]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sparc/mm/init_64.c
Merge tag 'powerpc-4.13-8' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / arch / sparc / mm / init_64.c
1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/extable.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory. These two
60 * bits determine what page size we use for kernel linear
61 * translations. They form an index into kern_linear_pte_xor[]. The
62 * value in the indexed slot is XOR'd with the TLB miss virtual
63 * address to form the resulting TTE. The mapping is:
64 *
65 * 0 ==> 4MB
66 * 1 ==> 256MB
67 * 2 ==> 2GB
68 * 3 ==> 16GB
69 *
70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
71 * support 2GB pages, and hopefully future cpus will support the 16GB
72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73 * if these larger page sizes are not supported by the cpu.
74 *
75 * It would be nice to determine this from the machine description
76 * 'cpu' properties, but we need to have this table setup before the
77 * MDESC is initialized.
78 */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
84 */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS 1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100 const struct linux_prom64_registers *x = a, *y = b;
101
102 if (x->phys_addr > y->phys_addr)
103 return 1;
104 if (x->phys_addr < y->phys_addr)
105 return -1;
106 return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110 struct linux_prom64_registers *regs,
111 int *num_ents)
112 {
113 phandle node = prom_finddevice("/memory");
114 int prop_size = prom_getproplen(node, property);
115 int ents, ret, i;
116
117 ents = prop_size / sizeof(struct linux_prom64_registers);
118 if (ents > MAX_BANKS) {
119 prom_printf("The machine has more %s property entries than "
120 "this kernel can support (%d).\n",
121 property, MAX_BANKS);
122 prom_halt();
123 }
124
125 ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 if (ret == -1) {
127 prom_printf("Couldn't get %s property from /memory.\n",
128 property);
129 prom_halt();
130 }
131
132 /* Sanitize what we got from the firmware, by page aligning
133 * everything.
134 */
135 for (i = 0; i < ents; i++) {
136 unsigned long base, size;
137
138 base = regs[i].phys_addr;
139 size = regs[i].reg_size;
140
141 size &= PAGE_MASK;
142 if (base & ~PAGE_MASK) {
143 unsigned long new_base = PAGE_ALIGN(base);
144
145 size -= new_base - base;
146 if ((long) size < 0L)
147 size = 0UL;
148 base = new_base;
149 }
150 if (size == 0UL) {
151 /* If it is empty, simply get rid of it.
152 * This simplifies the logic of the other
153 * functions that process these arrays.
154 */
155 memmove(&regs[i], &regs[i + 1],
156 (ents - i - 1) * sizeof(regs[0]));
157 i--;
158 ents--;
159 continue;
160 }
161 regs[i].phys_addr = base;
162 regs[i].reg_size = size;
163 }
164
165 *num_ents = ents;
166
167 sort(regs, ents, sizeof(struct linux_prom64_registers),
168 cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes. */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 __flush_dcache_page(page_address(page),
207 ((tlb_type == spitfire) &&
208 page_mapping(page) != NULL));
209 #else
210 if (page_mapping(page) != NULL &&
211 tlb_type == spitfire)
212 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty PG_arch_1
217 #define PG_dcache_cpu_shift 32UL
218 #define PG_dcache_cpu_mask \
219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 unsigned long mask = this_cpu;
227 unsigned long non_cpu_bits;
228
229 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232 __asm__ __volatile__("1:\n\t"
233 "ldx [%2], %%g7\n\t"
234 "and %%g7, %1, %%g1\n\t"
235 "or %%g1, %0, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
237 "cmp %%g7, %%g1\n\t"
238 "bne,pn %%xcc, 1b\n\t"
239 " nop"
240 : /* no outputs */
241 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 unsigned long mask = (1UL << PG_dcache_dirty);
248
249 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 "1:\n\t"
251 "ldx [%2], %%g7\n\t"
252 "srlx %%g7, %4, %%g1\n\t"
253 "and %%g1, %3, %%g1\n\t"
254 "cmp %%g1, %0\n\t"
255 "bne,pn %%icc, 2f\n\t"
256 " andn %%g7, %1, %%g1\n\t"
257 "casx [%2], %%g7, %%g1\n\t"
258 "cmp %%g7, %%g1\n\t"
259 "bne,pn %%xcc, 1b\n\t"
260 " nop\n"
261 "2:"
262 : /* no outputs */
263 : "r" (cpu), "r" (mask), "r" (&page->flags),
264 "i" (PG_dcache_cpu_mask),
265 "i" (PG_dcache_cpu_shift)
266 : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 unsigned long tsb_addr = (unsigned long) ent;
272
273 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 tsb_addr = __pa(tsb_addr);
275
276 __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283 struct page *page;
284
285 page = pfn_to_page(pfn);
286 if (page) {
287 unsigned long pg_flags;
288
289 pg_flags = page->flags;
290 if (pg_flags & (1UL << PG_dcache_dirty)) {
291 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 PG_dcache_cpu_mask);
293 int this_cpu = get_cpu();
294
295 /* This is just to optimize away some function calls
296 * in the SMP case.
297 */
298 if (cpu == this_cpu)
299 flush_dcache_page_impl(page);
300 else
301 smp_flush_dcache_page_impl(page, cpu);
302
303 clear_dcache_dirty_cpu(page, cpu);
304
305 put_cpu();
306 }
307 }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 unsigned long tsb_hash_shift, unsigned long address,
313 unsigned long tte)
314 {
315 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 unsigned long tag;
317
318 if (unlikely(!tsb))
319 return;
320
321 tsb += ((address >> tsb_hash_shift) &
322 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 tag = (address >> 22UL);
324 tsb_insert(tsb, tag, tte);
325 }
326
327 #ifdef CONFIG_HUGETLB_PAGE
328 static void __init add_huge_page_size(unsigned long size)
329 {
330 unsigned int order;
331
332 if (size_to_hstate(size))
333 return;
334
335 order = ilog2(size) - PAGE_SHIFT;
336 hugetlb_add_hstate(order);
337 }
338
339 static int __init hugetlbpage_init(void)
340 {
341 add_huge_page_size(1UL << HPAGE_64K_SHIFT);
342 add_huge_page_size(1UL << HPAGE_SHIFT);
343 add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
344 add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
345
346 return 0;
347 }
348
349 arch_initcall(hugetlbpage_init);
350
351 static int __init setup_hugepagesz(char *string)
352 {
353 unsigned long long hugepage_size;
354 unsigned int hugepage_shift;
355 unsigned short hv_pgsz_idx;
356 unsigned int hv_pgsz_mask;
357 int rc = 0;
358
359 hugepage_size = memparse(string, &string);
360 hugepage_shift = ilog2(hugepage_size);
361
362 switch (hugepage_shift) {
363 case HPAGE_2GB_SHIFT:
364 hv_pgsz_mask = HV_PGSZ_MASK_2GB;
365 hv_pgsz_idx = HV_PGSZ_IDX_2GB;
366 break;
367 case HPAGE_256MB_SHIFT:
368 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
369 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
370 break;
371 case HPAGE_SHIFT:
372 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
373 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
374 break;
375 case HPAGE_64K_SHIFT:
376 hv_pgsz_mask = HV_PGSZ_MASK_64K;
377 hv_pgsz_idx = HV_PGSZ_IDX_64K;
378 break;
379 default:
380 hv_pgsz_mask = 0;
381 }
382
383 if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
384 hugetlb_bad_size();
385 pr_err("hugepagesz=%llu not supported by MMU.\n",
386 hugepage_size);
387 goto out;
388 }
389
390 add_huge_page_size(hugepage_size);
391 rc = 1;
392
393 out:
394 return rc;
395 }
396 __setup("hugepagesz=", setup_hugepagesz);
397 #endif /* CONFIG_HUGETLB_PAGE */
398
399 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
400 {
401 struct mm_struct *mm;
402 unsigned long flags;
403 pte_t pte = *ptep;
404
405 if (tlb_type != hypervisor) {
406 unsigned long pfn = pte_pfn(pte);
407
408 if (pfn_valid(pfn))
409 flush_dcache(pfn);
410 }
411
412 mm = vma->vm_mm;
413
414 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
415 if (!pte_accessible(mm, pte))
416 return;
417
418 spin_lock_irqsave(&mm->context.lock, flags);
419
420 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
421 if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
422 is_hugetlb_pmd(__pmd(pte_val(pte)))) {
423 /* We are fabricating 8MB pages using 4MB real hw pages. */
424 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
425 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
426 address, pte_val(pte));
427 } else
428 #endif
429 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
430 address, pte_val(pte));
431
432 spin_unlock_irqrestore(&mm->context.lock, flags);
433 }
434
435 void flush_dcache_page(struct page *page)
436 {
437 struct address_space *mapping;
438 int this_cpu;
439
440 if (tlb_type == hypervisor)
441 return;
442
443 /* Do not bother with the expensive D-cache flush if it
444 * is merely the zero page. The 'bigcore' testcase in GDB
445 * causes this case to run millions of times.
446 */
447 if (page == ZERO_PAGE(0))
448 return;
449
450 this_cpu = get_cpu();
451
452 mapping = page_mapping(page);
453 if (mapping && !mapping_mapped(mapping)) {
454 int dirty = test_bit(PG_dcache_dirty, &page->flags);
455 if (dirty) {
456 int dirty_cpu = dcache_dirty_cpu(page);
457
458 if (dirty_cpu == this_cpu)
459 goto out;
460 smp_flush_dcache_page_impl(page, dirty_cpu);
461 }
462 set_dcache_dirty(page, this_cpu);
463 } else {
464 /* We could delay the flush for the !page_mapping
465 * case too. But that case is for exec env/arg
466 * pages and those are %99 certainly going to get
467 * faulted into the tlb (and thus flushed) anyways.
