]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/sparc/mm/init_64.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next
[mirror_ubuntu-bionic-kernel.git] / arch / sparc / mm / init_64.c
1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/setup.h>
51 #include <asm/irq.h>
52
53 #include "init_64.h"
54
55 unsigned long kern_linear_pte_xor[4] __read_mostly;
56
57 /* A bitmap, two bits for every 256MB of physical memory. These two
58 * bits determine what page size we use for kernel linear
59 * translations. They form an index into kern_linear_pte_xor[]. The
60 * value in the indexed slot is XOR'd with the TLB miss virtual
61 * address to form the resulting TTE. The mapping is:
62 *
63 * 0 ==> 4MB
64 * 1 ==> 256MB
65 * 2 ==> 2GB
66 * 3 ==> 16GB
67 *
68 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
69 * support 2GB pages, and hopefully future cpus will support the 16GB
70 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
71 * if these larger page sizes are not supported by the cpu.
72 *
73 * It would be nice to determine this from the machine description
74 * 'cpu' properties, but we need to have this table setup before the
75 * MDESC is initialized.
76 */
77 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
78
79 #ifndef CONFIG_DEBUG_PAGEALLOC
80 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
81 * Space is allocated for this right after the trap table in
82 * arch/sparc64/kernel/head.S
83 */
84 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
85 #endif
86
87 static unsigned long cpu_pgsz_mask;
88
89 #define MAX_BANKS 32
90
91 static struct linux_prom64_registers pavail[MAX_BANKS];
92 static int pavail_ents;
93
94 static int cmp_p64(const void *a, const void *b)
95 {
96 const struct linux_prom64_registers *x = a, *y = b;
97
98 if (x->phys_addr > y->phys_addr)
99 return 1;
100 if (x->phys_addr < y->phys_addr)
101 return -1;
102 return 0;
103 }
104
105 static void __init read_obp_memory(const char *property,
106 struct linux_prom64_registers *regs,
107 int *num_ents)
108 {
109 phandle node = prom_finddevice("/memory");
110 int prop_size = prom_getproplen(node, property);
111 int ents, ret, i;
112
113 ents = prop_size / sizeof(struct linux_prom64_registers);
114 if (ents > MAX_BANKS) {
115 prom_printf("The machine has more %s property entries than "
116 "this kernel can support (%d).\n",
117 property, MAX_BANKS);
118 prom_halt();
119 }
120
121 ret = prom_getproperty(node, property, (char *) regs, prop_size);
122 if (ret == -1) {
123 prom_printf("Couldn't get %s property from /memory.\n",
124 property);
125 prom_halt();
126 }
127
128 /* Sanitize what we got from the firmware, by page aligning
129 * everything.
130 */
131 for (i = 0; i < ents; i++) {
132 unsigned long base, size;
133
134 base = regs[i].phys_addr;
135 size = regs[i].reg_size;
136
137 size &= PAGE_MASK;
138 if (base & ~PAGE_MASK) {
139 unsigned long new_base = PAGE_ALIGN(base);
140
141 size -= new_base - base;
142 if ((long) size < 0L)
143 size = 0UL;
144 base = new_base;
145 }
146 if (size == 0UL) {
147 /* If it is empty, simply get rid of it.
148 * This simplifies the logic of the other
149 * functions that process these arrays.
150 */
151 memmove(&regs[i], &regs[i + 1],
152 (ents - i - 1) * sizeof(regs[0]));
153 i--;
154 ents--;
155 continue;
156 }
157 regs[i].phys_addr = base;
158 regs[i].reg_size = size;
159 }
160
161 *num_ents = ents;
162
163 sort(regs, ents, sizeof(struct linux_prom64_registers),
164 cmp_p64, NULL);
165 }
166
167 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
168 sizeof(unsigned long)];
169 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
170
171 /* Kernel physical address base and size in bytes. */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 __flush_dcache_page(page_address(page),
207 ((tlb_type == spitfire) &&
208 page_mapping(page) != NULL));
209 #else
210 if (page_mapping(page) != NULL &&
211 tlb_type == spitfire)
212 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty PG_arch_1
217 #define PG_dcache_cpu_shift 32UL
218 #define PG_dcache_cpu_mask \
219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 unsigned long mask = this_cpu;
227 unsigned long non_cpu_bits;
228
229 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232 __asm__ __volatile__("1:\n\t"
233 "ldx [%2], %%g7\n\t"
234 "and %%g7, %1, %%g1\n\t"
235 "or %%g1, %0, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
237 "cmp %%g7, %%g1\n\t"
238 "bne,pn %%xcc, 1b\n\t"
239 " nop"
240 : /* no outputs */
241 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 unsigned long mask = (1UL << PG_dcache_dirty);
248
249 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 "1:\n\t"
251 "ldx [%2], %%g7\n\t"
252 "srlx %%g7, %4, %%g1\n\t"
253 "and %%g1, %3, %%g1\n\t"
254 "cmp %%g1, %0\n\t"
255 "bne,pn %%icc, 2f\n\t"
256 " andn %%g7, %1, %%g1\n\t"
257 "casx [%2], %%g7, %%g1\n\t"
258 "cmp %%g7, %%g1\n\t"
259 "bne,pn %%xcc, 1b\n\t"
260 " nop\n"
261 "2:"
262 : /* no outputs */
263 : "r" (cpu), "r" (mask), "r" (&page->flags),
264 "i" (PG_dcache_cpu_mask),
265 "i" (PG_dcache_cpu_shift)
266 : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 unsigned long tsb_addr = (unsigned long) ent;
272
273 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 tsb_addr = __pa(tsb_addr);
275
276 __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283 struct page *page;
284
285 page = pfn_to_page(pfn);
286 if (page) {
287 unsigned long pg_flags;
288
289 pg_flags = page->flags;
290 if (pg_flags & (1UL << PG_dcache_dirty)) {
291 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 PG_dcache_cpu_mask);
293 int this_cpu = get_cpu();
294
295 /* This is just to optimize away some function calls
296 * in the SMP case.
297 */
298 if (cpu == this_cpu)
299 flush_dcache_page_impl(page);
300 else
301 smp_flush_dcache_page_impl(page, cpu);
302
303 clear_dcache_dirty_cpu(page, cpu);
304
305 put_cpu();
306 }
307 }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 unsigned long tsb_hash_shift, unsigned long address,
313 unsigned long tte)
314 {
315 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 unsigned long tag;
317
318 if (unlikely(!tsb))
319 return;
320
321 tsb += ((address >> tsb_hash_shift) &
322 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 tag = (address >> 22UL);
324 tsb_insert(tsb, tag, tte);
325 }
326
327 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
328 static inline bool is_hugetlb_pte(pte_t pte)
329 {
330 if ((tlb_type == hypervisor &&
331 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
332 (tlb_type != hypervisor &&
333 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
334 return true;
335 return false;
336 }
337 #endif
338
339 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
340 {
341 struct mm_struct *mm;
342 unsigned long flags;
343 pte_t pte = *ptep;
344
345 if (tlb_type != hypervisor) {
346 unsigned long pfn = pte_pfn(pte);
347
348 if (pfn_valid(pfn))
349 flush_dcache(pfn);
350 }
351
352 mm = vma->vm_mm;
353
354 spin_lock_irqsave(&mm->context.lock, flags);
355
356 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
357 if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
358 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
359 address, pte_val(pte));
360 else
361 #endif
362 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
363 address, pte_val(pte));
364
365 spin_unlock_irqrestore(&mm->context.lock, flags);
366 }
367
368 void flush_dcache_page(struct page *page)
369 {
370 struct address_space *mapping;
371 int this_cpu;
372
373 if (tlb_type == hypervisor)
374 return;
375
376 /* Do not bother with the expensive D-cache flush if it
377 * is merely the zero page. The 'bigcore' testcase in GDB
378 * causes this case to run millions of times.
379 */
380 if (page == ZERO_PAGE(0))
381 return;
382
383 this_cpu = get_cpu();
384
385 mapping = page_mapping(page);
386 if (mapping && !mapping_mapped(mapping)) {
387 int dirty = test_bit(PG_dcache_dirty, &page->flags);
388 if (dirty) {
389 int dirty_cpu = dcache_dirty_cpu(page);
390
391 if (dirty_cpu == this_cpu)
392 goto out;
393 smp_flush_dcache_page_impl(page, dirty_cpu);
394 }
395 set_dcache_dirty(page, this_cpu);
396 } else {
397 /* We could delay the flush for the !page_mapping
398 * case too. But that case is for exec env/arg
399 * pages and those are %99 certainly going to get
400 * faulted into the tlb (and thus flushed) anyways.
401 */
402 flush_dcache_page_impl(page);
403 }
404
405 out:
406 put_cpu();
407 }
408 EXPORT_SYMBOL(flush_dcache_page);
409
410 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
411 {
412 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
413 if (tlb_type == spitfire) {
414 unsigned long kaddr;
415
416 /* This code only runs on Spitfire cpus so this is
417 * why we can assume _PAGE_PADDR_4U.
