SMP support.
3 *
4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5 */
6
7 #include <linux/export.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/hotplug.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/threads.h>
14 #include <linux/smp.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/cache.h>
23 #include <linux/jiffies.h>
24 #include <linux/profile.h>
25 #include <linux/bootmem.h>
26 #include <linux/vmalloc.h>
27 #include <linux/ftrace.h>
28 #include <linux/cpu.h>
29 #include <linux/slab.h>
30 #include <linux/kgdb.h>
31
32 #include <asm/head.h>
33 #include <asm/ptrace.h>
34 #include <linux/atomic.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include <asm/cpudata.h>
38 #include <asm/hvtramp.h>
39 #include <asm/io.h>
40 #include <asm/timer.h>
41 #include <asm/setup.h>
42
43 #include <asm/irq.h>
44 #include <asm/irq_regs.h>
45 #include <asm/page.h>
46 #include <asm/pgtable.h>
47 #include <asm/oplib.h>
48 #include <linux/uaccess.h>
49 #include <asm/starfire.h>
50 #include <asm/tlb.h>
51 #include <asm/sections.h>
52 #include <asm/prom.h>
53 #include <asm/mdesc.h>
54 #include <asm/ldc.h>
55 #include <asm/hypervisor.h>
56 #include <asm/pcr.h>
57
58 #include "cpumap.h"
59 #include "kernel.h"
60
61 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
62 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
63 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
64
65 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
66 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
67
68 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
69 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
70
71 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
72 EXPORT_SYMBOL(cpu_core_map);
73 EXPORT_SYMBOL(cpu_core_sib_map);
74 EXPORT_SYMBOL(cpu_core_sib_cache_map);
75
76 static cpumask_t smp_commenced_mask;
77
78 static DEFINE_PER_CPU(bool, poke);
79 static bool cpu_poke;
80
81 void smp_info(struct seq_file *m)
82 {
83 int i;
84
85 seq_printf(m, "State:\n");
86 for_each_online_cpu(i)
87 seq_printf(m, "CPU%d:\t\tonline\n", i);
88 }
89
90 void smp_bogo(struct seq_file *m)
91 {
92 int i;
93
94 for_each_online_cpu(i)
95 seq_printf(m,
96 "Cpu%dClkTck\t: %016lx\n",
97 i, cpu_data(i).clock_tick);
98 }
99
100 extern void setup_sparc64_timer(void);
101
102 static volatile unsigned long callin_flag = 0;
103
104 void smp_callin(void)
105 {
106 int cpuid = hard_smp_processor_id();
107
108 __local_per_cpu_offset = __per_cpu_offset(cpuid);
109
110 if (tlb_type == hypervisor)
111 sun4v_ktsb_register();
112
113 __flush_tlb_all();
114
115 setup_sparc64_timer();
116
117 if (cheetah_pcache_forced_on)
118 cheetah_enable_pcache();
119
120 callin_flag = 1;
121 __asm__ __volatile__("membar #Sync\n\t"
122 "flush %%g6" : : : "memory");
123
124 /* Clear this or we will die instantly when we
125 * schedule back to this idler...
126 */
127 current_thread_info()->new_child = 0;
128
129 /* Attach to the address space of init_task. */
130 mmgrab(&init_mm);
131 current->active_mm = &init_mm;
132
133 /* inform the notifiers about the new cpu */
134 notify_cpu_starting(cpuid);
135
136 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
137 rmb();
138
139 set_cpu_online(cpuid, true);
140
141 /* idle thread is expected to have preempt disabled */
142 preempt_disable();
143
144 local_irq_enable();
145
146 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
147 }
148
149 void cpu_panic(void)
150 {
151 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
152 panic("SMP bolixed\n");
153 }
154
155 /* This tick register synchronization scheme is taken entirely from
156 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
157 *
158 * The only change I've made is to rework it so that the master
159 * initiates the synchonization instead of the slave. -DaveM
160 */
161
162 #define MASTER 0
163 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
164
165 #define NUM_ROUNDS 64 /* magic value */
166 #define NUM_ITERS 5 /* likewise */
167
168 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
169 static unsigned long go[SLAVE + 1];
170
171 #define DEBUG_TICK_SYNC 0
172
173 static inline long get_delta (long *rt, long *master)
174 {
175 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
176 unsigned long tcenter, t0, t1, tm;
177 unsigned long i;
178
179 for (i = 0; i < NUM_ITERS; i++) {
180 t0 = tick_ops->get_tick();
181 go[MASTER] = 1;
182 membar_safe("#StoreLoad");
183 while (!(tm = go[SLAVE]))
184 rmb();
185 go[SLAVE] = 0;
186 wmb();
187 t1 = tick_ops->get_tick();
188
189 if (t1 - t0 < best_t1 - best_t0)
190 best_t0 = t0, best_t1 = t1, best_tm = tm;
191 }
192
193 *rt = best_t1 - best_t0;
194 *master = best_tm - best_t0;
195
196 /* average best_t0 and best_t1 without overflow: */
197 tcenter = (best_t0/2 + best_t1/2);
198 if (best_t0 % 2 + best_t1 % 2 == 2)
199 tcenter++;
200 return tcenter - best_tm;
201 }
202
203 void smp_synchronize_tick_client(void)
204 {
205 long i, delta, adj, adjust_latency = 0, done = 0;
206 unsigned long flags, rt, master_time_stamp;
207 #if DEBUG_TICK_SYNC
208 struct {
209 long rt; /* roundtrip time */
210 long master; /* master's timestamp */