468 */
469 flush_dcache_page_impl(page);
470 }
471
472 out:
473 put_cpu();
474 }
475 EXPORT_SYMBOL(flush_dcache_page);
476
477 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
478 {
479 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
480 if (tlb_type == spitfire) {
481 unsigned long kaddr;
482
483 /* This code only runs on Spitfire cpus so this is
484 * why we can assume _PAGE_PADDR_4U.
485 */
486 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
487 unsigned long paddr, mask = _PAGE_PADDR_4U;
488
489 if (kaddr >= PAGE_OFFSET)
490 paddr = kaddr & mask;
491 else {
492 pgd_t *pgdp = pgd_offset_k(kaddr);
493 pud_t *pudp = pud_offset(pgdp, kaddr);
494 pmd_t *pmdp = pmd_offset(pudp, kaddr);
495 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
496
497 paddr = pte_val(*ptep) & mask;
498 }
499 __flush_icache_page(paddr);
500 }
501 }
502 }
503 EXPORT_SYMBOL(flush_icache_range);
504
505 void mmu_info(struct seq_file *m)
506 {
507 static const char *pgsz_strings[] = {
508 "8K", "64K", "512K", "4MB", "32MB",
509 "256MB", "2GB", "16GB",
510 };
511 int i, printed;
512
513 if (tlb_type == cheetah)
514 seq_printf(m, "MMU Type\t: Cheetah\n");
515 else if (tlb_type == cheetah_plus)
516 seq_printf(m, "MMU Type\t: Cheetah+\n");
517 else if (tlb_type == spitfire)
518 seq_printf(m, "MMU Type\t: Spitfire\n");
519 else if (tlb_type == hypervisor)
520 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
521 else
522 seq_printf(m, "MMU Type\t: ???\n");
523
524 seq_printf(m, "MMU PGSZs\t: ");
525 printed = 0;
526 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
527 if (cpu_pgsz_mask & (1UL << i)) {
528 seq_printf(m, "%s%s",
529 printed ? "," : "", pgsz_strings[i]);
530 printed++;
531 }
532 }
533 seq_putc(m, '\n');
534
535 #ifdef CONFIG_DEBUG_DCFLUSH
536 seq_printf(m, "DCPageFlushes\t: %d\n",
537 atomic_read(&dcpage_flushes));
538 #ifdef CONFIG_SMP
539 seq_printf(m, "DCPageFlushesXC\t: %d\n",
540 atomic_read(&dcpage_flushes_xcall));
541 #endif /* CONFIG_SMP */
542 #endif /* CONFIG_DEBUG_DCFLUSH */
543 }
544
545 struct linux_prom_translation prom_trans[512] __read_mostly;
546 unsigned int prom_trans_ents __read_mostly;
547
548 unsigned long kern_locked_tte_data;
549
550 /* The obp translations are saved based on 8k pagesize, since obp can
551 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
552 * HI_OBP_ADDRESS range are handled in ktlb.S.
553 */
554 static inline int in_obp_range(unsigned long vaddr)
555 {
556 return (vaddr >= LOW_OBP_ADDRESS &&
557 vaddr < HI_OBP_ADDRESS);
558 }
559
560 static int cmp_ptrans(const void *a, const void *b)
561 {
562 const struct linux_prom_translation *x = a, *y = b;
563
564 if (x->virt > y->virt)
565 return 1;
566 if (x->virt < y->virt)
567 return -1;
568 return 0;
569 }
570
571 /* Read OBP translations property into 'prom_trans[]'. */
572 static void __init read_obp_translations(void)
573 {
574 int n, node, ents, first, last, i;
575
576 node = prom_finddevice("/virtual-memory");
577 n = prom_getproplen(node, "translations");
578 if (unlikely(n == 0 || n == -1)) {
579 prom_printf("prom_mappings: Couldn't get size.\n");
580 prom_halt();
581 }
582 if (unlikely(n > sizeof(prom_trans))) {
583 prom_printf("prom_mappings: Size %d is too big.\n", n);
584 prom_halt();
585 }
586
587 if ((n = prom_getproperty(node, "translations",
588 (char *)&prom_trans[0],
589 sizeof(prom_trans))) == -1) {
590 prom_printf("prom_mappings: Couldn't get property.\n");
591 prom_halt();
592 }
593
594 n = n / sizeof(struct linux_prom_translation);
595
596 ents = n;
597
598 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
599 cmp_ptrans, NULL);
600
601 /* Now kick out all the non-OBP entries. */
602 for (i = 0; i < ents; i++) {
603 if (in_obp_range(prom_trans[i].virt))
604 break;
605 }
606 first = i;
607 for (; i < ents; i++) {
608 if (!in_obp_range(prom_trans[i].virt))
609 break;
610 }
611 last = i;
612
613 for (i = 0; i < (last - first); i++) {
614 struct linux_prom_translation *src = &prom_trans[i + first];
615 struct linux_prom_translation *dest = &prom_trans[i];
616
617 *dest = *src;
618 }
619 for (; i < ents; i++) {
620 struct linux_prom_translation *dest = &prom_trans[i];
621 dest->virt = dest->size = dest->data = 0x0UL;
622 }
623
624 prom_trans_ents = last - first;
625
626 if (tlb_type == spitfire) {
627 /* Clear diag TTE bits. */
628 for (i = 0; i < prom_trans_ents; i++)
629 prom_trans[i].data &= ~0x0003fe0000000000UL;
630 }
631
632 /* Force execute bit on. */
633 for (i = 0; i < prom_trans_ents; i++)
634 prom_trans[i].data |= (tlb_type == hypervisor ?
635 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
636 }
637
638 static void __init hypervisor_tlb_lock(unsigned long vaddr,
639 unsigned long pte,
640 unsigned long mmu)
641 {
642 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
643
644 if (ret != 0) {
645 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
646 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
647 prom_halt();
648 }
649 }
650
651 static unsigned long kern_large_tte(unsigned long paddr);
652
653 static void __init remap_kernel(void)
654 {
655 unsigned long phys_page, tte_vaddr, tte_data;
656 int i, tlb_ent = sparc64_highest_locked_tlbent();
657
658 tte_vaddr = (unsigned long) KERNBASE;
659 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
660 tte_data = kern_large_tte(phys_page);
661
662 kern_locked_tte_data = tte_data;
663
664 /* Now lock us into the TLBs via Hypervisor or OBP. */
665 if (tlb_type == hypervisor) {
666 for (i = 0; i < num_kernel_image_mappings; i++) {
667 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
668 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
669 tte_vaddr += 0x400000;
670 tte_data += 0x400000;
671 }
672 } else {
673 for (i = 0; i < num_kernel_image_mappings; i++) {
674 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
675 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
676 tte_vaddr += 0x400000;
677 tte_data += 0x400000;
678 }
679 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
680 }
681 if (tlb_type == cheetah_plus) {
682 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
683 CTX_CHEETAH_PLUS_NUC);
684 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
685 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
686 }
687 }
688
689
690 static void __init inherit_prom_mappings(void)
691 {
692 /* Now fixup OBP's idea about where we really are mapped. */
693 printk("Remapping the kernel... ");
694 remap_kernel();
695 printk("done.\n");
696 }
697
698 void prom_world(int enter)
699 {
700 if (!enter)
701 set_fs(get_fs());
702
703 __asm__ __volatile__("flushw");
704 }
705
706 void __flush_dcache_range(unsigned long start, unsigned long end)
707 {
708 unsigned long va;
709
710 if (tlb_type == spitfire) {
711 int n = 0;
712
713 for (va = start; va < end; va += 32) {
714 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
715 if (++n >= 512)
716 break;
717 }
718 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
719 start = __pa(start);
720 end = __pa(end);
721 for (va = start; va < end; va += 32)
722 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
723 "membar #Sync"
724 : /* no outputs */
725 : "r" (va),
726 "i" (ASI_DCACHE_INVALIDATE));
727 }
728 }
729 EXPORT_SYMBOL(__flush_dcache_range);
730
731 /* get_new_mmu_context() uses "cache + 1". */
732 DEFINE_SPINLOCK(ctx_alloc_lock);
733 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
734 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
735 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
736 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
737 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
738
739 static void mmu_context_wrap(void)
740 {
741 unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
742 unsigned long new_ver, new_ctx, old_ctx;
743 struct mm_struct *mm;
744 int cpu;
745
746 bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
747
748 /* Reserve kernel context */
749 set_bit(0, mmu_context_bmap);
750
751 new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
752 if (unlikely(new_ver == 0))
753 new_ver = CTX_FIRST_VERSION;
754 tlb_context_cache = new_ver;
755
756 /*
757 * Make sure that any new mm that are added into per_cpu_secondary_mm,
758 * are going to go through get_new_mmu_context() path.
759 */
760 mb();
761
762 /*
763 * Updated versions to current on those CPUs that had valid secondary
764 * contexts
765 */
766 for_each_online_cpu(cpu) {
767 /*
768 * If a new mm is stored after we took this mm from the array,
769 * it will go into get_new_mmu_context() path, because we
770 * already bumped the version in tlb_context_cache.