418 */
419 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
420 unsigned long paddr, mask = _PAGE_PADDR_4U;
421
422 if (kaddr >= PAGE_OFFSET)
423 paddr = kaddr & mask;
424 else {
425 pgd_t *pgdp = pgd_offset_k(kaddr);
426 pud_t *pudp = pud_offset(pgdp, kaddr);
427 pmd_t *pmdp = pmd_offset(pudp, kaddr);
428 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
429
430 paddr = pte_val(*ptep) & mask;
431 }
432 __flush_icache_page(paddr);
433 }
434 }
435 }
436 EXPORT_SYMBOL(flush_icache_range);
437
438 void mmu_info(struct seq_file *m)
439 {
440 static const char *pgsz_strings[] = {
441 "8K", "64K", "512K", "4MB", "32MB",
442 "256MB", "2GB", "16GB",
443 };
444 int i, printed;
445
446 if (tlb_type == cheetah)
447 seq_printf(m, "MMU Type\t: Cheetah\n");
448 else if (tlb_type == cheetah_plus)
449 seq_printf(m, "MMU Type\t: Cheetah+\n");
450 else if (tlb_type == spitfire)
451 seq_printf(m, "MMU Type\t: Spitfire\n");
452 else if (tlb_type == hypervisor)
453 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
454 else
455 seq_printf(m, "MMU Type\t: ???\n");
456
457 seq_printf(m, "MMU PGSZs\t: ");
458 printed = 0;
459 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
460 if (cpu_pgsz_mask & (1UL << i)) {
461 seq_printf(m, "%s%s",
462 printed ? "," : "", pgsz_strings[i]);
463 printed++;
464 }
465 }
466 seq_putc(m, '\n');
467
468 #ifdef CONFIG_DEBUG_DCFLUSH
469 seq_printf(m, "DCPageFlushes\t: %d\n",
470 atomic_read(&dcpage_flushes));
471 #ifdef CONFIG_SMP
472 seq_printf(m, "DCPageFlushesXC\t: %d\n",
473 atomic_read(&dcpage_flushes_xcall));
474 #endif /* CONFIG_SMP */
475 #endif /* CONFIG_DEBUG_DCFLUSH */
476 }
477
478 struct linux_prom_translation prom_trans[512] __read_mostly;
479 unsigned int prom_trans_ents __read_mostly;
480
481 unsigned long kern_locked_tte_data;
482
483 /* The obp translations are saved based on 8k pagesize, since obp can
484 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
485 * HI_OBP_ADDRESS range are handled in ktlb.S.
486 */
487 static inline int in_obp_range(unsigned long vaddr)
488 {
489 return (vaddr >= LOW_OBP_ADDRESS &&
490 vaddr < HI_OBP_ADDRESS);
491 }
492
493 static int cmp_ptrans(const void *a, const void *b)
494 {
495 const struct linux_prom_translation *x = a, *y = b;
496
497 if (x->virt > y->virt)
498 return 1;
499 if (x->virt < y->virt)
500 return -1;
501 return 0;
502 }
503
504 /* Read OBP translations property into 'prom_trans[]'. */
505 static void __init read_obp_translations(void)
506 {
507 int n, node, ents, first, last, i;
508
509 node = prom_finddevice("/virtual-memory");
510 n = prom_getproplen(node, "translations");
511 if (unlikely(n == 0 || n == -1)) {
512 prom_printf("prom_mappings: Couldn't get size.\n");
513 prom_halt();
514 }
515 if (unlikely(n > sizeof(prom_trans))) {
516 prom_printf("prom_mappings: Size %d is too big.\n", n);
517 prom_halt();
518 }
519
520 if ((n = prom_getproperty(node, "translations",
521 (char *)&prom_trans[0],
522 sizeof(prom_trans))) == -1) {
523 prom_printf("prom_mappings: Couldn't get property.\n");
524 prom_halt();
525 }
526
527 n = n / sizeof(struct linux_prom_translation);
528
529 ents = n;
530
531 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
532 cmp_ptrans, NULL);
533
534 /* Now kick out all the non-OBP entries. */
535 for (i = 0; i < ents; i++) {
536 if (in_obp_range(prom_trans[i].virt))
537 break;
538 }
539 first = i;
540 for (; i < ents; i++) {
541 if (!in_obp_range(prom_trans[i].virt))
542 break;
543 }
544 last = i;
545
546 for (i = 0; i < (last - first); i++) {
547 struct linux_prom_translation *src = &prom_trans[i + first];
548 struct linux_prom_translation *dest = &prom_trans[i];
549
550 *dest = *src;
551 }
552 for (; i < ents; i++) {
553 struct linux_prom_translation *dest = &prom_trans[i];
554 dest->virt = dest->size = dest->data = 0x0UL;
555 }
556
557 prom_trans_ents = last - first;
558
559 if (tlb_type == spitfire) {
560 /* Clear diag TTE bits. */
561 for (i = 0; i < prom_trans_ents; i++)
562 prom_trans[i].data &= ~0x0003fe0000000000UL;
563 }
564
565 /* Force execute bit on. */
566 for (i = 0; i < prom_trans_ents; i++)
567 prom_trans[i].data |= (tlb_type == hypervisor ?
568 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
569 }
570
571 static void __init hypervisor_tlb_lock(unsigned long vaddr,
572 unsigned long pte,
573 unsigned long mmu)
574 {
575 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
576
577 if (ret != 0) {
578 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
579 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
580 prom_halt();
581 }
582 }
583
584 static unsigned long kern_large_tte(unsigned long paddr);
585
586 static void __init remap_kernel(void)
587 {
588 unsigned long phys_page, tte_vaddr, tte_data;
589 int i, tlb_ent = sparc64_highest_locked_tlbent();
590
591 tte_vaddr = (unsigned long) KERNBASE;
592 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
593 tte_data = kern_large_tte(phys_page);
594
595 kern_locked_tte_data = tte_data;
596
597 /* Now lock us into the TLBs via Hypervisor or OBP. */
598 if (tlb_type == hypervisor) {
599 for (i = 0; i < num_kernel_image_mappings; i++) {
600 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
601 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
602 tte_vaddr += 0x400000;
603 tte_data += 0x400000;
604 }
605 } else {
606 for (i = 0; i < num_kernel_image_mappings; i++) {
607 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
608 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
609 tte_vaddr += 0x400000;
610 tte_data += 0x400000;
611 }
612 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
613 }
614 if (tlb_type == cheetah_plus) {
615 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
616 CTX_CHEETAH_PLUS_NUC);
617 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
618 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
619 }
620 }
621
622
623 static void __init inherit_prom_mappings(void)
624 {
625 /* Now fixup OBP's idea about where we really are mapped. */
626 printk("Remapping the kernel... ");
627 remap_kernel();
628 printk("done.\n");
629 }
630
631 void prom_world(int enter)
632 {
633 if (!enter)
634 set_fs(get_fs());
635
636 __asm__ __volatile__("flushw");
637 }
638
639 void __flush_dcache_range(unsigned long start, unsigned long end)
640 {
641 unsigned long va;
642
643 if (tlb_type == spitfire) {
644 int n = 0;
645
646 for (va = start; va < end; va += 32) {
647 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
648 if (++n >= 512)
649 break;
650 }
651 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
652 start = __pa(start);
653 end = __pa(end);
654 for (va = start; va < end; va += 32)
655 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
656 "membar #Sync"
657 : /* no outputs */
658 : "r" (va),
659 "i" (ASI_DCACHE_INVALIDATE));
660 }
661 }
662 EXPORT_SYMBOL(__flush_dcache_range);
663
664 /* get_new_mmu_context() uses "cache + 1". */
665 DEFINE_SPINLOCK(ctx_alloc_lock);
666 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
667 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
668 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
669 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
670
671 /* Caller does TLB context flushing on local CPU if necessary.
672 * The caller also ensures that CTX_VALID(mm->context) is false.
673 *
674 * We must be careful about boundary cases so that we never
675 * let the user have CTX 0 (nucleus) or we ever use a CTX
676 * version of zero (and thus NO_CONTEXT would not be caught
677 * by version mis-match tests in mmu_context.h).
678 *
679 * Always invoked with interrupts disabled.
680 */
681 void get_new_mmu_context(struct mm_struct *mm)
682 {
683 unsigned long ctx, new_ctx;
684 unsigned long orig_pgsz_bits;
685 int new_version;
686
687 spin_lock(&ctx_alloc_lock);
688 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
689 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
690 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
691 new_version = 0;
692 if (new_ctx >= (1 << CTX_NR_BITS)) {
693 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
694 if (new_ctx >= ctx) {
695 int i;
696 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
697 CTX_FIRST_VERSION;
698 if (new_ctx == 1)
699 new_ctx = CTX_FIRST_VERSION;
700
701 /* Don't call memset, for 16 entries that's just
702 * plain silly...