211 long diff; /* difference between midpoint and master's timestamp */
212 long lat; /* estimate of itc adjustment latency */
213 } t[NUM_ROUNDS];
214 #endif
215
216 go[MASTER] = 1;
217
218 while (go[MASTER])
219 rmb();
220
221 local_irq_save(flags);
222 {
223 for (i = 0; i < NUM_ROUNDS; i++) {
224 delta = get_delta(&rt, &master_time_stamp);
225 if (delta == 0)
226 done = 1; /* let's lock on to this... */
227
228 if (!done) {
229 if (i > 0) {
230 adjust_latency += -delta;
231 adj = -delta + adjust_latency/4;
232 } else
233 adj = -delta;
234
235 tick_ops->add_tick(adj);
236 }
237 #if DEBUG_TICK_SYNC
238 t[i].rt = rt;
239 t[i].master = master_time_stamp;
240 t[i].diff = delta;
241 t[i].lat = adjust_latency/4;
242 #endif
243 }
244 }
245 local_irq_restore(flags);
246
247 #if DEBUG_TICK_SYNC
248 for (i = 0; i < NUM_ROUNDS; i++)
249 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
250 t[i].rt, t[i].master, t[i].diff, t[i].lat);
251 #endif
252
253 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
254 "(last diff %ld cycles, maxerr %lu cycles)\n",
255 smp_processor_id(), delta, rt);
256 }
257
258 static void smp_start_sync_tick_client(int cpu);
259
260 static void smp_synchronize_one_tick(int cpu)
261 {
262 unsigned long flags, i;
263
264 go[MASTER] = 0;
265
266 smp_start_sync_tick_client(cpu);
267
268 /* wait for client to be ready */
269 while (!go[MASTER])
270 rmb();
271
272 /* now let the client proceed into his loop */
273 go[MASTER] = 0;
274 membar_safe("#StoreLoad");
275
276 raw_spin_lock_irqsave(&itc_sync_lock, flags);
277 {
278 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
279 while (!go[MASTER])
280 rmb();
281 go[MASTER] = 0;
282 wmb();
283 go[SLAVE] = tick_ops->get_tick();
284 membar_safe("#StoreLoad");
285 }
286 }
287 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
288 }
289
290 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
291 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
292 void **descrp)
293 {
294 extern unsigned long sparc64_ttable_tl0;
295 extern unsigned long kern_locked_tte_data;
296 struct hvtramp_descr *hdesc;
297 unsigned long trampoline_ra;
298 struct trap_per_cpu *tb;
299 u64 tte_vaddr, tte_data;
300 unsigned long hv_err;
301 int i;
302
303 hdesc = kzalloc(sizeof(*hdesc) +
304 (sizeof(struct hvtramp_mapping) *
305 num_kernel_image_mappings - 1),
306 GFP_KERNEL);
307 if (!hdesc) {
308 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
309 "hvtramp_descr.\n");
310 return;
311 }
312 *descrp = hdesc;
313
314 hdesc->cpu = cpu;
315 hdesc->num_mappings = num_kernel_image_mappings;
316
317 tb = &trap_block[cpu];
318
319 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
320 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
321
322 hdesc->thread_reg = thread_reg;
323
324 tte_vaddr = (unsigned long) KERNBASE;
325 tte_data = kern_locked_tte_data;
326
327 for (i = 0; i < hdesc->num_mappings; i++) {
328 hdesc->maps[i].vaddr = tte_vaddr;
329 hdesc->maps[i].tte = tte_data;
330 tte_vaddr += 0x400000;
331 tte_data += 0x400000;
332 }
333
334 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
335
336 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
337 kimage_addr_to_ra(&sparc64_ttable_tl0),
338 __pa(hdesc));
339 if (hv_err)
340 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
341 "gives error %lu\n", hv_err);
342 }
343 #endif
344
345 extern unsigned long sparc64_cpu_startup;
346
347 /* The OBP cpu startup callback truncates the 3rd arg cookie to
348 * 32-bits (I think) so to be safe we have it read the pointer
349 * contained here so we work on >4GB machines. -DaveM
350 */
351 static struct thread_info *cpu_new_thread = NULL;
352
353 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
354 {
355 unsigned long entry =
356 (unsigned long)(&sparc64_cpu_startup);
357 unsigned long cookie =
358 (unsigned long)(&cpu_new_thread);
359 void *descr = NULL;
360 int timeout, ret;
361
362 callin_flag = 0;
363 cpu_new_thread = task_thread_info(idle);
364
365 if (tlb_type == hypervisor) {
366 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
367 if (ldom_domaining_enabled)
368 ldom_startcpu_cpuid(cpu,
369 (unsigned long) cpu_new_thread,
370 &descr);
371 else
372 #endif
373 prom_startcpu_cpuid(cpu, entry, cookie);
374 } else {
375 struct device_node *dp = of_find_node_by_cpuid(cpu);
376
377 prom_startcpu(dp->phandle, entry, cookie);
378 }
379
380 for (timeout = 0; timeout < 50000; timeout++) {
381 if (callin_flag)
382 break;
383 udelay(100);
384 }
385
386 if (callin_flag) {
387 ret = 0;
388 } else {
389 printk("Processor %d is stuck.\n", cpu);
390 ret = -ENODEV;
391 }
392 cpu_new_thread = NULL;
393
394 kfree(descr);
395
396 return ret;
397 }
398
399 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
400 {
401 u64 result, target;
402 int stuck, tmp;
403
404 if (this_is_starfire) {
405 /* map to real upaid */
406 cpu = (((cpu & 0x3c) << 1) |
407 ((cpu & 0x40) >> 4) |
408 (cpu & 0x3));
409 }
410
411 target = (cpu << 14) | 0x70;
412 again:
413 /* Ok, this is the real Spitfire Errata #54.
414 * One must read back from a UDB internal register
415 * after writes to the UDB interrupt dispatch, but
416 * before the membar Sync for that write.