771 */
772 mm = per_cpu(per_cpu_secondary_mm, cpu);
773
774 if (unlikely(!mm || mm == &init_mm))
775 continue;
776
777 old_ctx = mm->context.sparc64_ctx_val;
778 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
779 new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
780 set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
781 mm->context.sparc64_ctx_val = new_ctx;
782 }
783 }
784 }
785
786 /* Caller does TLB context flushing on local CPU if necessary.
787 * The caller also ensures that CTX_VALID(mm->context) is false.
788 *
789 * We must be careful about boundary cases so that we never
790 * let the user have CTX 0 (nucleus) or we ever use a CTX
791 * version of zero (and thus NO_CONTEXT would not be caught
792 * by version mis-match tests in mmu_context.h).
793 *
794 * Always invoked with interrupts disabled.
795 */
796 void get_new_mmu_context(struct mm_struct *mm)
797 {
798 unsigned long ctx, new_ctx;
799 unsigned long orig_pgsz_bits;
800
801 spin_lock(&ctx_alloc_lock);
802 retry:
803 /* wrap might have happened, test again if our context became valid */
804 if (unlikely(CTX_VALID(mm->context)))
805 goto out;
806 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
807 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
808 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
809 if (new_ctx >= (1 << CTX_NR_BITS)) {
810 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
811 if (new_ctx >= ctx) {
812 mmu_context_wrap();
813 goto retry;
814 }
815 }
816 if (mm->context.sparc64_ctx_val)
817 cpumask_clear(mm_cpumask(mm));
818 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
819 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
820 tlb_context_cache = new_ctx;
821 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
822 out:
823 spin_unlock(&ctx_alloc_lock);
824 }
825
826 static int numa_enabled = 1;
827 static int numa_debug;
828
829 static int __init early_numa(char *p)
830 {
831 if (!p)
832 return 0;
833
834 if (strstr(p, "off"))
835 numa_enabled = 0;
836
837 if (strstr(p, "debug"))
838 numa_debug = 1;
839
840 return 0;
841 }
842 early_param("numa", early_numa);
843
844 #define numadbg(f, a...) \
845 do { if (numa_debug) \
846 printk(KERN_INFO f, ## a); \
847 } while (0)
848
849 static void __init find_ramdisk(unsigned long phys_base)
850 {
851 #ifdef CONFIG_BLK_DEV_INITRD
852 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
853 unsigned long ramdisk_image;
854
855 /* Older versions of the bootloader only supported a
856 * 32-bit physical address for the ramdisk image
857 * location, stored at sparc_ramdisk_image. Newer
858 * SILO versions set sparc_ramdisk_image to zero and
859 * provide a full 64-bit physical address at
860 * sparc_ramdisk_image64.
861 */
862 ramdisk_image = sparc_ramdisk_image;
863 if (!ramdisk_image)
864 ramdisk_image = sparc_ramdisk_image64;
865
866 /* Another bootloader quirk. The bootloader normalizes
867 * the physical address to KERNBASE, so we have to
868 * factor that back out and add in the lowest valid
869 * physical page address to get the true physical address.
870 */
871 ramdisk_image -= KERNBASE;
872 ramdisk_image += phys_base;
873
874 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
875 ramdisk_image, sparc_ramdisk_size);
876
877 initrd_start = ramdisk_image;
878 initrd_end = ramdisk_image + sparc_ramdisk_size;
879
880 memblock_reserve(initrd_start, sparc_ramdisk_size);
881
882 initrd_start += PAGE_OFFSET;
883 initrd_end += PAGE_OFFSET;
884 }
885 #endif
886 }
887
888 struct node_mem_mask {
889 unsigned long mask;
890 unsigned long match;
891 };
892 static struct node_mem_mask node_masks[MAX_NUMNODES];
893 static int num_node_masks;
894
895 #ifdef CONFIG_NEED_MULTIPLE_NODES
896
897 struct mdesc_mlgroup {
898 u64 node;
899 u64 latency;
900 u64 match;
901 u64 mask;
902 };
903
904 static struct mdesc_mlgroup *mlgroups;
905 static int num_mlgroups;
906
907 int numa_cpu_lookup_table[NR_CPUS];
908 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
909
910 struct mdesc_mblock {
911 u64 base;
912 u64 size;
913 u64 offset; /* RA-to-PA */
914 };
915 static struct mdesc_mblock *mblocks;
916 static int num_mblocks;
917
918 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
919 {
920 struct mdesc_mblock *m = NULL;
921 int i;
922
923 for (i = 0; i < num_mblocks; i++) {
924 m = &mblocks[i];
925
926 if (addr >= m->base &&
927 addr < (m->base + m->size)) {
928 break;
929 }
930 }
931
932 return m;
933 }
934
935 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
936 {
937 int prev_nid, new_nid;
938
939 prev_nid = -1;
940 for ( ; start < end; start += PAGE_SIZE) {
941 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
942 struct node_mem_mask *p = &node_masks[new_nid];
943
944 if ((start & p->mask) == p->match) {
945 if (prev_nid == -1)
946 prev_nid = new_nid;
947 break;
948 }
949 }
950
951 if (new_nid == num_node_masks) {
952 prev_nid = 0;
953 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
954 start);
955 break;
956 }
957
958 if (prev_nid != new_nid)
959 break;
960 }
961 *nid = prev_nid;
962
963 return start > end ? end : start;
964 }
965
966 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
967 {
968 u64 ret_end, pa_start, m_mask, m_match, m_end;
969 struct mdesc_mblock *mblock;
970 int _nid, i;
971
972 if (tlb_type != hypervisor)
973 return memblock_nid_range_sun4u(start, end, nid);
974
975 mblock = addr_to_mblock(start);
976 if (!mblock) {
977 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
978 start);
979
980 _nid = 0;
981 ret_end = end;
982 goto done;
983 }
984
985 pa_start = start + mblock->offset;
986 m_match = 0;
987 m_mask = 0;
988
989 for (_nid = 0; _nid < num_node_masks; _nid++) {
990 struct node_mem_mask *const m = &node_masks[_nid];
991
992 if ((pa_start & m->mask) == m->match) {
993 m_match = m->match;
994 m_mask = m->mask;
995 break;
996 }
997 }
998
999 if (num_node_masks == _nid) {
1000 /* We could not find NUMA group, so default to 0, but lets
1001 * search for latency group, so we could calculate the correct
1002 * end address that we return
1003 */
1004 _nid = 0;
1005
1006 for (i = 0; i < num_mlgroups; i++) {
1007 struct mdesc_mlgroup *const m = &mlgroups[i];
1008
1009 if ((pa_start & m->mask) == m->match) {
1010 m_match = m->match;
1011 m_mask = m->mask;
1012 break;
1013 }
1014 }
1015
1016 if (i == num_mlgroups) {
1017 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1018 start);
1019
1020 ret_end = end;
1021 goto done;
1022 }
1023 }
1024
1025 /*
1026 * Each latency group has match and mask, and each memory block has an
1027 * offset. An address belongs to a latency group if its address matches
1028 * the following formula: ((addr + offset) & mask) == match
1029 * It is, however, slow to check every single page if it matches a
1030 * particular latency group. As optimization we calculate end value by
1031 * using bit arithmetics.
1032 */
1033 m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1034 m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1035 ret_end = m_end > end ? end : m_end;
1036
1037 done:
1038 *nid = _nid;
1039 return ret_end;
1040 }
1041 #endif
1042
1043 /* This must be invoked after performing all of the necessary
1044 * memblock_set_node() calls for 'nid'. We need to be able to get
1045 * correct data from get_pfn_range_for_nid().
1046 */
1047 static void __init allocate_node_data(int nid)
1048 {
1049 struct pglist_data *p;
1050 unsigned long start_pfn, end_pfn;
1051 #ifdef CONFIG_NEED_MULTIPLE_NODES
1052 unsigned long paddr;
1053
1054 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
1055 if (!paddr) {
1056 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1057 prom_halt();
1058 }
1059 NODE_DATA(nid) = __va(paddr);
1060 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1061
1062 NODE_DATA(nid)->node_id = nid;
1063 #endif
1064
1065 p = NODE_DATA(nid);
1066
1067 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1068 p->node_start_pfn = start_pfn;
1069 p->node_spanned_pages = end_pfn - start_pfn;
1070 }
1071
1072 static void init_node_masks_nonnuma(void)
1073 {
1074 #ifdef CONFIG_NEED_MULTIPLE_NODES
1075 int i;
1076 #endif
1077
1078 numadbg("Initializing tables for non-numa.\n");
1079
1080 node_masks[0].mask = 0;
1081 node_masks[0].match = 0;
1082 num_node_masks = 1;
1083
1084 #ifdef CONFIG_NEED_MULTIPLE_NODES
1085 for (i = 0; i < NR_CPUS; i++)
1086 numa_cpu_lookup_table[i] = 0;
1087
1088 cpumask_setall(&numa_cpumask_lookup_table[0]);
1089 #endif
1090 }
1091
1092 #ifdef CONFIG_NEED_MULTIPLE_NODES
1093 struct pglist_data *node_data[MAX_NUMNODES];
1094
1095 EXPORT_SYMBOL(numa_cpu_lookup_table);
1096 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1097 EXPORT_SYMBOL(node_data);
1098
1099 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1100 u32 cfg_handle)
1101 {
1102 u64 arc;
1103
1104 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1105 u64 target = mdesc_arc_target(md, arc);
1106 const u64 *val;
1107
1108 val = mdesc_get_property(md, target,
1109 "cfg-handle", NULL);
1110 if (val && *val == cfg_handle)
1111 return 0;
1112 }
1113 return -ENODEV;
1114 }
1115
1116 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1117 u32 cfg_handle)
1118 {
1119 u64 arc, candidate, best_latency = ~(u64)0;
1120
1121 candidate = MDESC_NODE_NULL;
1122 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1123 u64 target = mdesc_arc_target(md, arc);
1124 const char *name = mdesc_node_name(md, target);
1125 const u64 *val;
1126
1127 if (strcmp(name, "pio-latency-group"))
1128 continue;
1129
1130 val = mdesc_get_property(md, target, "latency", NULL);
1131 if (!val)
1132 continue;
1133
1134 if (*val < best_latency) {
1135 candidate = target;
1136 best_latency = *val;
1137 }
1138 }
1139
1140 if (candidate == MDESC_NODE_NULL)
1141 return -ENODEV;
1142
1143 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1144 }
1145
1146 int of_node_to_nid(struct device_node *dp)
1147 {
1148 const struct linux_prom64_registers *regs;
1149 struct mdesc_handle *md;
1150 u32 cfg_handle;
1151 int count, nid;
1152 u64 grp;
1153
1154 /* This is the right thing to do on currently supported
1155 * SUN4U NUMA platforms as well, as the PCI controller does
1156 * not sit behind any particular memory controller.