703 */
704 mmu_context_bmap[0] = 3;
705 mmu_context_bmap[1] = 0;
706 mmu_context_bmap[2] = 0;
707 mmu_context_bmap[3] = 0;
708 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
709 mmu_context_bmap[i + 0] = 0;
710 mmu_context_bmap[i + 1] = 0;
711 mmu_context_bmap[i + 2] = 0;
712 mmu_context_bmap[i + 3] = 0;
713 }
714 new_version = 1;
715 goto out;
716 }
717 }
718 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
719 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
720 out:
721 tlb_context_cache = new_ctx;
722 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
723 spin_unlock(&ctx_alloc_lock);
724
725 if (unlikely(new_version))
726 smp_new_mmu_context_version();
727 }
728
729 static int numa_enabled = 1;
730 static int numa_debug;
731
732 static int __init early_numa(char *p)
733 {
734 if (!p)
735 return 0;
736
737 if (strstr(p, "off"))
738 numa_enabled = 0;
739
740 if (strstr(p, "debug"))
741 numa_debug = 1;
742
743 return 0;
744 }
745 early_param("numa", early_numa);
746
747 #define numadbg(f, a...) \
748 do { if (numa_debug) \
749 printk(KERN_INFO f, ## a); \
750 } while (0)
751
752 static void __init find_ramdisk(unsigned long phys_base)
753 {
754 #ifdef CONFIG_BLK_DEV_INITRD
755 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
756 unsigned long ramdisk_image;
757
758 /* Older versions of the bootloader only supported a
759 * 32-bit physical address for the ramdisk image
760 * location, stored at sparc_ramdisk_image. Newer
761 * SILO versions set sparc_ramdisk_image to zero and
762 * provide a full 64-bit physical address at
763 * sparc_ramdisk_image64.
764 */
765 ramdisk_image = sparc_ramdisk_image;
766 if (!ramdisk_image)
767 ramdisk_image = sparc_ramdisk_image64;
768
769 /* Another bootloader quirk. The bootloader normalizes
770 * the physical address to KERNBASE, so we have to
771 * factor that back out and add in the lowest valid
772 * physical page address to get the true physical address.
773 */
774 ramdisk_image -= KERNBASE;
775 ramdisk_image += phys_base;
776
777 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
778 ramdisk_image, sparc_ramdisk_size);
779
780 initrd_start = ramdisk_image;
781 initrd_end = ramdisk_image + sparc_ramdisk_size;
782
783 memblock_reserve(initrd_start, sparc_ramdisk_size);
784
785 initrd_start += PAGE_OFFSET;
786 initrd_end += PAGE_OFFSET;
787 }
788 #endif
789 }
790
791 struct node_mem_mask {
792 unsigned long mask;
793 unsigned long val;
794 };
795 static struct node_mem_mask node_masks[MAX_NUMNODES];
796 static int num_node_masks;
797
798 #ifdef CONFIG_NEED_MULTIPLE_NODES
799
800 int numa_cpu_lookup_table[NR_CPUS];
801 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
802
803 struct mdesc_mblock {
804 u64 base;
805 u64 size;
806 u64 offset; /* RA-to-PA */
807 };
808 static struct mdesc_mblock *mblocks;
809 static int num_mblocks;
810
811 static unsigned long ra_to_pa(unsigned long addr)
812 {
813 int i;
814
815 for (i = 0; i < num_mblocks; i++) {
816 struct mdesc_mblock *m = &mblocks[i];
817
818 if (addr >= m->base &&
819 addr < (m->base + m->size)) {
820 addr += m->offset;
821 break;
822 }
823 }
824 return addr;
825 }
826
827 static int find_node(unsigned long addr)
828 {
829 int i;
830
831 addr = ra_to_pa(addr);
832 for (i = 0; i < num_node_masks; i++) {
833 struct node_mem_mask *p = &node_masks[i];
834
835 if ((addr & p->mask) == p->val)
836 return i;
837 }
838 return -1;
839 }
840
841 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
842 {
843 *nid = find_node(start);
844 start += PAGE_SIZE;
845 while (start < end) {
846 int n = find_node(start);
847
848 if (n != *nid)
849 break;
850 start += PAGE_SIZE;
851 }
852
853 if (start > end)
854 start = end;
855
856 return start;
857 }
858 #endif
859
860 /* This must be invoked after performing all of the necessary
861 * memblock_set_node() calls for 'nid'. We need to be able to get
862 * correct data from get_pfn_range_for_nid().
863 */
864 static void __init allocate_node_data(int nid)
865 {
866 struct pglist_data *p;
867 unsigned long start_pfn, end_pfn;
868 #ifdef CONFIG_NEED_MULTIPLE_NODES
869 unsigned long paddr;
870
871 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
872 if (!paddr) {
873 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
874 prom_halt();
875 }
876 NODE_DATA(nid) = __va(paddr);
877 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
878
879 NODE_DATA(nid)->node_id = nid;
880 #endif
881
882 p = NODE_DATA(nid);
883
884 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
885 p->node_start_pfn = start_pfn;
886 p->node_spanned_pages = end_pfn - start_pfn;
887 }
888
889 static void init_node_masks_nonnuma(void)
890 {
891 #ifdef CONFIG_NEED_MULTIPLE_NODES
892 int i;
893 #endif
894
895 numadbg("Initializing tables for non-numa.\n");
896
897 node_masks[0].mask = node_masks[0].val = 0;
898 num_node_masks = 1;
899
900 #ifdef CONFIG_NEED_MULTIPLE_NODES
901 for (i = 0; i < NR_CPUS; i++)
902 numa_cpu_lookup_table[i] = 0;
903
904 cpumask_setall(&numa_cpumask_lookup_table[0]);
905 #endif
906 }
907
908 #ifdef CONFIG_NEED_MULTIPLE_NODES
909 struct pglist_data *node_data[MAX_NUMNODES];
910
911 EXPORT_SYMBOL(numa_cpu_lookup_table);
912 EXPORT_SYMBOL(numa_cpumask_lookup_table);
913 EXPORT_SYMBOL(node_data);
914
915 struct mdesc_mlgroup {
916 u64 node;
917 u64 latency;
918 u64 match;
919 u64 mask;
920 };
921 static struct mdesc_mlgroup *mlgroups;
922 static int num_mlgroups;
923
924 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
925 u32 cfg_handle)
926 {
927 u64 arc;
928
929 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
930 u64 target = mdesc_arc_target(md, arc);
931 const u64 *val;
932
933 val = mdesc_get_property(md, target,
934 "cfg-handle", NULL);
935 if (val && *val == cfg_handle)
936 return 0;
937 }
938 return -ENODEV;
939 }
940
941 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
942 u32 cfg_handle)
943 {
944 u64 arc, candidate, best_latency = ~(u64)0;
945
946 candidate = MDESC_NODE_NULL;
947 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
948 u64 target = mdesc_arc_target(md, arc);
949 const char *name = mdesc_node_name(md, target);
950 const u64 *val;
951
952 if (strcmp(name, "pio-latency-group"))
953 continue;
954
955 val = mdesc_get_property(md, target, "latency", NULL);
956 if (!val)
957 continue;
958
959 if (*val < best_latency) {
960 candidate = target;
961 best_latency = *val;
962 }
963 }
964
965 if (candidate == MDESC_NODE_NULL)
966 return -ENODEV;
967
968 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
969 }
970
971 int of_node_to_nid(struct device_node *dp)
972 {
973 const struct linux_prom64_registers *regs;
974 struct mdesc_handle *md;
975 u32 cfg_handle;
976 int count, nid;
977 u64 grp;
978
979 /* This is the right thing to do on currently supported
980 * SUN4U NUMA platforms as well, as the PCI controller does
981 * not sit behind any particular memory controller.
982 */
983 if (!mlgroups)
984 return -1;
985
986 regs = of_get_property(dp, "reg", NULL);
987 if (!regs)
988 return -1;
989
990 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
991
992 md = mdesc_grab();
993
994 count = 0;
995 nid = -1;
996 mdesc_for_each_node_by_name(md, grp, "group") {
997 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
998 nid = count;
999 break;
1000 }
1001 count++;
1002 }
1003
1004 mdesc_release(md);
1005
1006 return nid;
1007 }
1008
1009 static void __init add_node_ranges(void)
1010 {
1011 struct memblock_region *reg;
1012
1013 for_each_memblock(memory, reg) {
1014 unsigned long size = reg->size;
1015 unsigned long start, end;
1016
1017 start = reg->base;
1018 end = start + size;
1019 while (start < end) {
1020 unsigned long this_end;
1021 int nid;
1022
1023 this_end = memblock_nid_range(start, end, &nid);
1024
1025 numadbg("Setting memblock NUMA node nid[%d] "
1026 "start[%lx] end[%lx]\n",
1027 nid, start, this_end);
1028
1029 memblock_set_node(start, this_end - start,
1030 &memblock.memory, nid);
1031 start = this_end;
1032 }
1033 }
1034 }
1035
1036 static int __init grab_mlgroups(struct mdesc_handle *md)
1037 {
1038 unsigned long paddr;
1039 int count = 0;
1040 u64 node;
1041
1042 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1043 count++;
1044 if (!count)
1045 return -ENOENT;
1046
1047 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1048 SMP_CACHE_BYTES);
1049 if (!paddr)
1050 return -ENOMEM;
1051
1052 mlgroups = __va(paddr);
1053 num_mlgroups = count;
1054
1055 count = 0;
1056 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1057 struct mdesc_mlgroup *m = &mlgroups[count++];
1058 const u64 *val;
1059
1060 m->node = node;
1061
1062 val = mdesc_get_property(md, node, "latency", NULL);
1063 m->latency = *val;
1064 val = mdesc_get_property(md, node, "address-match", NULL);
1065 m->match = *val;
1066 val = mdesc_get_property(md, node, "address-mask", NULL);
1067 m->mask = *val;
1068
1069 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1070 "match[%llx] mask[%llx]\n",
1071 count - 1, m->node, m->latency, m->match, m->mask);
1072 }
1073
1074 return 0;
1075 }
1076
1077 static int __init grab_mblocks(struct mdesc_handle *md)
1078 {
1079 unsigned long paddr;
1080 int count = 0;
1081 u64 node;
1082
1083 mdesc_for_each_node_by_name(md, node, "mblock")
1084 count++;
1085 if (!count)
1086 return -ENOENT;
1087
1088 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1089 SMP_CACHE_BYTES);
1090 if (!paddr)
1091 return -ENOMEM;
1092
1093 mblocks = __va(paddr);
1094 num_mblocks = count;
1095
1096 count = 0;
1097 mdesc_for_each_node_by_name(md, node, "mblock") {
1098 struct mdesc_mblock *m = &mblocks[count++];
1099 const u64 *val;
1100
1101 val = mdesc_get_property(md, node, "base", NULL);
1102 m->base = *val;
1103 val = mdesc_get_property(md, node, "size", NULL);
1104 m->size = *val;
1105 val = mdesc_get_property(md, node,
1106 "address-congruence-offset", NULL);
1107
1108 /* The address-congruence-offset property is optional.