417 * So we use the high UDB control register (ASI 0x7f,
418 * ADDR 0x20) for the dummy read. -DaveM
419 */
420 tmp = 0x40;
421 __asm__ __volatile__(
422 "wrpr %1, %2, %%pstate\n\t"
423 "stxa %4, [%0] %3\n\t"
424 "stxa %5, [%0+%8] %3\n\t"
425 "add %0, %8, %0\n\t"
426 "stxa %6, [%0+%8] %3\n\t"
427 "membar #Sync\n\t"
428 "stxa %%g0, [%7] %3\n\t"
429 "membar #Sync\n\t"
430 "mov 0x20, %%g1\n\t"
431 "ldxa [%%g1] 0x7f, %%g0\n\t"
432 "membar #Sync"
433 : "=r" (tmp)
434 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
435 "r" (data0), "r" (data1), "r" (data2), "r" (target),
436 "r" (0x10), "0" (tmp)
437 : "g1");
438
439 /* NOTE: PSTATE_IE is still clear. */
440 stuck = 100000;
441 do {
442 __asm__ __volatile__("ldxa [%%g0] %1, %0"
443 : "=r" (result)
444 : "i" (ASI_INTR_DISPATCH_STAT));
445 if (result == 0) {
446 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
447 : : "r" (pstate));
448 return;
449 }
450 stuck -= 1;
451 if (stuck == 0)
452 break;
453 } while (result & 0x1);
454 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
455 : : "r" (pstate));
456 if (stuck == 0) {
457 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
458 smp_processor_id(), result);
459 } else {
460 udelay(2);
461 goto again;
462 }
463 }
464
465 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
466 {
467 u64 *mondo, data0, data1, data2;
468 u16 *cpu_list;
469 u64 pstate;
470 int i;
471
472 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
473 cpu_list = __va(tb->cpu_list_pa);
474 mondo = __va(tb->cpu_mondo_block_pa);
475 data0 = mondo[0];
476 data1 = mondo[1];
477 data2 = mondo[2];
478 for (i = 0; i < cnt; i++)
479 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
480 }
481
482 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
483 * packet, but we have no use for that. However we do take advantage of
484 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
485 */
486 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
487 {
488 int nack_busy_id, is_jbus, need_more;
489 u64 *mondo, pstate, ver, busy_mask;
490 u16 *cpu_list;
491
492 cpu_list = __va(tb->cpu_list_pa);
493 mondo = __va(tb->cpu_mondo_block_pa);
494
495 /* Unfortunately, someone at Sun had the brilliant idea to make the
496 * busy/nack fields hard-coded by ITID number for this Ultra-III
497 * derivative processor.
498 */
499 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
500 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
501 (ver >> 32) == __SERRANO_ID);
502
503 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
504
505 retry:
506 need_more = 0;
507 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
508 : : "r" (pstate), "i" (PSTATE_IE));
509
510 /* Setup the dispatch data registers. */
511 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
512 "stxa %1, [%4] %6\n\t"
513 "stxa %2, [%5] %6\n\t"
514 "membar #Sync\n\t"
515 : /* no outputs */
516 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
517 "r" (0x40), "r" (0x50), "r" (0x60),
518 "i" (ASI_INTR_W));
519
520 nack_busy_id = 0;
521 busy_mask = 0;
522 {
523 int i;
524
525 for (i = 0; i < cnt; i++) {
526 u64 target, nr;
527
528 nr = cpu_list[i];
529 if (nr == 0xffff)
530 continue;
531
532 target = (nr << 14) | 0x70;
533 if (is_jbus) {
534 busy_mask |= (0x1UL << (nr * 2));
535 } else {
536 target |= (nack_busy_id << 24);
537 busy_mask |= (0x1UL <<
538 (nack_busy_id * 2));
539 }
540 __asm__ __volatile__(
541 "stxa %%g0, [%0] %1\n\t"
542 "membar #Sync\n\t"
543 : /* no outputs */
544 : "r" (target), "i" (ASI_INTR_W));
545 nack_busy_id++;
546 if (nack_busy_id == 32) {
547 need_more = 1;
548 break;
549 }
550 }
551 }
552
553 /* Now, poll for completion. */
554 {
555 u64 dispatch_stat, nack_mask;
556 long stuck;
557
558 stuck = 100000 * nack_busy_id;
559 nack_mask = busy_mask << 1;
560 do {
561 __asm__ __volatile__("ldxa [%%g0] %1, %0"
562 : "=r" (dispatch_stat)
563 : "i" (ASI_INTR_DISPATCH_STAT));
564 if (!(dispatch_stat & (busy_mask | nack_mask))) {
565 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
566 : : "r" (pstate));
567 if (unlikely(need_more)) {
568 int i, this_cnt = 0;
569 for (i = 0; i < cnt; i++) {
570 if (cpu_list[i] == 0xffff)
571 continue;
572 cpu_list[i] = 0xffff;
573 this_cnt++;
574 if (this_cnt == 32)
575 break;
576 }
577 goto retry;
578 }
579 return;
580 }
581 if (!--stuck)
582 break;
583 } while (dispatch_stat & busy_mask);
584
585 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
586 : : "r" (pstate));
587
588 if (dispatch_stat & busy_mask) {
589 /* Busy bits will not clear, continue instead
590 * of freezing up on this cpu.
591 */
592 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
593 smp_processor_id(), dispatch_stat);
594 } else {
595 int i, this_busy_nack = 0;
596
597 /* Delay some random time with interrupts enabled
598 * to prevent deadlock.
599 */
600 udelay(2 * nack_busy_id);
601
602 /* Clear out the mask bits for cpus which did not
603 * NACK us.
604 */
605 for (i = 0; i < cnt; i++) {
606 u64 check_mask, nr;
607
608 nr = cpu_list[i];
609 if (nr == 0xffff)
610 continue;
611
612 if (is_jbus)
613 check_mask = (0x2UL << (2*nr));
614 else
615 check_mask = (0x2UL <<
616 this_busy_nack);
617 if ((dispatch_stat & check_mask) == 0)
618 cpu_list[i] = 0xffff;
619 this_busy_nack += 2;
620 if (this_busy_nack == 64)
621 break;
622 }
623
624 goto retry;
625 }
626 }
627 }
628
629 #define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid])
630 #define MONDO_USEC_WAIT_MIN 2
631 #define MONDO_USEC_WAIT_MAX 100
632 #define MONDO_RETRY_LIMIT 500000
633
634 /* Multi-cpu list version.
635 *
636 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
637 * Sometimes not all cpus receive the mondo, requiring us to re-send
638 * the mondo until all cpus have received, or cpus are truly stuck
639 * unable to receive mondo, and we timeout.
640 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
641 * perform guest service, such as PCIe error handling. Consider the
642 * service time, 1 second overall wait is reasonable for 1 cpu.
643 * Here two in-between mondo check wait time are defined: 2 usec for
644 * single cpu quick turn around and up to 100usec for large cpu count.