1157 */
1158 if (!mlgroups)
1159 return -1;
1160
1161 regs = of_get_property(dp, "reg", NULL);
1162 if (!regs)
1163 return -1;
1164
1165 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1166
1167 md = mdesc_grab();
1168
1169 count = 0;
1170 nid = -1;
1171 mdesc_for_each_node_by_name(md, grp, "group") {
1172 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1173 nid = count;
1174 break;
1175 }
1176 count++;
1177 }
1178
1179 mdesc_release(md);
1180
1181 return nid;
1182 }
1183
1184 static void __init add_node_ranges(void)
1185 {
1186 struct memblock_region *reg;
1187 unsigned long prev_max;
1188
1189 memblock_resized:
1190 prev_max = memblock.memory.max;
1191
1192 for_each_memblock(memory, reg) {
1193 unsigned long size = reg->size;
1194 unsigned long start, end;
1195
1196 start = reg->base;
1197 end = start + size;
1198 while (start < end) {
1199 unsigned long this_end;
1200 int nid;
1201
1202 this_end = memblock_nid_range(start, end, &nid);
1203
1204 numadbg("Setting memblock NUMA node nid[%d] "
1205 "start[%lx] end[%lx]\n",
1206 nid, start, this_end);
1207
1208 memblock_set_node(start, this_end - start,
1209 &memblock.memory, nid);
1210 if (memblock.memory.max != prev_max)
1211 goto memblock_resized;
1212 start = this_end;
1213 }
1214 }
1215 }
1216
1217 static int __init grab_mlgroups(struct mdesc_handle *md)
1218 {
1219 unsigned long paddr;
1220 int count = 0;
1221 u64 node;
1222
1223 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1224 count++;
1225 if (!count)
1226 return -ENOENT;
1227
1228 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1229 SMP_CACHE_BYTES);
1230 if (!paddr)
1231 return -ENOMEM;
1232
1233 mlgroups = __va(paddr);
1234 num_mlgroups = count;
1235
1236 count = 0;
1237 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1238 struct mdesc_mlgroup *m = &mlgroups[count++];
1239 const u64 *val;
1240
1241 m->node = node;
1242
1243 val = mdesc_get_property(md, node, "latency", NULL);
1244 m->latency = *val;
1245 val = mdesc_get_property(md, node, "address-match", NULL);
1246 m->match = *val;
1247 val = mdesc_get_property(md, node, "address-mask", NULL);
1248 m->mask = *val;
1249
1250 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1251 "match[%llx] mask[%llx]\n",
1252 count - 1, m->node, m->latency, m->match, m->mask);
1253 }
1254
1255 return 0;
1256 }
1257
1258 static int __init grab_mblocks(struct mdesc_handle *md)
1259 {
1260 unsigned long paddr;
1261 int count = 0;
1262 u64 node;
1263
1264 mdesc_for_each_node_by_name(md, node, "mblock")
1265 count++;
1266 if (!count)
1267 return -ENOENT;
1268
1269 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1270 SMP_CACHE_BYTES);
1271 if (!paddr)
1272 return -ENOMEM;
1273
1274 mblocks = __va(paddr);
1275 num_mblocks = count;
1276
1277 count = 0;
1278 mdesc_for_each_node_by_name(md, node, "mblock") {
1279 struct mdesc_mblock *m = &mblocks[count++];
1280 const u64 *val;
1281
1282 val = mdesc_get_property(md, node, "base", NULL);
1283 m->base = *val;
1284 val = mdesc_get_property(md, node, "size", NULL);
1285 m->size = *val;
1286 val = mdesc_get_property(md, node,
1287 "address-congruence-offset", NULL);
1288
1289 /* The address-congruence-offset property is optional.
1290 * Explicity zero it be identifty this.
1291 */
1292 if (val)
1293 m->offset = *val;
1294 else
1295 m->offset = 0UL;
1296
1297 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1298 count - 1, m->base, m->size, m->offset);
1299 }
1300
1301 return 0;
1302 }
1303
1304 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1305 u64 grp, cpumask_t *mask)
1306 {
1307 u64 arc;
1308
1309 cpumask_clear(mask);
1310
1311 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1312 u64 target = mdesc_arc_target(md, arc);
1313 const char *name = mdesc_node_name(md, target);
1314 const u64 *id;
1315
1316 if (strcmp(name, "cpu"))
1317 continue;
1318 id = mdesc_get_property(md, target, "id", NULL);
1319 if (*id < nr_cpu_ids)
1320 cpumask_set_cpu(*id, mask);
1321 }
1322 }
1323
1324 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1325 {
1326 int i;
1327
1328 for (i = 0; i < num_mlgroups; i++) {
1329 struct mdesc_mlgroup *m = &mlgroups[i];
1330 if (m->node == node)
1331 return m;
1332 }
1333 return NULL;
1334 }
1335
1336 int __node_distance(int from, int to)
1337 {
1338 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1339 pr_warn("Returning default NUMA distance value for %d->%d\n",
1340 from, to);
1341 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1342 }
1343 return numa_latency[from][to];
1344 }
1345
1346 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1347 {
1348 int i;
1349
1350 for (i = 0; i < MAX_NUMNODES; i++) {
1351 struct node_mem_mask *n = &node_masks[i];
1352
1353 if ((grp->mask == n->mask) && (grp->match == n->match))
1354 break;
1355 }
1356 return i;
1357 }
1358
1359 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1360 u64 grp, int index)
1361 {
1362 u64 arc;
1363
1364 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1365 int tnode;
1366 u64 target = mdesc_arc_target(md, arc);
1367 struct mdesc_mlgroup *m = find_mlgroup(target);
1368
1369 if (!m)
1370 continue;
1371 tnode = find_best_numa_node_for_mlgroup(m);
1372 if (tnode == MAX_NUMNODES)
1373 continue;
1374 numa_latency[index][tnode] = m->latency;
1375 }
1376 }
1377
1378 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1379 int index)
1380 {
1381 struct mdesc_mlgroup *candidate = NULL;
1382 u64 arc, best_latency = ~(u64)0;
1383 struct node_mem_mask *n;
1384
1385 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1386 u64 target = mdesc_arc_target(md, arc);
1387 struct mdesc_mlgroup *m = find_mlgroup(target);
1388 if (!m)
1389 continue;
1390 if (m->latency < best_latency) {
1391 candidate = m;
1392 best_latency = m->latency;
1393 }
1394 }
1395 if (!candidate)
1396 return -ENOENT;
1397
1398 if (num_node_masks != index) {
1399 printk(KERN_ERR "Inconsistent NUMA state, "
1400 "index[%d] != num_node_masks[%d]\n",
1401 index, num_node_masks);
1402 return -EINVAL;
1403 }
1404
1405 n = &node_masks[num_node_masks++];
1406
1407 n->mask = candidate->mask;
1408 n->match = candidate->match;
1409
1410 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1411 index, n->mask, n->match, candidate->latency);
1412
1413 return 0;
1414 }
1415
1416 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1417 int index)
1418 {
1419 cpumask_t mask;
1420 int cpu;
1421
1422 numa_parse_mdesc_group_cpus(md, grp, &mask);
1423
1424 for_each_cpu(cpu, &mask)
1425 numa_cpu_lookup_table[cpu] = index;
1426 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1427
1428 if (numa_debug) {
1429 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1430 for_each_cpu(cpu, &mask)
1431 printk("%d ", cpu);
1432 printk("]\n");
1433 }
1434
1435 return numa_attach_mlgroup(md, grp, index);
1436 }
1437
1438 static int __init numa_parse_mdesc(void)
1439 {
1440 struct mdesc_handle *md = mdesc_grab();
1441 int i, j, err, count;
1442 u64 node;
1443
1444 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1445 if (node == MDESC_NODE_NULL) {
1446 mdesc_release(md);
1447 return -ENOENT;
1448 }
1449
1450 err = grab_mblocks(md);
1451 if (err < 0)
1452 goto out;
1453
1454 err = grab_mlgroups(md);
1455 if (err < 0)
1456 goto out;
1457
1458 count = 0;
1459 mdesc_for_each_node_by_name(md, node, "group") {
1460 err = numa_parse_mdesc_group(md, node, count);
1461 if (err < 0)
1462 break;
1463 count++;
1464 }
1465
1466 count = 0;
1467 mdesc_for_each_node_by_name(md, node, "group") {
1468 find_numa_latencies_for_group(md, node, count);
1469 count++;
1470 }
1471
1472 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1473 for (i = 0; i < MAX_NUMNODES; i++) {
1474 u64 self_latency = numa_latency[i][i];
1475
1476 for (j = 0; j < MAX_NUMNODES; j++) {
1477 numa_latency[i][j] =
1478 (numa_latency[i][j] * LOCAL_DISTANCE) /
1479 self_latency;
1480 }
1481 }
1482
1483 add_node_ranges();
1484
1485 for (i = 0; i < num_node_masks; i++) {
1486 allocate_node_data(i);
1487 node_set_online(i);
1488 }
1489
1490 err = 0;
1491 out:
1492 mdesc_release(md);
1493 return err;
1494 }
1495
1496 static int __init numa_parse_jbus(void)
1497 {
1498 unsigned long cpu, index;
1499
1500 /* NUMA node id is encoded in bits 36 and higher, and there is
1501 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1502 */
1503 index = 0;
1504 for_each_present_cpu(cpu) {
1505 numa_cpu_lookup_table[cpu] = index;
1506 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1507 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1508 node_masks[index].match = cpu << 36UL;
1509
1510 index++;
1511 }
1512 num_node_masks = index;
1513
1514 add_node_ranges();
1515
1516 for (index = 0; index < num_node_masks; index++) {
1517 allocate_node_data(index);
1518 node_set_online(index);
1519 }
1520
1521 return 0;
1522 }
1523
1524 static int __init numa_parse_sun4u(void)
1525 {
1526 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1527 unsigned long ver;
1528
1529 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1530 if ((ver >> 32UL) == __JALAPENO_ID ||
1531 (ver >> 32UL) == __SERRANO_ID)
1532 return numa_parse_jbus();
1533 }
1534 return -1;
1535 }
1536
1537 static int __init bootmem_init_numa(void)
1538 {
1539 int i, j;
1540 int err = -1;
1541
1542 numadbg("bootmem_init_numa()\n");
1543
1544 /* Some sane defaults for numa latency values */
1545 for (i = 0; i < MAX_NUMNODES; i++) {
1546 for (j = 0; j < MAX_NUMNODES; j++)
1547 numa_latency[i][j] = (i == j) ?