1109 * Explicity zero it be identifty this.
1110 */
1111 if (val)
1112 m->offset = *val;
1113 else
1114 m->offset = 0UL;
1115
1116 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1117 count - 1, m->base, m->size, m->offset);
1118 }
1119
1120 return 0;
1121 }
1122
1123 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1124 u64 grp, cpumask_t *mask)
1125 {
1126 u64 arc;
1127
1128 cpumask_clear(mask);
1129
1130 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1131 u64 target = mdesc_arc_target(md, arc);
1132 const char *name = mdesc_node_name(md, target);
1133 const u64 *id;
1134
1135 if (strcmp(name, "cpu"))
1136 continue;
1137 id = mdesc_get_property(md, target, "id", NULL);
1138 if (*id < nr_cpu_ids)
1139 cpumask_set_cpu(*id, mask);
1140 }
1141 }
1142
1143 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1144 {
1145 int i;
1146
1147 for (i = 0; i < num_mlgroups; i++) {
1148 struct mdesc_mlgroup *m = &mlgroups[i];
1149 if (m->node == node)
1150 return m;
1151 }
1152 return NULL;
1153 }
1154
1155 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1156 int index)
1157 {
1158 struct mdesc_mlgroup *candidate = NULL;
1159 u64 arc, best_latency = ~(u64)0;
1160 struct node_mem_mask *n;
1161
1162 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1163 u64 target = mdesc_arc_target(md, arc);
1164 struct mdesc_mlgroup *m = find_mlgroup(target);
1165 if (!m)
1166 continue;
1167 if (m->latency < best_latency) {
1168 candidate = m;
1169 best_latency = m->latency;
1170 }
1171 }
1172 if (!candidate)
1173 return -ENOENT;
1174
1175 if (num_node_masks != index) {
1176 printk(KERN_ERR "Inconsistent NUMA state, "
1177 "index[%d] != num_node_masks[%d]\n",
1178 index, num_node_masks);
1179 return -EINVAL;
1180 }
1181
1182 n = &node_masks[num_node_masks++];
1183
1184 n->mask = candidate->mask;
1185 n->val = candidate->match;
1186
1187 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1188 index, n->mask, n->val, candidate->latency);
1189
1190 return 0;
1191 }
1192
1193 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1194 int index)
1195 {
1196 cpumask_t mask;
1197 int cpu;
1198
1199 numa_parse_mdesc_group_cpus(md, grp, &mask);
1200
1201 for_each_cpu(cpu, &mask)
1202 numa_cpu_lookup_table[cpu] = index;
1203 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1204
1205 if (numa_debug) {
1206 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1207 for_each_cpu(cpu, &mask)
1208 printk("%d ", cpu);
1209 printk("]\n");
1210 }
1211
1212 return numa_attach_mlgroup(md, grp, index);
1213 }
1214
1215 static int __init numa_parse_mdesc(void)
1216 {
1217 struct mdesc_handle *md = mdesc_grab();
1218 int i, err, count;
1219 u64 node;
1220
1221 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1222 if (node == MDESC_NODE_NULL) {
1223 mdesc_release(md);
1224 return -ENOENT;
1225 }
1226
1227 err = grab_mblocks(md);
1228 if (err < 0)
1229 goto out;
1230
1231 err = grab_mlgroups(md);
1232 if (err < 0)
1233 goto out;
1234
1235 count = 0;
1236 mdesc_for_each_node_by_name(md, node, "group") {
1237 err = numa_parse_mdesc_group(md, node, count);
1238 if (err < 0)
1239 break;
1240 count++;
1241 }
1242
1243 add_node_ranges();
1244
1245 for (i = 0; i < num_node_masks; i++) {
1246 allocate_node_data(i);
1247 node_set_online(i);
1248 }
1249
1250 err = 0;
1251 out:
1252 mdesc_release(md);
1253 return err;
1254 }
1255
1256 static int __init numa_parse_jbus(void)
1257 {
1258 unsigned long cpu, index;
1259
1260 /* NUMA node id is encoded in bits 36 and higher, and there is
1261 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1262 */
1263 index = 0;
1264 for_each_present_cpu(cpu) {
1265 numa_cpu_lookup_table[cpu] = index;
1266 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1267 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1268 node_masks[index].val = cpu << 36UL;
1269
1270 index++;
1271 }
1272 num_node_masks = index;
1273
1274 add_node_ranges();
1275
1276 for (index = 0; index < num_node_masks; index++) {
1277 allocate_node_data(index);
1278 node_set_online(index);
1279 }
1280
1281 return 0;
1282 }
1283
1284 static int __init numa_parse_sun4u(void)
1285 {
1286 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1287 unsigned long ver;
1288
1289 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1290 if ((ver >> 32UL) == __JALAPENO_ID ||
1291 (ver >> 32UL) == __SERRANO_ID)
1292 return numa_parse_jbus();
1293 }
1294 return -1;
1295 }
1296
1297 static int __init bootmem_init_numa(void)
1298 {
1299 int err = -1;
1300
1301 numadbg("bootmem_init_numa()\n");
1302
1303 if (numa_enabled) {
1304 if (tlb_type == hypervisor)
1305 err = numa_parse_mdesc();
1306 else
1307 err = numa_parse_sun4u();
1308 }
1309 return err;
1310 }
1311
1312 #else
1313
1314 static int bootmem_init_numa(void)
1315 {
1316 return -1;
1317 }
1318
1319 #endif
1320
1321 static void __init bootmem_init_nonnuma(void)
1322 {
1323 unsigned long top_of_ram = memblock_end_of_DRAM();
1324 unsigned long total_ram = memblock_phys_mem_size();
1325
1326 numadbg("bootmem_init_nonnuma()\n");
1327
1328 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1329 top_of_ram, total_ram);
1330 printk(KERN_INFO "Memory hole size: %ldMB\n",
1331 (top_of_ram - total_ram) >> 20);
1332
1333 init_node_masks_nonnuma();
1334 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1335 allocate_node_data(0);
1336 node_set_online(0);
1337 }
1338
1339 static unsigned long __init bootmem_init(unsigned long phys_base)
1340 {
1341 unsigned long end_pfn;
1342
1343 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1344 max_pfn = max_low_pfn = end_pfn;
1345 min_low_pfn = (phys_base >> PAGE_SHIFT);
1346
1347 if (bootmem_init_numa() < 0)
1348 bootmem_init_nonnuma();
1349
1350 /* Dump memblock with node info. */
1351 memblock_dump_all();
1352
1353 /* XXX cpu notifier XXX */
1354
1355 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1356 sparse_init();
1357
1358 return end_pfn;
1359 }
1360
1361 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1362 static int pall_ents __initdata;
1363
1364 #ifdef CONFIG_DEBUG_PAGEALLOC
1365 static unsigned long __ref kernel_map_range(unsigned long pstart,
1366 unsigned long pend, pgprot_t prot)
1367 {
1368 unsigned long vstart = PAGE_OFFSET + pstart;
1369 unsigned long vend = PAGE_OFFSET + pend;
1370 unsigned long alloc_bytes = 0UL;
1371
1372 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1373 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1374 vstart, vend);
1375 prom_halt();
1376 }
1377
1378 while (vstart < vend) {
1379 unsigned long this_end, paddr = __pa(vstart);
1380 pgd_t *pgd = pgd_offset_k(vstart);
1381 pud_t *pud;
1382 pmd_t *pmd;
1383 pte_t *pte;
1384
1385 pud = pud_offset(pgd, vstart);
1386 if (pud_none(*pud)) {
1387 pmd_t *new;
1388
1389 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1390 alloc_bytes += PAGE_SIZE;
1391 pud_populate(&init_mm, pud, new);
1392 }
1393
1394 pmd = pmd_offset(pud, vstart);
1395 if (!pmd_present(*pmd)) {
1396 pte_t *new;
1397
1398 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1399 alloc_bytes += PAGE_SIZE;
1400 pmd_populate_kernel(&init_mm, pmd, new);
1401 }
1402
1403 pte = pte_offset_kernel(pmd, vstart);
1404 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1405 if (this_end > vend)
1406 this_end = vend;
1407
1408 while (vstart < this_end) {
1409 pte_val(*pte) = (paddr | pgprot_val(prot));
1410
1411 vstart += PAGE_SIZE;
1412 paddr += PAGE_SIZE;
1413 pte++;
1414 }
1415 }
1416
1417 return alloc_bytes;
1418 }
1419
1420 extern unsigned int kvmap_linear_patch[1];
1421 #endif /* CONFIG_DEBUG_PAGEALLOC */
1422
1423 static void __init kpte_set_val(unsigned long index, unsigned long val)
1424 {
1425 unsigned long *ptr = kpte_linear_bitmap;
1426
1427 val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1428 ptr += (index / (BITS_PER_LONG / 2));
1429
1430 *ptr |= val;
1431 }
1432
1433 static const unsigned long kpte_shift_min = 28; /* 256MB */
1434 static const unsigned long kpte_shift_max = 34; /* 16GB */
1435 static const unsigned long kpte_shift_incr = 3;
1436
1437 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1438 unsigned long shift)
1439 {
1440 unsigned long size = (1UL << shift);
1441 unsigned long mask = (size - 1UL);
1442 unsigned long remains = end - start;
1443 unsigned long val;
1444
1445 if (remains < size || (start & mask))
1446 return start;
1447
1448 /* VAL maps:
1449 *
1450 * shift 28 --> kern_linear_pte_xor index 1
1451 * shift 31 --> kern_linear_pte_xor index 2
1452 * shift 34 --> kern_linear_pte_xor index 3
1453 */
1454 val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1455
1456 remains &= ~mask;
1457 if (shift != kpte_shift_max)
1458 remains = size;
1459
1460 while (remains) {
1461 unsigned long index = start >> kpte_shift_min;
1462
1463 kpte_set_val(index, val);
1464
1465 start += 1UL << kpte_shift_min;
1466 remains -= 1UL << kpte_shift_min;
1467 }
1468
1469 return start;
1470 }
1471
1472 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1473 {
1474 unsigned long smallest_size, smallest_mask;
1475 unsigned long s;
1476
1477 smallest_size = (1UL << kpte_shift_min);
1478 smallest_mask = (smallest_size - 1UL);
1479
1480 while (start < end) {