645 * Deliver mondo to large number of cpus could take longer, we adjusts
646 * the retry count as long as target cpus are making forward progress.
647 */
648 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
649 {
650 int this_cpu, tot_cpus, prev_sent, i, rem;
651 int usec_wait, retries, tot_retries;
652 u16 first_cpu = 0xffff;
653 unsigned long xc_rcvd = 0;
654 unsigned long status;
655 int ecpuerror_id = 0;
656 int enocpu_id = 0;
657 u16 *cpu_list;
658 u16 cpu;
659
660 this_cpu = smp_processor_id();
661 cpu_list = __va(tb->cpu_list_pa);
662 usec_wait = cnt * MONDO_USEC_WAIT_MIN;
663 if (usec_wait > MONDO_USEC_WAIT_MAX)
664 usec_wait = MONDO_USEC_WAIT_MAX;
665 retries = tot_retries = 0;
666 tot_cpus = cnt;
667 prev_sent = 0;
668
669 do {
670 int n_sent, mondo_delivered, target_cpu_busy;
671
672 status = sun4v_cpu_mondo_send(cnt,
673 tb->cpu_list_pa,
674 tb->cpu_mondo_block_pa);
675
676 /* HV_EOK means all cpus received the xcall, we're done. */
677 if (likely(status == HV_EOK))
678 goto xcall_done;
679
680 /* If not these non-fatal errors, panic */
681 if (unlikely((status != HV_EWOULDBLOCK) &&
682 (status != HV_ECPUERROR) &&
683 (status != HV_ENOCPU)))
684 goto fatal_errors;
685
686 /* First, see if we made any forward progress.
687 *
688 * Go through the cpu_list, count the target cpus that have
689 * received our mondo (n_sent), and those that did not (rem).
690 * Re-pack cpu_list with the cpus remain to be retried in the
691 * front - this simplifies tracking the truly stalled cpus.
692 *
693 * The hypervisor indicates successful sends by setting
694 * cpu list entries to the value 0xffff.
695 *
696 * EWOULDBLOCK means some target cpus did not receive the
697 * mondo and retry usually helps.
698 *
699 * ECPUERROR means at least one target cpu is in error state,
700 * it's usually safe to skip the faulty cpu and retry.
701 *
702 * ENOCPU means one of the target cpu doesn't belong to the
703 * domain, perhaps offlined which is unexpected, but not
704 * fatal and it's okay to skip the offlined cpu.
705 */
706 rem = 0;
707 n_sent = 0;
708 for (i = 0; i < cnt; i++) {
709 cpu = cpu_list[i];
710 if (likely(cpu == 0xffff)) {
711 n_sent++;
712 } else if ((status == HV_ECPUERROR) &&
713 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
714 ecpuerror_id = cpu + 1;
715 } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
716 enocpu_id = cpu + 1;
717 } else {
718 cpu_list[rem++] = cpu;
719 }
720 }
721
722 /* No cpu remained, we're done. */
723 if (rem == 0)
724 break;
725
726 /* Otherwise, update the cpu count for retry. */
727 cnt = rem;
728
729 /* Record the overall number of mondos received by the
730 * first of the remaining cpus.
731 */
732 if (first_cpu != cpu_list[0]) {
733 first_cpu = cpu_list[0];
734 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
735 }
736
737 /* Was any mondo delivered successfully? */
738 mondo_delivered = (n_sent > prev_sent);
739 prev_sent = n_sent;
740
741 /* or, was any target cpu busy processing other mondos? */
742 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
743 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
744
745 /* Retry count is for no progress. If we're making progress,
746 * reset the retry count.
747 */
748 if (likely(mondo_delivered || target_cpu_busy)) {
749 tot_retries += retries;
750 retries = 0;
751 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
752 goto fatal_mondo_timeout;
753 }
754
755 /* Delay a little bit to let other cpus catch up on
756 * their cpu mondo queue work.
757 */
758 if (!mondo_delivered)
759 udelay(usec_wait);
760
761 retries++;
762 } while (1);
763
764 xcall_done:
765 if (unlikely(ecpuerror_id > 0)) {
766 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
767 this_cpu, ecpuerror_id - 1);
768 } else if (unlikely(enocpu_id > 0)) {
769 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
770 this_cpu, enocpu_id - 1);
771 }
772 return;
773
774 fatal_errors:
775 /* fatal errors include bad alignment, etc */
776 pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
777 this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
778 panic("Unexpected SUN4V mondo error %lu\n", status);
779
780 fatal_mondo_timeout:
781 /* some cpus being non-responsive to the cpu mondo */
782 pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
783 this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
784 panic("SUN4V mondo timeout panic\n");
785 }
786
787 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
788
789 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
790 {
791 struct trap_per_cpu *tb;
792 int this_cpu, i, cnt;
793 unsigned long flags;
794 u16 *cpu_list;
795 u64 *mondo;
796
797 /* We have to do this whole thing with interrupts fully disabled.
798 * Otherwise if we send an xcall from interrupt context it will
799 * corrupt both our mondo block and cpu list state.
800 *
801 * One consequence of this is that we cannot use timeout mechanisms
802 * that depend upon interrupts being delivered locally. So, for
803 * example, we cannot sample jiffies and expect it to advance.
804 *
805 * Fortunately, udelay() uses %stick/%tick so we can use that.
806 */
807 local_irq_save(flags);
808
809 this_cpu = smp_processor_id();
810 tb = &trap_block[this_cpu];
811
812 mondo = __va(tb->cpu_mondo_block_pa);
813 mondo[0] = data0;
814 mondo[1] = data1;
815 mondo[2] = data2;
816 wmb();
817
818 cpu_list = __va(tb->cpu_list_pa);
819
820 /* Setup the initial cpu list. */
821 cnt = 0;
822 for_each_cpu(i, mask) {
823 if (i == this_cpu || !cpu_online(i))
824 continue;
825 cpu_list[cnt++] = i;
826 }
827
828 if (cnt)
829 xcall_deliver_impl(tb, cnt);
830
831 local_irq_restore(flags);
832 }
833
834 /* Send cross call to all processors mentioned in MASK_P
835 * except self. Really, there are only two cases currently,
836 * "cpu_online_mask" and "mm_cpumask(mm)".