1548 LOCAL_DISTANCE : REMOTE_DISTANCE;
1549 }
1550
1551 if (numa_enabled) {
1552 if (tlb_type == hypervisor)
1553 err = numa_parse_mdesc();
1554 else
1555 err = numa_parse_sun4u();
1556 }
1557 return err;
1558 }
1559
1560 #else
1561
1562 static int bootmem_init_numa(void)
1563 {
1564 return -1;
1565 }
1566
1567 #endif
1568
1569 static void __init bootmem_init_nonnuma(void)
1570 {
1571 unsigned long top_of_ram = memblock_end_of_DRAM();
1572 unsigned long total_ram = memblock_phys_mem_size();
1573
1574 numadbg("bootmem_init_nonnuma()\n");
1575
1576 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1577 top_of_ram, total_ram);
1578 printk(KERN_INFO "Memory hole size: %ldMB\n",
1579 (top_of_ram - total_ram) >> 20);
1580
1581 init_node_masks_nonnuma();
1582 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1583 allocate_node_data(0);
1584 node_set_online(0);
1585 }
1586
1587 static unsigned long __init bootmem_init(unsigned long phys_base)
1588 {
1589 unsigned long end_pfn;
1590
1591 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1592 max_pfn = max_low_pfn = end_pfn;
1593 min_low_pfn = (phys_base >> PAGE_SHIFT);
1594
1595 if (bootmem_init_numa() < 0)
1596 bootmem_init_nonnuma();
1597
1598 /* Dump memblock with node info. */
1599 memblock_dump_all();
1600
1601 /* XXX cpu notifier XXX */
1602
1603 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1604 sparse_init();
1605
1606 return end_pfn;
1607 }
1608
1609 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1610 static int pall_ents __initdata;
1611
1612 static unsigned long max_phys_bits = 40;
1613
1614 bool kern_addr_valid(unsigned long addr)
1615 {
1616 pgd_t *pgd;
1617 pud_t *pud;
1618 pmd_t *pmd;
1619 pte_t *pte;
1620
1621 if ((long)addr < 0L) {
1622 unsigned long pa = __pa(addr);
1623
1624 if ((pa >> max_phys_bits) != 0UL)
1625 return false;
1626
1627 return pfn_valid(pa >> PAGE_SHIFT);
1628 }
1629
1630 if (addr >= (unsigned long) KERNBASE &&
1631 addr < (unsigned long)&_end)
1632 return true;
1633
1634 pgd = pgd_offset_k(addr);
1635 if (pgd_none(*pgd))
1636 return 0;
1637
1638 pud = pud_offset(pgd, addr);
1639 if (pud_none(*pud))
1640 return 0;
1641
1642 if (pud_large(*pud))
1643 return pfn_valid(pud_pfn(*pud));
1644
1645 pmd = pmd_offset(pud, addr);
1646 if (pmd_none(*pmd))
1647 return 0;
1648
1649 if (pmd_large(*pmd))
1650 return pfn_valid(pmd_pfn(*pmd));
1651
1652 pte = pte_offset_kernel(pmd, addr);
1653 if (pte_none(*pte))
1654 return 0;
1655
1656 return pfn_valid(pte_pfn(*pte));
1657 }
1658 EXPORT_SYMBOL(kern_addr_valid);
1659
1660 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1661 unsigned long vend,
1662 pud_t *pud)
1663 {
1664 const unsigned long mask16gb = (1UL << 34) - 1UL;
1665 u64 pte_val = vstart;
1666
1667 /* Each PUD is 8GB */
1668 if ((vstart & mask16gb) ||
1669 (vend - vstart <= mask16gb)) {
1670 pte_val ^= kern_linear_pte_xor[2];
1671 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1672
1673 return vstart + PUD_SIZE;
1674 }
1675
1676 pte_val ^= kern_linear_pte_xor[3];
1677 pte_val |= _PAGE_PUD_HUGE;
1678
1679 vend = vstart + mask16gb + 1UL;
1680 while (vstart < vend) {
1681 pud_val(*pud) = pte_val;
1682
1683 pte_val += PUD_SIZE;
1684 vstart += PUD_SIZE;
1685 pud++;
1686 }
1687 return vstart;
1688 }
1689
1690 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1691 bool guard)
1692 {
1693 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1694 return true;
1695
1696 return false;
1697 }
1698
1699 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1700 unsigned long vend,
1701 pmd_t *pmd)
1702 {
1703 const unsigned long mask256mb = (1UL << 28) - 1UL;
1704 const unsigned long mask2gb = (1UL << 31) - 1UL;
1705 u64 pte_val = vstart;
1706
1707 /* Each PMD is 8MB */
1708 if ((vstart & mask256mb) ||
1709 (vend - vstart <= mask256mb)) {
1710 pte_val ^= kern_linear_pte_xor[0];
1711 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1712
1713 return vstart + PMD_SIZE;
1714 }
1715
1716 if ((vstart & mask2gb) ||
1717 (vend - vstart <= mask2gb)) {
1718 pte_val ^= kern_linear_pte_xor[1];
1719 pte_val |= _PAGE_PMD_HUGE;
1720 vend = vstart + mask256mb + 1UL;
1721 } else {
1722 pte_val ^= kern_linear_pte_xor[2];
1723 pte_val |= _PAGE_PMD_HUGE;
1724 vend = vstart + mask2gb + 1UL;
1725 }
1726
1727 while (vstart < vend) {
1728 pmd_val(*pmd) = pte_val;
1729
1730 pte_val += PMD_SIZE;
1731 vstart += PMD_SIZE;
1732 pmd++;
1733 }
1734
1735 return vstart;
1736 }
1737
1738 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1739 bool guard)
1740 {
1741 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1742 return true;
1743
1744 return false;
1745 }
1746
1747 static unsigned long __ref kernel_map_range(unsigned long pstart,
1748 unsigned long pend, pgprot_t prot,
1749 bool use_huge)
1750 {
1751 unsigned long vstart = PAGE_OFFSET + pstart;
1752 unsigned long vend = PAGE_OFFSET + pend;
1753 unsigned long alloc_bytes = 0UL;
1754
1755 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1756 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1757 vstart, vend);
1758 prom_halt();
1759 }
1760
1761 while (vstart < vend) {
1762 unsigned long this_end, paddr = __pa(vstart);
1763 pgd_t *pgd = pgd_offset_k(vstart);
1764 pud_t *pud;
1765 pmd_t *pmd;
1766 pte_t *pte;
1767
1768 if (pgd_none(*pgd)) {
1769 pud_t *new;
1770
1771 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1772 alloc_bytes += PAGE_SIZE;
1773 pgd_populate(&init_mm, pgd, new);
1774 }
1775 pud = pud_offset(pgd, vstart);
1776 if (pud_none(*pud)) {
1777 pmd_t *new;
1778
1779 if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1780 vstart = kernel_map_hugepud(vstart, vend, pud);
1781 continue;
1782 }
1783 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1784 alloc_bytes += PAGE_SIZE;
1785 pud_populate(&init_mm, pud, new);
1786 }
1787
1788 pmd = pmd_offset(pud, vstart);
1789 if (pmd_none(*pmd)) {
1790 pte_t *new;
1791
1792 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1793 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1794 continue;
1795 }
1796 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1797 alloc_bytes += PAGE_SIZE;
1798 pmd_populate_kernel(&init_mm, pmd, new);
1799 }
1800
1801 pte = pte_offset_kernel(pmd, vstart);
1802 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1803 if (this_end > vend)
1804 this_end = vend;
1805
1806 while (vstart < this_end) {
1807 pte_val(*pte) = (paddr | pgprot_val(prot));
1808
1809 vstart += PAGE_SIZE;
1810 paddr += PAGE_SIZE;
1811 pte++;
1812 }
1813 }
1814
1815 return alloc_bytes;
1816 }
1817
1818 static void __init flush_all_kernel_tsbs(void)
1819 {
1820 int i;
1821
1822 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1823 struct tsb *ent = &swapper_tsb[i];
1824
1825 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1826 }
1827 #ifndef CONFIG_DEBUG_PAGEALLOC
1828 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1829 struct tsb *ent = &swapper_4m_tsb[i];
1830
1831 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1832 }
1833 #endif
1834 }
1835
1836 extern unsigned int kvmap_linear_patch[1];
1837
1838 static void __init kernel_physical_mapping_init(void)
1839 {
1840 unsigned long i, mem_alloced = 0UL;
1841 bool use_huge = true;
1842
1843 #ifdef CONFIG_DEBUG_PAGEALLOC
1844 use_huge = false;
1845 #endif
1846 for (i = 0; i < pall_ents; i++) {
1847 unsigned long phys_start, phys_end;
1848
1849 phys_start = pall[i].phys_addr;
1850 phys_end = phys_start + pall[i].reg_size;
1851
1852 mem_alloced += kernel_map_range(phys_start, phys_end,
1853 PAGE_KERNEL, use_huge);
1854 }
1855
1856 printk("Allocated %ld bytes for kernel page tables.\n",
1857 mem_alloced);
1858
1859 kvmap_linear_patch[0] = 0x01000000; /* nop */
1860 flushi(&kvmap_linear_patch[0]);
1861
1862 flush_all_kernel_tsbs();
1863
1864 __flush_tlb_all();
1865 }
1866
1867 #ifdef CONFIG_DEBUG_PAGEALLOC
1868 void __kernel_map_pages(struct page *page, int numpages, int enable)
1869 {
1870 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1871 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1872
1873 kernel_map_range(phys_start, phys_end,
1874 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1875
1876 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1877 PAGE_OFFSET + phys_end);
1878
1879 /* we should perform an IPI and flush all tlbs,
1880 * but that can deadlock->flush only current cpu.