1481 unsigned long orig_start = start;
1482
1483 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1484 start = kpte_mark_using_shift(start, end, s);
1485
1486 if (start != orig_start)
1487 break;
1488 }
1489
1490 if (start == orig_start)
1491 start = (start + smallest_size) & ~smallest_mask;
1492 }
1493 }
1494
1495 static void __init init_kpte_bitmap(void)
1496 {
1497 unsigned long i;
1498
1499 for (i = 0; i < pall_ents; i++) {
1500 unsigned long phys_start, phys_end;
1501
1502 phys_start = pall[i].phys_addr;
1503 phys_end = phys_start + pall[i].reg_size;
1504
1505 mark_kpte_bitmap(phys_start, phys_end);
1506 }
1507 }
1508
1509 static void __init kernel_physical_mapping_init(void)
1510 {
1511 #ifdef CONFIG_DEBUG_PAGEALLOC
1512 unsigned long i, mem_alloced = 0UL;
1513
1514 for (i = 0; i < pall_ents; i++) {
1515 unsigned long phys_start, phys_end;
1516
1517 phys_start = pall[i].phys_addr;
1518 phys_end = phys_start + pall[i].reg_size;
1519
1520 mem_alloced += kernel_map_range(phys_start, phys_end,
1521 PAGE_KERNEL);
1522 }
1523
1524 printk("Allocated %ld bytes for kernel page tables.\n",
1525 mem_alloced);
1526
1527 kvmap_linear_patch[0] = 0x01000000; /* nop */
1528 flushi(&kvmap_linear_patch[0]);
1529
1530 __flush_tlb_all();
1531 #endif
1532 }
1533
1534 #ifdef CONFIG_DEBUG_PAGEALLOC
1535 void kernel_map_pages(struct page *page, int numpages, int enable)
1536 {
1537 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1538 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1539
1540 kernel_map_range(phys_start, phys_end,
1541 (enable ? PAGE_KERNEL : __pgprot(0)));
1542
1543 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1544 PAGE_OFFSET + phys_end);
1545
1546 /* we should perform an IPI and flush all tlbs,
1547 * but that can deadlock->flush only current cpu.
1548 */
1549 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1550 PAGE_OFFSET + phys_end);
1551 }
1552 #endif
1553
1554 unsigned long __init find_ecache_flush_span(unsigned long size)
1555 {
1556 int i;
1557
1558 for (i = 0; i < pavail_ents; i++) {
1559 if (pavail[i].reg_size >= size)
1560 return pavail[i].phys_addr;
1561 }
1562
1563 return ~0UL;
1564 }
1565
1566 unsigned long PAGE_OFFSET;
1567 EXPORT_SYMBOL(PAGE_OFFSET);
1568
1569 static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits)
1570 {
1571 unsigned long final_shift;
1572 unsigned int val = *insn;
1573 unsigned int cnt;
1574
1575 /* We are patching in ilog2(max_supported_phys_address), and
1576 * we are doing so in a manner similar to a relocation addend.
1577 * That is, we are adding the shift value to whatever value
1578 * is in the shift instruction count field already.
1579 */
1580 cnt = (val & 0x3f);
1581 val &= ~0x3f;
1582
1583 /* If we are trying to shift >= 64 bits, clear the destination
1584 * register. This can happen when phys_bits ends up being equal
1585 * to MAX_PHYS_ADDRESS_BITS.
1586 */
1587 final_shift = (cnt + (64 - phys_bits));
1588 if (final_shift >= 64) {
1589 unsigned int rd = (val >> 25) & 0x1f;
1590
1591 val = 0x80100000 | (rd << 25);
1592 } else {
1593 val |= final_shift;
1594 }
1595 *insn = val;
1596
1597 __asm__ __volatile__("flush %0"
1598 : /* no outputs */
1599 : "r" (insn));
1600 }
1601
1602 static void __init page_offset_shift_patch(unsigned long phys_bits)
1603 {
1604 extern unsigned int __page_offset_shift_patch;
1605 extern unsigned int __page_offset_shift_patch_end;
1606 unsigned int *p;
1607
1608 p = &__page_offset_shift_patch;
1609 while (p < &__page_offset_shift_patch_end) {
1610 unsigned int *insn = (unsigned int *)(unsigned long)*p;
1611
1612 page_offset_shift_patch_one(insn, phys_bits);
1613
1614 p++;
1615 }
1616 }
1617
1618 static void __init setup_page_offset(void)
1619 {
1620 unsigned long max_phys_bits = 40;
1621
1622 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1623 max_phys_bits = 42;
1624 } else if (tlb_type == hypervisor) {
1625 switch (sun4v_chip_type) {
1626 case SUN4V_CHIP_NIAGARA1:
1627 case SUN4V_CHIP_NIAGARA2:
1628 max_phys_bits = 39;
1629 break;
1630 case SUN4V_CHIP_NIAGARA3:
1631 max_phys_bits = 43;
1632 break;
1633 case SUN4V_CHIP_NIAGARA4:
1634 case SUN4V_CHIP_NIAGARA5:
1635 case SUN4V_CHIP_SPARC64X:
1636 default:
1637 max_phys_bits = 47;
1638 break;
1639 }
1640 }
1641
1642 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1643 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1644 max_phys_bits);
1645 prom_halt();
1646 }
1647
1648 PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits);
1649
1650 pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1651 PAGE_OFFSET, max_phys_bits);
1652
1653 page_offset_shift_patch(max_phys_bits);
1654 }
1655
1656 static void __init tsb_phys_patch(void)
1657 {
1658 struct tsb_ldquad_phys_patch_entry *pquad;
1659 struct tsb_phys_patch_entry *p;
1660
1661 pquad = &__tsb_ldquad_phys_patch;
1662 while (pquad < &__tsb_ldquad_phys_patch_end) {
1663 unsigned long addr = pquad->addr;
1664
1665 if (tlb_type == hypervisor)
1666 *(unsigned int *) addr = pquad->sun4v_insn;
1667 else
1668 *(unsigned int *) addr = pquad->sun4u_insn;
1669 wmb();
1670 __asm__ __volatile__("flush %0"
1671 : /* no outputs */
1672 : "r" (addr));
1673
1674 pquad++;
1675 }
1676
1677 p = &__tsb_phys_patch;
1678 while (p < &__tsb_phys_patch_end) {
1679 unsigned long addr = p->addr;
1680
1681 *(unsigned int *) addr = p->insn;
1682 wmb();
1683 __asm__ __volatile__("flush %0"
1684 : /* no outputs */
1685 : "r" (addr));
1686
1687 p++;
1688 }
1689 }
1690
1691 /* Don't mark as init, we give this to the Hypervisor. */
1692 #ifndef CONFIG_DEBUG_PAGEALLOC
1693 #define NUM_KTSB_DESCR 2
1694 #else
1695 #define NUM_KTSB_DESCR 1
1696 #endif
1697 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1698 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1699
1700 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1701 {
1702 pa >>= KTSB_PHYS_SHIFT;
1703
1704 while (start < end) {
1705 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1706
1707 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1708 __asm__ __volatile__("flush %0" : : "r" (ia));
1709
1710 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1711 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1712
1713 start++;
1714 }
1715 }
1716
1717 static void ktsb_phys_patch(void)
1718 {
1719 extern unsigned int __swapper_tsb_phys_patch;
1720 extern unsigned int __swapper_tsb_phys_patch_end;
1721 unsigned long ktsb_pa;
1722
1723 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1724 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1725 &__swapper_tsb_phys_patch_end, ktsb_pa);
1726 #ifndef CONFIG_DEBUG_PAGEALLOC
1727 {
1728 extern unsigned int __swapper_4m_tsb_phys_patch;
1729 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1730 ktsb_pa = (kern_base +
1731 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1732 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1733 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1734 }
1735 #endif
1736 }
1737
1738 static void __init sun4v_ktsb_init(void)
1739 {
1740 unsigned long ktsb_pa;
1741
1742 /* First KTSB for PAGE_SIZE mappings. */
1743 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1744
1745 switch (PAGE_SIZE) {
1746 case 8 * 1024:
1747 default:
1748 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1749 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1750 break;
1751
1752 case 64 * 1024:
1753 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1754 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1755 break;
1756
1757 case 512 * 1024:
1758 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1759 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1760 break;
1761
1762 case 4 * 1024 * 1024:
1763 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1764 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1765 break;
1766 }
1767
1768 ktsb_descr[0].assoc = 1;
1769 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1770 ktsb_descr[0].ctx_idx = 0;
1771 ktsb_descr[0].tsb_base = ktsb_pa;
1772 ktsb_descr[0].resv = 0;
1773
1774 #ifndef CONFIG_DEBUG_PAGEALLOC
1775 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1776 ktsb_pa = (kern_base +
1777 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1778
1779 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1780 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1781 HV_PGSZ_MASK_256MB |
1782 HV_PGSZ_MASK_2GB |
1783 HV_PGSZ_MASK_16GB) &
1784 cpu_pgsz_mask);
1785 ktsb_descr[1].assoc = 1;
1786 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1787 ktsb_descr[1].ctx_idx = 0;
1788 ktsb_descr[1].tsb_base = ktsb_pa;
1789 ktsb_descr[1].resv = 0;
1790 #endif
1791 }
1792
1793 void sun4v_ktsb_register(void)
1794 {
1795 unsigned long pa, ret;
1796
1797 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1798
1799 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1800 if (ret != 0) {
1801 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1802 "errors with %lx\n", pa, ret);
1803 prom_halt();
1804 }
1805 }
1806
1807 static void __init sun4u_linear_pte_xor_finalize(void)
1808 {
1809 #ifndef CONFIG_DEBUG_PAGEALLOC
1810 /* This is where we would add Panther support for
1811 * 32MB and 256MB pages.