837 */
838 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
839 {
840 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
841
842 xcall_deliver(data0, data1, data2, mask);
843 }
844
845 /* Send cross call to all processors except self. */
846 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
847 {
848 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
849 }
850
851 extern unsigned long xcall_sync_tick;
852
853 static void smp_start_sync_tick_client(int cpu)
854 {
855 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
856 cpumask_of(cpu));
857 }
858
859 extern unsigned long xcall_call_function;
860
861 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
862 {
863 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
864 }
865
866 extern unsigned long xcall_call_function_single;
867
868 void arch_send_call_function_single_ipi(int cpu)
869 {
870 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
871 cpumask_of(cpu));
872 }
873
874 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
875 {
876 clear_softint(1 << irq);
877 irq_enter();
878 generic_smp_call_function_interrupt();
879 irq_exit();
880 }
881
882 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
883 {
884 clear_softint(1 << irq);
885 irq_enter();
886 generic_smp_call_function_single_interrupt();
887 irq_exit();
888 }
889
890 static void tsb_sync(void *info)
891 {
892 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
893 struct mm_struct *mm = info;
894
895 /* It is not valid to test "current->active_mm == mm" here.
896 *
897 * The value of "current" is not changed atomically with
898 * switch_mm(). But that's OK, we just need to check the
899 * current cpu's trap block PGD physical address.
900 */
901 if (tp->pgd_paddr == __pa(mm->pgd))
902 tsb_context_switch(mm);
903 }
904
905 void smp_tsb_sync(struct mm_struct *mm)
906 {
907 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
908 }
909
910 extern unsigned long xcall_flush_tlb_mm;
911 extern unsigned long xcall_flush_tlb_page;
912 extern unsigned long xcall_flush_tlb_kernel_range;
913 extern unsigned long xcall_fetch_glob_regs;
914 extern unsigned long xcall_fetch_glob_pmu;
915 extern unsigned long xcall_fetch_glob_pmu_n4;
916 extern unsigned long xcall_receive_signal;
917 extern unsigned long xcall_new_mmu_context_version;
918 #ifdef CONFIG_KGDB
919 extern unsigned long xcall_kgdb_capture;
920 #endif
921
922 #ifdef DCACHE_ALIASING_POSSIBLE
923 extern unsigned long xcall_flush_dcache_page_cheetah;
924 #endif
925 extern unsigned long xcall_flush_dcache_page_spitfire;
926
927 static inline void __local_flush_dcache_page(struct page *page)
928 {
929 #ifdef DCACHE_ALIASING_POSSIBLE
930 __flush_dcache_page(page_address(page),
931 ((tlb_type == spitfire) &&
932 page_mapping(page) != NULL));
933 #else
934 if (page_mapping(page) != NULL &&
935 tlb_type == spitfire)
936 __flush_icache_page(__pa(page_address(page)));
937 #endif
938 }
939
940 void smp_flush_dcache_page_impl(struct page *page, int cpu)
941 {
942 int this_cpu;
943
944 if (tlb_type == hypervisor)
945 return;
946
947 #ifdef CONFIG_DEBUG_DCFLUSH
948 atomic_inc(&dcpage_flushes);
949 #endif
950
951 this_cpu = get_cpu();
952
953 if (cpu == this_cpu) {
954 __local_flush_dcache_page(page);
955 } else if (cpu_online(cpu)) {
956 void *pg_addr = page_address(page);
957 u64 data0 = 0;
958
959 if (tlb_type == spitfire) {
960 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
961 if (page_mapping(page) != NULL)
962 data0 |= ((u64)1 << 32);
963 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
964 #ifdef DCACHE_ALIASING_POSSIBLE
965 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
966 #endif
967 }
968 if (data0) {
969 xcall_deliver(data0, __pa(pg_addr),
970 (u64) pg_addr, cpumask_of(cpu));
971 #ifdef CONFIG_DEBUG_DCFLUSH
972 atomic_inc(&dcpage_flushes_xcall);
973 #endif
974 }
975 }
976
977 put_cpu();
978 }
979
980 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
981 {
982 void *pg_addr;
983 u64 data0;
984
985 if (tlb_type == hypervisor)
986 return;
987
988 preempt_disable();
989
990 #ifdef CONFIG_DEBUG_DCFLUSH
991 atomic_inc(&dcpage_flushes);
992 #endif
993 data0 = 0;
994 pg_addr = page_address(page);
995 if (tlb_type == spitfire) {
996 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
997 if (page_mapping(page) != NULL)
998 data0 |= ((u64)1 << 32);
999 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1000 #ifdef DCACHE_ALIASING_POSSIBLE
1001 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1002 #endif
1003 }
1004 if (data0) {
1005 xcall_deliver(data0, __pa(pg_addr),
1006 (u64) pg_addr, cpu_online_mask);
1007 #ifdef CONFIG_DEBUG_DCFLUSH
1008 atomic_inc(&dcpage_flushes_xcall);
1009 #endif
1010 }
1011 __local_flush_dcache_page(page);
1012
1013 preempt_enable();
1014 }
1015
1016 #ifdef CONFIG_KGDB
1017 void kgdb_roundup_cpus(unsigned long flags)
1018 {
1019 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1020 }
1021 #endif
1022
1023 void smp_fetch_global_regs(void)
1024 {
1025 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1026 }
1027
1028 void smp_fetch_global_pmu(void)
1029 {
1030 if (tlb_type == hypervisor &&
1031 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1032 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1033 else
1034 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1035 }
1036
1037 /* We know that the window frames of the user have been flushed
1038 * to the stack before we get here because all callers of us
1039 * are flush_tlb_*() routines, and these run after flush_cache_*()
1040 * which performs the flushw.
1041 *
1042 * The SMP TLB coherency scheme we use works as follows:
1043 *
1044 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1045 * space has (potentially) executed on, this is the heuristic
1046 * we use to avoid doing cross calls.
1047 *
1048 * Also, for flushing from kswapd and also for clones, we
1049 * use cpu_vm_mask as the list of cpus to make run the TLB.