1881 */
1882 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1883 PAGE_OFFSET + phys_end);
1884 }
1885 #endif
1886
1887 unsigned long __init find_ecache_flush_span(unsigned long size)
1888 {
1889 int i;
1890
1891 for (i = 0; i < pavail_ents; i++) {
1892 if (pavail[i].reg_size >= size)
1893 return pavail[i].phys_addr;
1894 }
1895
1896 return ~0UL;
1897 }
1898
1899 unsigned long PAGE_OFFSET;
1900 EXPORT_SYMBOL(PAGE_OFFSET);
1901
1902 unsigned long VMALLOC_END = 0x0000010000000000UL;
1903 EXPORT_SYMBOL(VMALLOC_END);
1904
1905 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
1906 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1907
1908 static void __init setup_page_offset(void)
1909 {
1910 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1911 /* Cheetah/Panther support a full 64-bit virtual
1912 * address, so we can use all that our page tables
1913 * support.
1914 */
1915 sparc64_va_hole_top = 0xfff0000000000000UL;
1916 sparc64_va_hole_bottom = 0x0010000000000000UL;
1917
1918 max_phys_bits = 42;
1919 } else if (tlb_type == hypervisor) {
1920 switch (sun4v_chip_type) {
1921 case SUN4V_CHIP_NIAGARA1:
1922 case SUN4V_CHIP_NIAGARA2:
1923 /* T1 and T2 support 48-bit virtual addresses. */
1924 sparc64_va_hole_top = 0xffff800000000000UL;
1925 sparc64_va_hole_bottom = 0x0000800000000000UL;
1926
1927 max_phys_bits = 39;
1928 break;
1929 case SUN4V_CHIP_NIAGARA3:
1930 /* T3 supports 48-bit virtual addresses. */
1931 sparc64_va_hole_top = 0xffff800000000000UL;
1932 sparc64_va_hole_bottom = 0x0000800000000000UL;
1933
1934 max_phys_bits = 43;
1935 break;
1936 case SUN4V_CHIP_NIAGARA4:
1937 case SUN4V_CHIP_NIAGARA5:
1938 case SUN4V_CHIP_SPARC64X:
1939 case SUN4V_CHIP_SPARC_M6:
1940 /* T4 and later support 52-bit virtual addresses. */
1941 sparc64_va_hole_top = 0xfff8000000000000UL;
1942 sparc64_va_hole_bottom = 0x0008000000000000UL;
1943 max_phys_bits = 47;
1944 break;
1945 case SUN4V_CHIP_SPARC_M7:
1946 case SUN4V_CHIP_SPARC_SN:
1947 /* M7 and later support 52-bit virtual addresses. */
1948 sparc64_va_hole_top = 0xfff8000000000000UL;
1949 sparc64_va_hole_bottom = 0x0008000000000000UL;
1950 max_phys_bits = 49;
1951 break;
1952 case SUN4V_CHIP_SPARC_M8:
1953 default:
1954 /* M8 and later support 54-bit virtual addresses.
1955 * However, restricting M8 and above VA bits to 53
1956 * as 4-level page table cannot support more than
1957 * 53 VA bits.
1958 */
1959 sparc64_va_hole_top = 0xfff0000000000000UL;
1960 sparc64_va_hole_bottom = 0x0010000000000000UL;
1961 max_phys_bits = 51;
1962 break;
1963 }
1964 }
1965
1966 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1967 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1968 max_phys_bits);
1969 prom_halt();
1970 }
1971
1972 PAGE_OFFSET = sparc64_va_hole_top;
1973 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1974 (sparc64_va_hole_bottom >> 2));
1975
1976 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1977 PAGE_OFFSET, max_phys_bits);
1978 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1979 VMALLOC_START, VMALLOC_END);
1980 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1981 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1982 }
1983
1984 static void __init tsb_phys_patch(void)
1985 {
1986 struct tsb_ldquad_phys_patch_entry *pquad;
1987 struct tsb_phys_patch_entry *p;
1988
1989 pquad = &__tsb_ldquad_phys_patch;
1990 while (pquad < &__tsb_ldquad_phys_patch_end) {
1991 unsigned long addr = pquad->addr;
1992
1993 if (tlb_type == hypervisor)
1994 *(unsigned int *) addr = pquad->sun4v_insn;
1995 else
1996 *(unsigned int *) addr = pquad->sun4u_insn;
1997 wmb();
1998 __asm__ __volatile__("flush %0"
1999 : /* no outputs */
2000 : "r" (addr));
2001
2002 pquad++;
2003 }
2004
2005 p = &__tsb_phys_patch;
2006 while (p < &__tsb_phys_patch_end) {
2007 unsigned long addr = p->addr;
2008
2009 *(unsigned int *) addr = p->insn;
2010 wmb();
2011 __asm__ __volatile__("flush %0"
2012 : /* no outputs */
2013 : "r" (addr));
2014
2015 p++;
2016 }
2017 }
2018
2019 /* Don't mark as init, we give this to the Hypervisor. */
2020 #ifndef CONFIG_DEBUG_PAGEALLOC
2021 #define NUM_KTSB_DESCR 2
2022 #else
2023 #define NUM_KTSB_DESCR 1
2024 #endif
2025 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2026
2027 /* The swapper TSBs are loaded with a base sequence of:
2028 *
2029 * sethi %uhi(SYMBOL), REG1
2030 * sethi %hi(SYMBOL), REG2
2031 * or REG1, %ulo(SYMBOL), REG1
2032 * or REG2, %lo(SYMBOL), REG2
2033 * sllx REG1, 32, REG1
2034 * or REG1, REG2, REG1
2035 *
2036 * When we use physical addressing for the TSB accesses, we patch the
2037 * first four instructions in the above sequence.