1812 */
1813 #endif
1814 }
1815
1816 static void __init sun4v_linear_pte_xor_finalize(void)
1817 {
1818 #ifndef CONFIG_DEBUG_PAGEALLOC
1819 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1820 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1821 PAGE_OFFSET;
1822 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1823 _PAGE_P_4V | _PAGE_W_4V);
1824 } else {
1825 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1826 }
1827
1828 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1829 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1830 PAGE_OFFSET;
1831 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1832 _PAGE_P_4V | _PAGE_W_4V);
1833 } else {
1834 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1835 }
1836
1837 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1838 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1839 PAGE_OFFSET;
1840 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1841 _PAGE_P_4V | _PAGE_W_4V);
1842 } else {
1843 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1844 }
1845 #endif
1846 }
1847
1848 /* paging_init() sets up the page tables */
1849
1850 static unsigned long last_valid_pfn;
1851 pgd_t swapper_pg_dir[PTRS_PER_PGD];
1852
1853 static void sun4u_pgprot_init(void);
1854 static void sun4v_pgprot_init(void);
1855
1856 void __init paging_init(void)
1857 {
1858 unsigned long end_pfn, shift, phys_base;
1859 unsigned long real_end, i;
1860 int node;
1861
1862 setup_page_offset();
1863
1864 /* These build time checkes make sure that the dcache_dirty_cpu()
1865 * page->flags usage will work.
1866 *
1867 * When a page gets marked as dcache-dirty, we store the
1868 * cpu number starting at bit 32 in the page->flags. Also,
1869 * functions like clear_dcache_dirty_cpu use the cpu mask
1870 * in 13-bit signed-immediate instruction fields.
1871 */
1872
1873 /*
1874 * Page flags must not reach into upper 32 bits that are used
1875 * for the cpu number
1876 */
1877 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1878
1879 /*
1880 * The bit fields placed in the high range must not reach below
1881 * the 32 bit boundary. Otherwise we cannot place the cpu field
1882 * at the 32 bit boundary.
1883 */
1884 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1885 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1886
1887 BUILD_BUG_ON(NR_CPUS > 4096);
1888
1889 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
1890 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1891
1892 /* Invalidate both kernel TSBs. */
1893 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1894 #ifndef CONFIG_DEBUG_PAGEALLOC
1895 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1896 #endif
1897
1898 if (tlb_type == hypervisor)
1899 sun4v_pgprot_init();
1900 else
1901 sun4u_pgprot_init();
1902
1903 if (tlb_type == cheetah_plus ||
1904 tlb_type == hypervisor) {
1905 tsb_phys_patch();
1906 ktsb_phys_patch();
1907 }
1908
1909 if (tlb_type == hypervisor)
1910 sun4v_patch_tlb_handlers();
1911
1912 /* Find available physical memory...
1913 *
1914 * Read it twice in order to work around a bug in openfirmware.
1915 * The call to grab this table itself can cause openfirmware to
1916 * allocate memory, which in turn can take away some space from
1917 * the list of available memory. Reading it twice makes sure
1918 * we really do get the final value.
1919 */
1920 read_obp_translations();
1921 read_obp_memory("reg", &pall[0], &pall_ents);
1922 read_obp_memory("available", &pavail[0], &pavail_ents);
1923 read_obp_memory("available", &pavail[0], &pavail_ents);
1924
1925 phys_base = 0xffffffffffffffffUL;
1926 for (i = 0; i < pavail_ents; i++) {
1927 phys_base = min(phys_base, pavail[i].phys_addr);
1928 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1929 }
1930
1931 memblock_reserve(kern_base, kern_size);
1932
1933 find_ramdisk(phys_base);
1934
1935 memblock_enforce_memory_limit(cmdline_memory_size);
1936
1937 memblock_allow_resize();
1938 memblock_dump_all();
1939
1940 set_bit(0, mmu_context_bmap);
1941
1942 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1943
1944 real_end = (unsigned long)_end;
1945 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
1946 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1947 num_kernel_image_mappings);
1948
1949 /* Set kernel pgd to upper alias so physical page computations
1950 * work.
1951 */
1952 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1953
1954 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1955
1956 /* Now can init the kernel/bad page tables. */
1957 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1958 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1959
1960 inherit_prom_mappings();
1961
1962 init_kpte_bitmap();
1963
1964 /* Ok, we can use our TLB miss and window trap handlers safely. */
1965 setup_tba();
1966
1967 __flush_tlb_all();
1968
1969 prom_build_devicetree();
1970 of_populate_present_mask();
1971 #ifndef CONFIG_SMP
1972 of_fill_in_cpu_data();
1973 #endif
1974
1975 if (tlb_type == hypervisor) {
1976 sun4v_mdesc_init();
1977 mdesc_populate_present_mask(cpu_all_mask);
1978 #ifndef CONFIG_SMP
1979 mdesc_fill_in_cpu_data(cpu_all_mask);
1980 #endif
1981 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1982
1983 sun4v_linear_pte_xor_finalize();
1984
1985 sun4v_ktsb_init();
1986 sun4v_ktsb_register();
1987 } else {
1988 unsigned long impl, ver;
1989
1990 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1991 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1992
1993 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1994 impl = ((ver >> 32) & 0xffff);
1995 if (impl == PANTHER_IMPL)
1996 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1997 HV_PGSZ_MASK_256MB);
1998
1999 sun4u_linear_pte_xor_finalize();
2000 }
2001
2002 /* Flush the TLBs and the 4M TSB so that the updated linear
2003 * pte XOR settings are realized for all mappings.
2004 */
2005 __flush_tlb_all();
2006 #ifndef CONFIG_DEBUG_PAGEALLOC
2007 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2008 #endif
2009 __flush_tlb_all();
2010
2011 /* Setup bootmem... */
2012 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2013
2014 /* Once the OF device tree and MDESC have been setup, we know
2015 * the list of possible cpus. Therefore we can allocate the
2016 * IRQ stacks.
2017 */
2018 for_each_possible_cpu(i) {
2019 node = cpu_to_node(i);
2020
2021 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2022 THREAD_SIZE,
2023 THREAD_SIZE, 0);
2024 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2025 THREAD_SIZE,
2026 THREAD_SIZE, 0);
2027 }
2028
2029 kernel_physical_mapping_init();
2030
2031 {
2032 unsigned long max_zone_pfns[MAX_NR_ZONES];
2033
2034 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2035
2036 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2037
2038 free_area_init_nodes(max_zone_pfns);
2039 }
2040
2041 printk("Booting Linux...\n");
2042 }
2043
2044 int page_in_phys_avail(unsigned long paddr)
2045 {
2046 int i;
2047
2048 paddr &= PAGE_MASK;
2049
2050 for (i = 0; i < pavail_ents; i++) {
2051 unsigned long start, end;
2052
2053 start = pavail[i].phys_addr;
2054 end = start + pavail[i].reg_size;
2055
2056 if (paddr >= start && paddr < end)
2057 return 1;
2058 }
2059 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2060 return 1;
2061 #ifdef CONFIG_BLK_DEV_INITRD
2062 if (paddr >= __pa(initrd_start) &&
2063 paddr < __pa(PAGE_ALIGN(initrd_end)))
2064 return 1;
2065 #endif
2066
2067 return 0;
2068 }
2069
2070 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
2071 static int pavail_rescan_ents __initdata;
2072
2073 /* Certain OBP calls, such as fetching "available" properties, can
2074 * claim physical memory. So, along with initializing the valid
2075 * address bitmap, what we do here is refetch the physical available
2076 * memory list again, and make sure it provides at least as much
2077 * memory as 'pavail' does.