1050 *
1051 * 2) TLB context numbers are shared globally across all processors
1052 * in the system, this allows us to play several games to avoid
1053 * cross calls.
1054 *
1055 * One invariant is that when a cpu switches to a process, and
1056 * that processes tsk->active_mm->cpu_vm_mask does not have the
1057 * current cpu's bit set, that tlb context is flushed locally.
1058 *
1059 * If the address space is non-shared (ie. mm->count == 1) we avoid
1060 * cross calls when we want to flush the currently running process's
1061 * tlb state. This is done by clearing all cpu bits except the current
1062 * processor's in current->mm->cpu_vm_mask and performing the
1063 * flush locally only. This will force any subsequent cpus which run
1064 * this task to flush the context from the local tlb if the process
1065 * migrates to another cpu (again).
1066 *
1067 * 3) For shared address spaces (threads) and swapping we bite the
1068 * bullet for most cases and perform the cross call (but only to
1069 * the cpus listed in cpu_vm_mask).
1070 *
1071 * The performance gain from "optimizing" away the cross call for threads is
1072 * questionable (in theory the big win for threads is the massive sharing of
1073 * address space state across processors).
1074 */
1075
1076 /* This currently is only used by the hugetlb arch pre-fault
1077 * hook on UltraSPARC-III+ and later when changing the pagesize
1078 * bits of the context register for an address space.
1079 */
1080 void smp_flush_tlb_mm(struct mm_struct *mm)
1081 {
1082 u32 ctx = CTX_HWBITS(mm->context);
1083 int cpu = get_cpu();
1084
1085 if (atomic_read(&mm->mm_users) == 1) {
1086 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1087 goto local_flush_and_out;
1088 }
1089
1090 smp_cross_call_masked(&xcall_flush_tlb_mm,
1091 ctx, 0, 0,
1092 mm_cpumask(mm));
1093
1094 local_flush_and_out:
1095 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1096
1097 put_cpu();
1098 }
1099
1100 struct tlb_pending_info {
1101 unsigned long ctx;
1102 unsigned long nr;
1103 unsigned long *vaddrs;
1104 };
1105
1106 static void tlb_pending_func(void *info)
1107 {
1108 struct tlb_pending_info *t = info;
1109
1110 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1111 }
1112
1113 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1114 {
1115 u32 ctx = CTX_HWBITS(mm->context);
1116 struct tlb_pending_info info;
1117 int cpu = get_cpu();
1118
1119 info.ctx = ctx;
1120 info.nr = nr;
1121 info.vaddrs = vaddrs;
1122
1123 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1124 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1125 else
1126 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1127 &info, 1);
1128
1129 __flush_tlb_pending(ctx, nr, vaddrs);
1130
1131 put_cpu();
1132 }
1133
1134 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1135 {
1136 unsigned long context = CTX_HWBITS(mm->context);
1137 int cpu = get_cpu();
1138
1139 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1140 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1141 else
1142 smp_cross_call_masked(&xcall_flush_tlb_page,
1143 context, vaddr, 0,
1144 mm_cpumask(mm));
1145 __flush_tlb_page(context, vaddr);
1146
1147 put_cpu();
1148 }
1149
1150 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1151 {
1152 start &= PAGE_MASK;
1153 end = PAGE_ALIGN(end);
1154 if (start != end) {
1155 smp_cross_call(&xcall_flush_tlb_kernel_range,
1156 0, start, end);
1157
1158 __flush_tlb_kernel_range(start, end);
1159 }
1160 }
1161
1162 /* CPU capture. */
1163 /* #define CAPTURE_DEBUG */
1164 extern unsigned long xcall_capture;
1165
1166 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1167 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1168 static unsigned long penguins_are_doing_time;
1169
1170 void smp_capture(void)
1171 {
1172 int result = atomic_add_return(1, &smp_capture_depth);
1173
1174 if (result == 1) {
1175 int ncpus = num_online_cpus();
1176
1177 #ifdef CAPTURE_DEBUG
1178 printk("CPU[%d]: Sending penguins to jail...",
1179 smp_processor_id());
1180 #endif
1181 penguins_are_doing_time = 1;
1182 atomic_inc(&smp_capture_registry);
1183 smp_cross_call(&xcall_capture, 0, 0, 0);
1184 while (atomic_read(&smp_capture_registry) != ncpus)
1185 rmb();
1186 #ifdef CAPTURE_DEBUG
1187 printk("done\n");
1188 #endif
1189 }
1190 }
1191
1192 void smp_release(void)
1193 {
1194 if (atomic_dec_and_test(&smp_capture_depth)) {
1195 #ifdef CAPTURE_DEBUG
1196 printk("CPU[%d]: Giving pardon to "
1197 "imprisoned penguins\n",
1198 smp_processor_id());
1199 #endif
1200 penguins_are_doing_time = 0;
1201 membar_safe("#StoreLoad");
1202 atomic_dec(&smp_capture_registry);
1203 }
1204 }
1205
1206 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1207 * set, so they can service tlb flush xcalls...