2038 */
2039
2040 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2041 {
2042 unsigned long high_bits, low_bits;
2043
2044 high_bits = (pa >> 32) & 0xffffffff;
2045 low_bits = (pa >> 0) & 0xffffffff;
2046
2047 while (start < end) {
2048 unsigned int *ia = (unsigned int *)(unsigned long)*start;
2049
2050 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2051 __asm__ __volatile__("flush %0" : : "r" (ia));
2052
2053 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2054 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
2055
2056 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2057 __asm__ __volatile__("flush %0" : : "r" (ia + 2));
2058
2059 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2060 __asm__ __volatile__("flush %0" : : "r" (ia + 3));
2061
2062 start++;
2063 }
2064 }
2065
2066 static void ktsb_phys_patch(void)
2067 {
2068 extern unsigned int __swapper_tsb_phys_patch;
2069 extern unsigned int __swapper_tsb_phys_patch_end;
2070 unsigned long ktsb_pa;
2071
2072 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2073 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2074 &__swapper_tsb_phys_patch_end, ktsb_pa);
2075 #ifndef CONFIG_DEBUG_PAGEALLOC
2076 {
2077 extern unsigned int __swapper_4m_tsb_phys_patch;
2078 extern unsigned int __swapper_4m_tsb_phys_patch_end;
2079 ktsb_pa = (kern_base +
2080 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2081 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2082 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2083 }
2084 #endif
2085 }
2086
2087 static void __init sun4v_ktsb_init(void)
2088 {
2089 unsigned long ktsb_pa;
2090
2091 /* First KTSB for PAGE_SIZE mappings. */
2092 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2093
2094 switch (PAGE_SIZE) {
2095 case 8 * 1024:
2096 default:
2097 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2098 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2099 break;
2100
2101 case 64 * 1024:
2102 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2103 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2104 break;
2105
2106 case 512 * 1024:
2107 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2108 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2109 break;
2110
2111 case 4 * 1024 * 1024:
2112 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2113 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2114 break;
2115 }
2116
2117 ktsb_descr[0].assoc = 1;
2118 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2119 ktsb_descr[0].ctx_idx = 0;
2120 ktsb_descr[0].tsb_base = ktsb_pa;
2121 ktsb_descr[0].resv = 0;
2122
2123 #ifndef CONFIG_DEBUG_PAGEALLOC
2124 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
2125 ktsb_pa = (kern_base +
2126 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2127
2128 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2129 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2130 HV_PGSZ_MASK_256MB |
2131 HV_PGSZ_MASK_2GB |
2132 HV_PGSZ_MASK_16GB) &
2133 cpu_pgsz_mask);
2134 ktsb_descr[1].assoc = 1;
2135 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2136 ktsb_descr[1].ctx_idx = 0;
2137 ktsb_descr[1].tsb_base = ktsb_pa;
2138 ktsb_descr[1].resv = 0;
2139 #endif
2140 }
2141
2142 void sun4v_ktsb_register(void)
2143 {
2144 unsigned long pa, ret;
2145
2146 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2147
2148 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2149 if (ret != 0) {
2150 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2151 "errors with %lx\n", pa, ret);
2152 prom_halt();
2153 }
2154 }
2155
2156 static void __init sun4u_linear_pte_xor_finalize(void)
2157 {
2158 #ifndef CONFIG_DEBUG_PAGEALLOC
2159 /* This is where we would add Panther support for
2160 * 32MB and 256MB pages.
2161 */
2162 #endif
2163 }
2164
2165 static void __init sun4v_linear_pte_xor_finalize(void)
2166 {
2167 unsigned long pagecv_flag;
2168
2169 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2170 * enables MCD error. Do not set bit 9 on M7 processor.
2171 */
2172 switch (sun4v_chip_type) {
2173 case SUN4V_CHIP_SPARC_M7:
2174 case SUN4V_CHIP_SPARC_M8:
2175 case SUN4V_CHIP_SPARC_SN:
2176 pagecv_flag = 0x00;
2177 break;
2178 default:
2179 pagecv_flag = _PAGE_CV_4V;
2180 break;
2181 }
2182 #ifndef CONFIG_DEBUG_PAGEALLOC
2183 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2184 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2185 PAGE_OFFSET;
2186 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2187 _PAGE_P_4V | _PAGE_W_4V);
2188 } else {
2189 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2190 }
2191
2192 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2193 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2194 PAGE_OFFSET;
2195 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2196 _PAGE_P_4V | _PAGE_W_4V);
2197 } else {
2198 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2199 }
2200
2201 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2202 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2203 PAGE_OFFSET;
2204 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2205 _PAGE_P_4V | _PAGE_W_4V);
2206 } else {
2207 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2208 }
2209 #endif
2210 }
2211
2212 /* paging_init() sets up the page tables */
2213
2214 static unsigned long last_valid_pfn;
2215
2216 static void sun4u_pgprot_init(void);
2217 static void sun4v_pgprot_init(void);
2218
2219 static phys_addr_t __init available_memory(void)
2220 {
2221 phys_addr_t available = 0ULL;
2222 phys_addr_t pa_start, pa_end;
2223 u64 i;
2224
2225 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2226 &pa_end, NULL)
2227 available = available + (pa_end - pa_start);
2228
2229 return available;
2230 }
2231
2232 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2233 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2234 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2235 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2236 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2237 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2238
2239 /* We need to exclude reserved regions. This exclusion will include
2240 * vmlinux and initrd. To be more precise the initrd size could be used to
2241 * compute a new lower limit because it is freed later during initialization.
2242 */
2243 static void __init reduce_memory(phys_addr_t limit_ram)
2244 {
2245 phys_addr_t avail_ram = available_memory();
2246 phys_addr_t pa_start, pa_end;
2247 u64 i;
2248
2249 if (limit_ram >= avail_ram)
2250 return;
2251
2252 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2253 &pa_end, NULL) {
2254 phys_addr_t region_size = pa_end - pa_start;
2255 phys_addr_t clip_start = pa_start;
2256
2257 avail_ram = avail_ram - region_size;
2258 /* Are we consuming too much? */
2259 if (avail_ram < limit_ram) {
2260 phys_addr_t give_back = limit_ram - avail_ram;
2261
2262 region_size = region_size - give_back;
2263 clip_start = clip_start + give_back;
2264 }
2265
2266 memblock_remove(clip_start, region_size);
2267
2268 if (avail_ram <= limit_ram)
2269 break;
2270 i = 0UL;
2271 }
2272 }
2273
2274 void __init paging_init(void)
2275 {
2276 unsigned long end_pfn, shift, phys_base;
2277 unsigned long real_end, i;
2278
2279 setup_page_offset();
2280
2281 /* These build time checkes make sure that the dcache_dirty_cpu()
2282 * page->flags usage will work.
2283 *
2284 * When a page gets marked as dcache-dirty, we store the
2285 * cpu number starting at bit 32 in the page->flags. Also,
2286 * functions like clear_dcache_dirty_cpu use the cpu mask
2287 * in 13-bit signed-immediate instruction fields.
2288 */
2289
2290 /*
2291 * Page flags must not reach into upper 32 bits that are used
2292 * for the cpu number
2293 */
2294 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2295
2296 /*
2297 * The bit fields placed in the high range must not reach below
2298 * the 32 bit boundary. Otherwise we cannot place the cpu field
2299 * at the 32 bit boundary.
2300 */
2301 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2302 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2303
2304 BUILD_BUG_ON(NR_CPUS > 4096);
2305
2306 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2307 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2308
2309 /* Invalidate both kernel TSBs. */
2310 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2311 #ifndef CONFIG_DEBUG_PAGEALLOC
2312 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2313 #endif
2314
2315 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2316 * bit on M7 processor. This is a conflicting usage of the same
2317 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2318 * Detection error on all pages and this will lead to problems
2319 * later. Kernel does not run with MCD enabled and hence rest
2320 * of the required steps to fully configure memory corruption
2321 * detection are not taken. We need to ensure TTE.mcde is not
2322 * set on M7 processor. Compute the value of cacheability
2323 * flag for use later taking this into consideration.
2324 */
2325 switch (sun4v_chip_type) {
2326 case SUN4V_CHIP_SPARC_M7:
2327 case SUN4V_CHIP_SPARC_M8:
2328 case SUN4V_CHIP_SPARC_SN:
2329 page_cache4v_flag = _PAGE_CP_4V;
2330 break;
2331 default:
2332 page_cache4v_flag = _PAGE_CACHE_4V;
2333 break;
2334 }
2335
2336 if (tlb_type == hypervisor)
2337 sun4v_pgprot_init();
2338 else
2339 sun4u_pgprot_init();
2340
2341 if (tlb_type == cheetah_plus ||
2342 tlb_type == hypervisor) {
2343 tsb_phys_patch();
2344 ktsb_phys_patch();
2345 }
2346
2347 if (tlb_type == hypervisor)
2348 sun4v_patch_tlb_handlers();
2349
2350 /* Find available physical memory...
2351 *
2352 * Read it twice in order to work around a bug in openfirmware.
2353 * The call to grab this table itself can cause openfirmware to
2354 * allocate memory, which in turn can take away some space from
2355 * the list of available memory. Reading it twice makes sure
2356 * we really do get the final value.
2357 */
2358 read_obp_translations();
2359 read_obp_memory("reg", &pall[0], &pall_ents);
2360 read_obp_memory("available", &pavail[0], &pavail_ents);
2361 read_obp_memory("available", &pavail[0], &pavail_ents);
2362
2363 phys_base = 0xffffffffffffffffUL;
2364 for (i = 0; i < pavail_ents; i++) {
2365 phys_base = min(phys_base, pavail[i].phys_addr);
2366 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2367 }
2368
2369 memblock_reserve(kern_base, kern_size);
2370
2371 find_ramdisk(phys_base);
2372
2373 if (cmdline_memory_size)
2374 reduce_memory(cmdline_memory_size);
2375
2376 memblock_allow_resize();
2377 memblock_dump_all();
2378
2379 set_bit(0, mmu_context_bmap);
2380
2381 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2382
2383 real_end = (unsigned long)_end;
2384 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2385 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2386 num_kernel_image_mappings);
2387
2388 /* Set kernel pgd to upper alias so physical page computations
2389 * work.