2078 */
2079 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
2080 {
2081 int i;
2082
2083 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
2084
2085 for (i = 0; i < pavail_ents; i++) {
2086 unsigned long old_start, old_end;
2087
2088 old_start = pavail[i].phys_addr;
2089 old_end = old_start + pavail[i].reg_size;
2090 while (old_start < old_end) {
2091 int n;
2092
2093 for (n = 0; n < pavail_rescan_ents; n++) {
2094 unsigned long new_start, new_end;
2095
2096 new_start = pavail_rescan[n].phys_addr;
2097 new_end = new_start +
2098 pavail_rescan[n].reg_size;
2099
2100 if (new_start <= old_start &&
2101 new_end >= (old_start + PAGE_SIZE)) {
2102 set_bit(old_start >> ILOG2_4MB, bitmap);
2103 goto do_next_page;
2104 }
2105 }
2106
2107 prom_printf("mem_init: Lost memory in pavail\n");
2108 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2109 pavail[i].phys_addr,
2110 pavail[i].reg_size);
2111 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2112 pavail_rescan[i].phys_addr,
2113 pavail_rescan[i].reg_size);
2114 prom_printf("mem_init: Cannot continue, aborting.\n");
2115 prom_halt();
2116
2117 do_next_page:
2118 old_start += PAGE_SIZE;
2119 }
2120 }
2121 }
2122
2123 static void __init patch_tlb_miss_handler_bitmap(void)
2124 {
2125 extern unsigned int valid_addr_bitmap_insn[];
2126 extern unsigned int valid_addr_bitmap_patch[];
2127
2128 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2129 mb();
2130 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2131 flushi(&valid_addr_bitmap_insn[0]);
2132 }
2133
2134 static void __init register_page_bootmem_info(void)
2135 {
2136 #ifdef CONFIG_NEED_MULTIPLE_NODES
2137 int i;
2138
2139 for_each_online_node(i)
2140 if (NODE_DATA(i)->node_spanned_pages)
2141 register_page_bootmem_info_node(NODE_DATA(i));
2142 #endif
2143 }
2144 void __init mem_init(void)
2145 {
2146 unsigned long addr, last;
2147
2148 addr = PAGE_OFFSET + kern_base;
2149 last = PAGE_ALIGN(kern_size) + addr;
2150 while (addr < last) {
2151 set_bit(__pa(addr) >> ILOG2_4MB, sparc64_valid_addr_bitmap);
2152 addr += PAGE_SIZE;
2153 }
2154
2155 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2156 patch_tlb_miss_handler_bitmap();
2157
2158 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2159
2160 register_page_bootmem_info();
2161 free_all_bootmem();
2162
2163 /*
2164 * Set up the zero page, mark it reserved, so that page count
2165 * is not manipulated when freeing the page from user ptes.
2166 */
2167 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2168 if (mem_map_zero == NULL) {
2169 prom_printf("paging_init: Cannot alloc zero page.\n");
2170 prom_halt();
2171 }
2172 mark_page_reserved(mem_map_zero);
2173
2174 mem_init_print_info(NULL);
2175
2176 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2177 cheetah_ecache_flush_init();
2178 }
2179
2180 void free_initmem(void)
2181 {
2182 unsigned long addr, initend;
2183 int do_free = 1;
2184
2185 /* If the physical memory maps were trimmed by kernel command
2186 * line options, don't even try freeing this initmem stuff up.
2187 * The kernel image could have been in the trimmed out region
2188 * and if so the freeing below will free invalid page structs.
2189 */
2190 if (cmdline_memory_size)
2191 do_free = 0;
2192
2193 /*
2194 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2195 */
2196 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2197 initend = (unsigned long)(__init_end) & PAGE_MASK;
2198 for (; addr < initend; addr += PAGE_SIZE) {
2199 unsigned long page;
2200
2201 page = (addr +
2202 ((unsigned long) __va(kern_base)) -
2203 ((unsigned long) KERNBASE));
2204 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2205
2206 if (do_free)
2207 free_reserved_page(virt_to_page(page));
2208 }
2209 }
2210
2211 #ifdef CONFIG_BLK_DEV_INITRD
2212 void free_initrd_mem(unsigned long start, unsigned long end)
2213 {
2214 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2215 "initrd");
2216 }
2217 #endif
2218
2219 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2220 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2221 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2222 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2223 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2224 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2225
2226 pgprot_t PAGE_KERNEL __read_mostly;
2227 EXPORT_SYMBOL(PAGE_KERNEL);
2228
2229 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2230 pgprot_t PAGE_COPY __read_mostly;
2231
2232 pgprot_t PAGE_SHARED __read_mostly;
2233 EXPORT_SYMBOL(PAGE_SHARED);
2234
2235 unsigned long pg_iobits __read_mostly;
2236
2237 unsigned long _PAGE_IE __read_mostly;
2238 EXPORT_SYMBOL(_PAGE_IE);
2239
2240 unsigned long _PAGE_E __read_mostly;
2241 EXPORT_SYMBOL(_PAGE_E);
2242
2243 unsigned long _PAGE_CACHE __read_mostly;
2244 EXPORT_SYMBOL(_PAGE_CACHE);
2245
2246 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2247 unsigned long vmemmap_table[VMEMMAP_SIZE];
2248
2249 static long __meminitdata addr_start, addr_end;
2250 static int __meminitdata node_start;
2251
2252 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2253 int node)
2254 {
2255 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2256 unsigned long phys_end = (vend - VMEMMAP_BASE);
2257 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2258 unsigned long end = VMEMMAP_ALIGN(phys_end);
2259 unsigned long pte_base;
2260
2261 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2262 _PAGE_CP_4U | _PAGE_CV_4U |
2263 _PAGE_P_4U | _PAGE_W_4U);
2264 if (tlb_type == hypervisor)
2265 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2266 _PAGE_CP_4V | _PAGE_CV_4V |
2267 _PAGE_P_4V | _PAGE_W_4V);
2268
2269 for (; addr < end; addr += VMEMMAP_CHUNK) {
2270 unsigned long *vmem_pp =
2271 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2272 void *block;
2273
2274 if (!(*vmem_pp & _PAGE_VALID)) {
2275 block = vmemmap_alloc_block(1UL << ILOG2_4MB, node);
2276 if (!block)
2277 return -ENOMEM;
2278
2279 *vmem_pp = pte_base | __pa(block);
2280
2281 /* check to see if we have contiguous blocks */
2282 if (addr_end != addr || node_start != node) {
2283 if (addr_start)
2284 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2285 addr_start, addr_end-1, node_start);
2286 addr_start = addr;
2287 node_start = node;
2288 }
2289 addr_end = addr + VMEMMAP_CHUNK;
2290 }
2291 }
2292 return 0;
2293 }
2294
2295 void __meminit vmemmap_populate_print_last(void)
2296 {
2297 if (addr_start) {
2298 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2299 addr_start, addr_end-1, node_start);
2300 addr_start = 0;
2301 addr_end = 0;
2302 node_start = 0;
2303 }
2304 }
2305
2306 void vmemmap_free(unsigned long start, unsigned long end)
2307 {
2308 }
2309
2310 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2311
2312 static void prot_init_common(unsigned long page_none,
2313 unsigned long page_shared,
2314 unsigned long page_copy,
2315 unsigned long page_readonly,
2316 unsigned long page_exec_bit)
2317 {
2318 PAGE_COPY = __pgprot(page_copy);
2319 PAGE_SHARED = __pgprot(page_shared);
2320
2321 protection_map[0x0] = __pgprot(page_none);
2322 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2323 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2324 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2325 protection_map[0x4] = __pgprot(page_readonly);
2326 protection_map[0x5] = __pgprot(page_readonly);
2327 protection_map[0x6] = __pgprot(page_copy);
2328 protection_map[0x7] = __pgprot(page_copy);
2329 protection_map[0x8] = __pgprot(page_none);
2330 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2331 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2332 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2333 protection_map[0xc] = __pgprot(page_readonly);
2334 protection_map[0xd] = __pgprot(page_readonly);
2335 protection_map[0xe] = __pgprot(page_shared);
2336 protection_map[0xf] = __pgprot(page_shared);
2337 }
2338
2339 static void __init sun4u_pgprot_init(void)
2340 {
2341 unsigned long page_none, page_shared, page_copy, page_readonly;
2342 unsigned long page_exec_bit;
2343 int i;
2344
2345 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2346 _PAGE_CACHE_4U | _PAGE_P_4U |
2347 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2348 _PAGE_EXEC_4U);
2349 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2350 _PAGE_CACHE_4U | _PAGE_P_4U |
2351 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2352 _PAGE_EXEC_4U | _PAGE_L_4U);
2353
2354 _PAGE_IE = _PAGE_IE_4U;
2355 _PAGE_E = _PAGE_E_4U;
2356 _PAGE_CACHE = _PAGE_CACHE_4U;
2357
2358 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2359 __ACCESS_BITS_4U | _PAGE_E_4U);
2360
2361 #ifdef CONFIG_DEBUG_PAGEALLOC
2362 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2363 #else
2364 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2365 PAGE_OFFSET;
2366 #endif
2367 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2368 _PAGE_P_4U | _PAGE_W_4U);
2369
2370 for (i = 1; i < 4; i++)
2371 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2372
2373 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2374 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2375 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2376
2377