1208 */
1209 extern void prom_world(int);
1210
1211 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1212 {
1213 clear_softint(1 << irq);
1214
1215 preempt_disable();
1216
1217 __asm__ __volatile__("flushw");
1218 prom_world(1);
1219 atomic_inc(&smp_capture_registry);
1220 membar_safe("#StoreLoad");
1221 while (penguins_are_doing_time)
1222 rmb();
1223 atomic_dec(&smp_capture_registry);
1224 prom_world(0);
1225
1226 preempt_enable();
1227 }
1228
1229 /* /proc/profile writes can call this, don't __init it please. */
1230 int setup_profiling_timer(unsigned int multiplier)
1231 {
1232 return -EINVAL;
1233 }
1234
1235 void __init smp_prepare_cpus(unsigned int max_cpus)
1236 {
1237 }
1238
1239 void smp_prepare_boot_cpu(void)
1240 {
1241 }
1242
1243 void __init smp_setup_processor_id(void)
1244 {
1245 if (tlb_type == spitfire)
1246 xcall_deliver_impl = spitfire_xcall_deliver;
1247 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1248 xcall_deliver_impl = cheetah_xcall_deliver;
1249 else
1250 xcall_deliver_impl = hypervisor_xcall_deliver;
1251 }
1252
1253 void __init smp_fill_in_cpu_possible_map(void)
1254 {
1255 int possible_cpus = num_possible_cpus();
1256 int i;
1257
1258 if (possible_cpus > nr_cpu_ids)
1259 possible_cpus = nr_cpu_ids;
1260
1261 for (i = 0; i < possible_cpus; i++)
1262 set_cpu_possible(i, true);
1263 for (; i < NR_CPUS; i++)
1264 set_cpu_possible(i, false);
1265 }
1266
1267 void smp_fill_in_sib_core_maps(void)
1268 {
1269 unsigned int i;
1270
1271 for_each_present_cpu(i) {
1272 unsigned int j;
1273
1274 cpumask_clear(&cpu_core_map[i]);
1275 if (cpu_data(i).core_id == 0) {
1276 cpumask_set_cpu(i, &cpu_core_map[i]);
1277 continue;
1278 }
1279
1280 for_each_present_cpu(j) {
1281 if (cpu_data(i).core_id ==
1282 cpu_data(j).core_id)
1283 cpumask_set_cpu(j, &cpu_core_map[i]);
1284 }
1285 }
1286
1287 for_each_present_cpu(i) {
1288 unsigned int j;
1289
1290 for_each_present_cpu(j) {
1291 if (cpu_data(i).max_cache_id ==
1292 cpu_data(j).max_cache_id)
1293 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1294
1295 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1296 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1297 }
1298 }
1299
1300 for_each_present_cpu(i) {
1301 unsigned int j;
1302
1303 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1304 if (cpu_data(i).proc_id == -1) {
1305 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1306 continue;
1307 }
1308
1309 for_each_present_cpu(j) {
1310 if (cpu_data(i).proc_id ==
1311 cpu_data(j).proc_id)
1312 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1313 }
1314 }
1315 }
1316
1317 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1318 {
1319 int ret = smp_boot_one_cpu(cpu, tidle);
1320
1321 if (!ret) {
1322 cpumask_set_cpu(cpu, &smp_commenced_mask);
1323 while (!cpu_online(cpu))
1324 mb();
1325 if (!cpu_online(cpu)) {
1326 ret = -ENODEV;
1327 } else {
1328 /* On SUN4V, writes to %tick and %stick are
1329 * not allowed.
1330 */
1331 if (tlb_type != hypervisor)
1332 smp_synchronize_one_tick(cpu);
1333 }
1334 }
1335 return ret;
1336 }
1337
1338 #ifdef CONFIG_HOTPLUG_CPU
1339 void cpu_play_dead(void)
1340 {
1341 int cpu = smp_processor_id();
1342 unsigned long pstate;
1343
1344 idle_task_exit();
1345
1346 if (tlb_type == hypervisor) {
1347 struct trap_per_cpu *tb = &trap_block[cpu];
1348
1349 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1350 tb->cpu_mondo_pa, 0);
1351 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1352 tb->dev_mondo_pa, 0);
1353 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1354 tb->resum_mondo_pa, 0);
1355 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1356 tb->nonresum_mondo_pa, 0);
1357 }
1358
1359 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1360 membar_safe("#Sync");
1361
1362 local_irq_disable();
1363
1364 __asm__ __volatile__(
1365 "rdpr %%pstate, %0\n\t"
1366 "wrpr %0, %1, %%pstate"
1367 : "=r" (pstate)
1368 : "i" (PSTATE_IE));
1369
1370 while (1)
1371 barrier();
1372 }
1373
1374 int __cpu_disable(void)
1375 {
1376 int cpu = smp_processor_id();
1377 cpuinfo_sparc *c;
1378 int i;
1379
1380 for_each_cpu(i, &cpu_core_map[cpu])
1381 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1382 cpumask_clear(&cpu_core_map[cpu]);
1383
1384 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1385 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1386 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1387
1388 c = &cpu_data(cpu);
1389
1390 c->core_id = 0;
1391 c->proc_id = -1;
1392
1393 smp_wmb();
1394
1395 /* Make sure no interrupts point to this cpu. */
1396 fixup_irqs();
1397
1398 local_irq_enable();
1399 mdelay(1);
1400 local_irq_disable();
1401
1402 set_cpu_online(cpu, false);
1403
1404 cpu_map_rebuild();
1405
1406 return 0;
1407 }
1408
1409 void __cpu_die(unsigned int cpu)
1410 {
1411 int i;
1412
1413 for (i = 0; i < 100; i++) {
1414 smp_rmb();
1415 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1416 break;
1417 msleep(100);
1418 }
1419 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1420 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1421 } else {
1422 #if defined(CONFIG_SUN_LDOMS)
1423 unsigned long hv_err;
1424 int limit = 100;
1425
1426 do {
1427 hv_err = sun4v_cpu_stop(cpu);
1428 if (hv_err == HV_EOK) {
1429 set_cpu_present(cpu, false);
1430 break;
1431 }
1432 } while (--limit > 0);
1433 if (limit <= 0) {
1434 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1435 hv_err);
1436 }
1437 #endif
1438 }
1439 }
1440 #endif
1441
1442 void __init smp_cpus_done(unsigned int max_cpus)
1443 {
1444 }
1445
1446 static void send_cpu_ipi(int cpu)
1447 {
1448 xcall_deliver((u64) &xcall_receive_signal,
1449 0, 0, cpumask_of(cpu));
1450 }
1451
1452 void scheduler_poke(void)
1453 {
1454 if (!cpu_poke)
1455 return;
1456
1457 if (!__this_cpu_read(poke))
1458 return;
1459
1460 __this_cpu_write(poke, false);
1461 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1462 }
1463
1464 static unsigned long send_cpu_poke(int cpu)
1465 {
1466 unsigned long hv_err;
1467
1468 per_cpu(poke, cpu) = true;
1469 hv_err = sun4v_cpu_poke(cpu);
1470 if (hv_err != HV_EOK) {
1471 per_cpu(poke, cpu) = false;
1472 pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1473 __func__, hv_err);
1474 }
1475
1476 return hv_err;
1477 }
1478
1479 void smp_send_reschedule(int cpu)
1480 {
1481 if (cpu == smp_processor_id()) {
1482 WARN_ON_ONCE(preemptible());
1483 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1484 return;
1485 }
1486
1487 /* Use cpu poke to resume idle cpu if supported. */
1488 if (cpu_poke && idle_cpu(cpu)) {
1489 unsigned long ret;
1490
1491 ret = send_cpu_poke(cpu);
1492 if (ret == HV_EOK)
1493 return;
1494 }
1495
1496 /* Use IPI in following cases:
1497 * - cpu poke not supported
1498 * - cpu not idle
1499 * - send_cpu_poke() returns with error
1500 */
1501 send_cpu_ipi(cpu);
1502 }
1503
1504 void smp_init_cpu_poke(void)
1505 {
1506 unsigned long major;
1507 unsigned long minor;
1508 int ret;
1509
1510 if (tlb_type != hypervisor)
1511 return;
1512
1513 ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1514 if (ret) {
1515 pr_debug("HV_GRP_CORE is not registered\n");
1516 return;
1517 }
1518
1519 if (major == 1 && minor >= 6) {
1520 /* CPU POKE is registered. */
1521 cpu_poke = true;
1522 return;
1523 }
1524
1525 pr_debug("CPU_POKE not supported\n");
1526 }
1527
1528 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1529 {
1530 clear_softint(1 << irq);
1531 scheduler_ipi();
1532 }
1533
1534 static void stop_this_cpu(void *dummy)
1535 {
1536 set_cpu_online(smp_processor_id(), false);
1537 prom_stopself();
1538 }
1539
1540 void smp_send_stop(void)
1541 {
1542 int cpu;
1543
1544 if (tlb_type == hypervisor) {
1545 int this_cpu = smp_processor_id();
1546 #ifdef CONFIG_SERIAL_SUNHV
1547 sunhv_migrate_hvcons_irq(this_cpu);
1548 #endif
1549 for_each_online_cpu(cpu) {
1550 if (cpu == this_cpu)
1551 continue;
1552
1553 set_cpu_online(cpu, false);
1554 #ifdef CONFIG_SUN_LDOMS
1555 if (ldom_domaining_enabled) {
1556 unsigned long hv_err;
1557 hv_err = sun4v_cpu_stop(cpu);
1558 if (hv_err)
1559 printk(KERN_ERR "sun4v_cpu_stop() "
1560 "failed err=%lu\n", hv_err);
1561 } else
1562 #endif
1563 prom_stopcpu_cpuid(cpu);
1564 }
1565 } else
1566 smp_call_function(stop_this_cpu, NULL, 0);
1567 }
1568
1569 /**
1570 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1571 * @cpu: cpu to allocate for
1572 * @size: size allocation in bytes
1573 * @align: alignment
1574 *
1575 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1576 * does the right thing for NUMA regardless of the current
1577 * configuration.
1578 *
1579 * RETURNS:
1580 * Pointer to the allocated area on success, NULL on failure.
1581 */
1582 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1583 size_t align)
1584 {
1585 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1586 #ifdef CONFIG_NEED_MULTIPLE_NODES
1587 int node = cpu_to_node(cpu);
1588 void *ptr;
1589
1590 if (!node_online(node) || !NODE_DATA(node)) {
1591 ptr = __alloc_bootmem(size, align, goal);
1592 pr_info("cpu %d has no node %d or node-local memory\n",
1593 cpu, node);
1594 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1595 cpu, size, __pa(ptr));
1596 } else {
1597 ptr = __alloc_bootmem_node(NODE_DATA(node),
1598 size, align, goal);
1599 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1600 "%016lx\n", cpu, size, node, __pa(ptr));
1601 }
1602 return ptr;
1603 #else
1604 return __alloc_bootmem(size, align, goal);
1605 #endif
1606 }
1607
1608 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1609 {
1610 free_bootmem(__pa(ptr), size);
1611 }
1612
1613 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1614 {
1615 if (cpu_to_node(from) == cpu_to_node(to))
1616 return LOCAL_DISTANCE;
1617 else
1618 return REMOTE_DISTANCE;
1619 }
1620
1621 static void __init pcpu_populate_pte(unsigned long addr)
1622 {
1623 pgd_t *pgd = pgd_offset_k(addr);
1624 pud_t *pud;
1625 pmd_t *pmd;
1626
1627 if (pgd_none(*pgd)) {
1628 pud_t *new;
1629
1630 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1631 pgd_populate(&init_mm, pgd, new);
1632 }
1633
1634 pud = pud_offset(pgd, addr);
1635 if (pud_none(*pud)) {
1636 pmd_t *new;
1637
1638 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1639 pud_populate(&init_mm, pud, new);
1640 }
1641
1642 pmd = pmd_offset(pud, addr);
1643 if (!pmd_present(*pmd)) {
1644 pte_t *new;
1645
1646 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1647 pmd_populate_kernel(&init_mm, pmd, new);
1648 }
1649 }
1650
1651 void __init setup_per_cpu_areas(void)
1652 {
1653 unsigned long delta;
1654 unsigned int cpu;
1655 int rc = -EINVAL;
1656
1657 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1658 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1659 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1660 pcpu_cpu_distance,
1661 pcpu_alloc_bootmem,
1662 pcpu_free_bootmem);
1663 if (rc)
1664 pr_warning("PERCPU: %s allocator failed (%d), "
1665 "falling back to page size\n",
1666 pcpu_fc_names[pcpu_chosen_fc], rc);
1667 }
1668 if (rc < 0)
1669 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1670 pcpu_alloc_bootmem,
1671 pcpu_free_bootmem,
1672 pcpu_populate_pte);
1673 if (rc < 0)
1674 panic("cannot initialize percpu area (err=%d)", rc);
1675
1676 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1677 for_each_possible_cpu(cpu)
1678 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1679
1680 /* Setup %g5 for the boot cpu. */
1681 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1682
1683 of_fill_in_cpu_data();
1684 if (tlb_type == hypervisor)
1685 mdesc_fill_in_cpu_data(cpu_all_mask);
1686 }