2378 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2379 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2380 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2381 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2382 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2383 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2384 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2385
2386 page_exec_bit = _PAGE_EXEC_4U;
2387
2388 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2389 page_exec_bit);
2390 }
2391
2392 static void __init sun4v_pgprot_init(void)
2393 {
2394 unsigned long page_none, page_shared, page_copy, page_readonly;
2395 unsigned long page_exec_bit;
2396 int i;
2397
2398 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2399 _PAGE_CACHE_4V | _PAGE_P_4V |
2400 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2401 _PAGE_EXEC_4V);
2402 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2403
2404 _PAGE_IE = _PAGE_IE_4V;
2405 _PAGE_E = _PAGE_E_4V;
2406 _PAGE_CACHE = _PAGE_CACHE_4V;
2407
2408 #ifdef CONFIG_DEBUG_PAGEALLOC
2409 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2410 #else
2411 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2412 PAGE_OFFSET;
2413 #endif
2414 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2415 _PAGE_P_4V | _PAGE_W_4V);
2416
2417 for (i = 1; i < 4; i++)
2418 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2419
2420 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2421 __ACCESS_BITS_4V | _PAGE_E_4V);
2422
2423 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2424 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2425 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2426 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2427
2428 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2429 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2430 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2431 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2432 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2433 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2434 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2435
2436 page_exec_bit = _PAGE_EXEC_4V;
2437
2438 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2439 page_exec_bit);
2440 }
2441
2442 unsigned long pte_sz_bits(unsigned long sz)
2443 {
2444 if (tlb_type == hypervisor) {
2445 switch (sz) {
2446 case 8 * 1024:
2447 default:
2448 return _PAGE_SZ8K_4V;
2449 case 64 * 1024:
2450 return _PAGE_SZ64K_4V;
2451 case 512 * 1024:
2452 return _PAGE_SZ512K_4V;
2453 case 4 * 1024 * 1024:
2454 return _PAGE_SZ4MB_4V;
2455 }
2456 } else {
2457 switch (sz) {
2458 case 8 * 1024:
2459 default:
2460 return _PAGE_SZ8K_4U;
2461 case 64 * 1024:
2462 return _PAGE_SZ64K_4U;
2463 case 512 * 1024:
2464 return _PAGE_SZ512K_4U;
2465 case 4 * 1024 * 1024:
2466 return _PAGE_SZ4MB_4U;
2467 }
2468 }
2469 }
2470
2471 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2472 {
2473 pte_t pte;
2474
2475 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2476 pte_val(pte) |= (((unsigned long)space) << 32);
2477 pte_val(pte) |= pte_sz_bits(page_size);
2478
2479 return pte;
2480 }
2481
2482 static unsigned long kern_large_tte(unsigned long paddr)
2483 {
2484 unsigned long val;
2485
2486 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2487 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2488 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2489 if (tlb_type == hypervisor)
2490 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2491 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2492 _PAGE_EXEC_4V | _PAGE_W_4V);
2493
2494 return val | paddr;
2495 }
2496
2497 /* If not locked, zap it. */
2498 void __flush_tlb_all(void)
2499 {
2500 unsigned long pstate;
2501 int i;
2502
2503 __asm__ __volatile__("flushw\n\t"
2504 "rdpr %%pstate, %0\n\t"
2505 "wrpr %0, %1, %%pstate"
2506 : "=r" (pstate)
2507 : "i" (PSTATE_IE));
2508 if (tlb_type == hypervisor) {
2509 sun4v_mmu_demap_all();
2510 } else if (tlb_type == spitfire) {
2511 for (i = 0; i < 64; i++) {
2512 /* Spitfire Errata #32 workaround */
2513 /* NOTE: Always runs on spitfire, so no
2514 * cheetah+ page size encodings.
2515 */
2516 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2517 "flush %%g6"
2518 : /* No outputs */
2519 : "r" (0),
2520 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2521
2522 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2523 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2524 "membar #Sync"
2525 : /* no outputs */
2526 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2527 spitfire_put_dtlb_data(i, 0x0UL);
2528 }
2529
2530 /* Spitfire Errata #32 workaround */
2531 /* NOTE: Always runs on spitfire, so no
2532 * cheetah+ page size encodings.
2533 */
2534 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2535 "flush %%g6"
2536 : /* No outputs */
2537 : "r" (0),
2538 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2539
2540 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2541 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2542 "membar #Sync"
2543 : /* no outputs */
2544 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2545 spitfire_put_itlb_data(i, 0x0UL);
2546 }
2547 }
2548 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2549 cheetah_flush_dtlb_all();
2550 cheetah_flush_itlb_all();
2551 }
2552 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2553 : : "r" (pstate));
2554 }
2555
2556 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2557 unsigned long address)
2558 {
2559 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2560 __GFP_REPEAT | __GFP_ZERO);
2561 pte_t *pte = NULL;
2562
2563 if (page)
2564 pte = (pte_t *) page_address(page);
2565
2566 return pte;
2567 }
2568
2569 pgtable_t pte_alloc_one(struct mm_struct *mm,
2570 unsigned long address)
2571 {
2572 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2573 __GFP_REPEAT | __GFP_ZERO);
2574 if (!page)
2575 return NULL;
2576 if (!pgtable_page_ctor(page)) {
2577 free_hot_cold_page(page, 0);
2578 return NULL;
2579 }
2580 return (pte_t *) page_address(page);
2581 }
2582
2583 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2584 {
2585 free_page((unsigned long)pte);
2586 }
2587
2588 static void __pte_free(pgtable_t pte)
2589 {
2590 struct page *page = virt_to_page(pte);
2591
2592 pgtable_page_dtor(page);
2593 __free_page(page);
2594 }
2595
2596 void pte_free(struct mm_struct *mm, pgtable_t pte)
2597 {
2598 __pte_free(pte);
2599 }
2600
2601 void pgtable_free(void *table, bool is_page)
2602 {
2603 if (is_page)
2604 __pte_free(table);
2605 else
2606 kmem_cache_free(pgtable_cache, table);
2607 }
2608
2609 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2610 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2611 pmd_t *pmd)
2612 {
2613 unsigned long pte, flags;
2614 struct mm_struct *mm;
2615 pmd_t entry = *pmd;
2616
2617 if (!pmd_large(entry) || !pmd_young(entry))
2618 return;
2619
2620 pte = pmd_val(entry);
2621
2622 /* We are fabricating 8MB pages using 4MB real hw pages. */
2623 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2624
2625 mm = vma->vm_mm;
2626
2627 spin_lock_irqsave(&mm->context.lock, flags);
2628
2629 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2630 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2631 addr, pte);
2632
2633 spin_unlock_irqrestore(&mm->context.lock, flags);
2634 }
2635 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2636
2637 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2638 static void context_reload(void *__data)
2639 {
2640 struct mm_struct *mm = __data;
2641
2642 if (mm == current->mm)
2643 load_secondary_context(mm);
2644 }
2645
2646 void hugetlb_setup(struct pt_regs *regs)
2647 {
2648 struct mm_struct *mm = current->mm;
2649 struct tsb_config *tp;
2650
2651 if (in_atomic() || !mm) {
2652 const struct exception_table_entry *entry;
2653
2654 entry = search_exception_tables(regs->tpc);
2655 if (entry) {
2656 regs->tpc = entry->fixup;
2657 regs->tnpc = regs->tpc + 4;
2658 return;
2659 }
2660 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2661 die_if_kernel("HugeTSB in atomic", regs);
2662 }
2663
2664 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2665 if (likely(tp->tsb == NULL))
2666 tsb_grow(mm, MM_TSB_HUGE, 0);
2667
2668 tsb_context_switch(mm);
2669 smp_tsb_sync(mm);
2670
2671 /* On UltraSPARC-III+ and later, configure the second half of
2672 * the Data-TLB for huge pages.
2673 */
2674 if (tlb_type == cheetah_plus) {
2675 unsigned long ctx;
2676
2677 spin_lock(&ctx_alloc_lock);
2678 ctx = mm->context.sparc64_ctx_val;
2679 ctx &= ~CTX_PGSZ_MASK;
2680 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2681 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2682
2683 if (ctx != mm->context.sparc64_ctx_val) {
2684 /* When changing the page size fields, we
2685 * must perform a context flush so that no
2686 * stale entries match. This flush must
2687 * occur with the original context register
2688 * settings.
2689 */
2690 do_flush_tlb_mm(mm);
2691
2692 /* Reload the context register of all processors
2693 * also executing in this address space.
2694 */
2695 mm->context.sparc64_ctx_val = ctx;
2696 on_each_cpu(context_reload, mm, 0);
2697 }
2698 spin_unlock(&ctx_alloc_lock);
2699 }
2700 }
2701 #endif