2390 */
2391 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2392
2393 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2394
2395 inherit_prom_mappings();
2396
2397 /* Ok, we can use our TLB miss and window trap handlers safely. */
2398 setup_tba();
2399
2400 __flush_tlb_all();
2401
2402 prom_build_devicetree();
2403 of_populate_present_mask();
2404 #ifndef CONFIG_SMP
2405 of_fill_in_cpu_data();
2406 #endif
2407
2408 if (tlb_type == hypervisor) {
2409 sun4v_mdesc_init();
2410 mdesc_populate_present_mask(cpu_all_mask);
2411 #ifndef CONFIG_SMP
2412 mdesc_fill_in_cpu_data(cpu_all_mask);
2413 #endif
2414 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2415
2416 sun4v_linear_pte_xor_finalize();
2417
2418 sun4v_ktsb_init();
2419 sun4v_ktsb_register();
2420 } else {
2421 unsigned long impl, ver;
2422
2423 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2424 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2425
2426 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2427 impl = ((ver >> 32) & 0xffff);
2428 if (impl == PANTHER_IMPL)
2429 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2430 HV_PGSZ_MASK_256MB);
2431
2432 sun4u_linear_pte_xor_finalize();
2433 }
2434
2435 /* Flush the TLBs and the 4M TSB so that the updated linear
2436 * pte XOR settings are realized for all mappings.
2437 */
2438 __flush_tlb_all();
2439 #ifndef CONFIG_DEBUG_PAGEALLOC
2440 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2441 #endif
2442 __flush_tlb_all();
2443
2444 /* Setup bootmem... */
2445 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2446
2447 kernel_physical_mapping_init();
2448
2449 {
2450 unsigned long max_zone_pfns[MAX_NR_ZONES];
2451
2452 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2453
2454 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2455
2456 free_area_init_nodes(max_zone_pfns);
2457 }
2458
2459 printk("Booting Linux...\n");
2460 }
2461
2462 int page_in_phys_avail(unsigned long paddr)
2463 {
2464 int i;
2465
2466 paddr &= PAGE_MASK;
2467
2468 for (i = 0; i < pavail_ents; i++) {
2469 unsigned long start, end;
2470
2471 start = pavail[i].phys_addr;
2472 end = start + pavail[i].reg_size;
2473
2474 if (paddr >= start && paddr < end)
2475 return 1;
2476 }
2477 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2478 return 1;
2479 #ifdef CONFIG_BLK_DEV_INITRD
2480 if (paddr >= __pa(initrd_start) &&
2481 paddr < __pa(PAGE_ALIGN(initrd_end)))
2482 return 1;
2483 #endif
2484
2485 return 0;
2486 }
2487
2488 static void __init register_page_bootmem_info(void)
2489 {
2490 #ifdef CONFIG_NEED_MULTIPLE_NODES
2491 int i;
2492
2493 for_each_online_node(i)
2494 if (NODE_DATA(i)->node_spanned_pages)
2495 register_page_bootmem_info_node(NODE_DATA(i));
2496 #endif
2497 }
2498 void __init mem_init(void)
2499 {
2500 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2501
2502 register_page_bootmem_info();
2503 free_all_bootmem();
2504
2505 /*
2506 * Set up the zero page, mark it reserved, so that page count
2507 * is not manipulated when freeing the page from user ptes.
2508 */
2509 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2510 if (mem_map_zero == NULL) {
2511 prom_printf("paging_init: Cannot alloc zero page.\n");
2512 prom_halt();
2513 }
2514 mark_page_reserved(mem_map_zero);
2515
2516 mem_init_print_info(NULL);
2517
2518 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2519 cheetah_ecache_flush_init();
2520 }
2521
2522 void free_initmem(void)
2523 {
2524 unsigned long addr, initend;
2525 int do_free = 1;
2526
2527 /* If the physical memory maps were trimmed by kernel command
2528 * line options, don't even try freeing this initmem stuff up.
2529 * The kernel image could have been in the trimmed out region
2530 * and if so the freeing below will free invalid page structs.
2531 */
2532 if (cmdline_memory_size)
2533 do_free = 0;
2534
2535 /*
2536 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2537 */
2538 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2539 initend = (unsigned long)(__init_end) & PAGE_MASK;
2540 for (; addr < initend; addr += PAGE_SIZE) {
2541 unsigned long page;
2542
2543 page = (addr +
2544 ((unsigned long) __va(kern_base)) -
2545 ((unsigned long) KERNBASE));
2546 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2547
2548 if (do_free)
2549 free_reserved_page(virt_to_page(page));
2550 }
2551 }
2552
2553 #ifdef CONFIG_BLK_DEV_INITRD
2554 void free_initrd_mem(unsigned long start, unsigned long end)
2555 {
2556 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2557 "initrd");
2558 }
2559 #endif
2560
2561 pgprot_t PAGE_KERNEL __read_mostly;
2562 EXPORT_SYMBOL(PAGE_KERNEL);
2563
2564 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2565 pgprot_t PAGE_COPY __read_mostly;
2566
2567 pgprot_t PAGE_SHARED __read_mostly;
2568 EXPORT_SYMBOL(PAGE_SHARED);
2569
2570 unsigned long pg_iobits __read_mostly;
2571
2572 unsigned long _PAGE_IE __read_mostly;
2573 EXPORT_SYMBOL(_PAGE_IE);
2574
2575 unsigned long _PAGE_E __read_mostly;
2576 EXPORT_SYMBOL(_PAGE_E);
2577
2578 unsigned long _PAGE_CACHE __read_mostly;
2579 EXPORT_SYMBOL(_PAGE_CACHE);
2580
2581 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2582 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2583 int node)
2584 {
2585 unsigned long pte_base;
2586
2587 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2588 _PAGE_CP_4U | _PAGE_CV_4U |
2589 _PAGE_P_4U | _PAGE_W_4U);
2590 if (tlb_type == hypervisor)
2591 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2592 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2593
2594 pte_base |= _PAGE_PMD_HUGE;
2595
2596 vstart = vstart & PMD_MASK;
2597 vend = ALIGN(vend, PMD_SIZE);
2598 for (; vstart < vend; vstart += PMD_SIZE) {
2599 pgd_t *pgd = pgd_offset_k(vstart);
2600 unsigned long pte;
2601 pud_t *pud;
2602 pmd_t *pmd;
2603
2604 if (pgd_none(*pgd)) {
2605 pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2606
2607 if (!new)
2608 return -ENOMEM;
2609 pgd_populate(&init_mm, pgd, new);
2610 }
2611
2612 pud = pud_offset(pgd, vstart);
2613 if (pud_none(*pud)) {
2614 pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2615
2616 if (!new)
2617 return -ENOMEM;
2618 pud_populate(&init_mm, pud, new);
2619 }
2620
2621 pmd = pmd_offset(pud, vstart);
2622
2623 pte = pmd_val(*pmd);
2624 if (!(pte & _PAGE_VALID)) {
2625 void *block = vmemmap_alloc_block(PMD_SIZE, node);
2626
2627 if (!block)
2628 return -ENOMEM;
2629
2630 pmd_val(*pmd) = pte_base | __pa(block);
2631 }
2632 }
2633
2634 return 0;
2635 }
2636
2637 void vmemmap_free(unsigned long start, unsigned long end)
2638 {
2639 }
2640 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2641
2642 static void prot_init_common(unsigned long page_none,
2643 unsigned long page_shared,
2644 unsigned long page_copy,
2645 unsigned long page_readonly,
2646 unsigned long page_exec_bit)
2647 {
2648 PAGE_COPY = __pgprot(page_copy);
2649 PAGE_SHARED = __pgprot(page_shared);
2650
2651 protection_map[0x0] = __pgprot(page_none);
2652 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2653 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2654 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2655 protection_map[0x4] = __pgprot(page_readonly);
2656 protection_map[0x5] = __pgprot(page_readonly);
2657 protection_map[0x6] = __pgprot(page_copy);
2658 protection_map[0x7] = __pgprot(page_copy);
2659 protection_map[0x8] = __pgprot(page_none);
2660 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2661 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2662 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2663 protection_map[0xc] = __pgprot(page_readonly);
2664 protection_map[0xd] = __pgprot(page_readonly);
2665 protection_map[0xe] = __pgprot(page_shared);
2666 protection_map[0xf] = __pgprot(page_shared);
2667 }
2668
2669 static void __init sun4u_pgprot_init(void)
2670 {
2671 unsigned long page_none, page_shared, page_copy, page_readonly;
2672 unsigned long page_exec_bit;
2673 int i;
2674
2675 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2676 _PAGE_CACHE_4U | _PAGE_P_4U |
2677 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2678 _PAGE_EXEC_4U);
2679 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2680 _PAGE_CACHE_4U | _PAGE_P_4U |
2681 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2682 _PAGE_EXEC_4U | _PAGE_L_4U);
2683
2684 _PAGE_IE = _PAGE_IE_4U;
2685 _PAGE_E = _PAGE_E_4U;
2686 _PAGE_CACHE = _PAGE_CACHE_4U;
2687
2688 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2689 __ACCESS_BITS_4U | _PAGE_E_4U);
2690
2691 #ifdef CONFIG_DEBUG_PAGEALLOC
2692 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2693 #else
2694 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2695 PAGE_OFFSET;
2696 #endif
2697 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2698 _PAGE_P_4U | _PAGE_W_4U);
2699
2700 for (i = 1; i < 4; i++)
2701 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2702
2703 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2704 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2705 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2706
2707
2708 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2709 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2710 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2711 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2712 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2713 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2714 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2715
2716 page_exec_bit = _PAGE_EXEC_4U;
2717
2718 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2719 page_exec_bit);
2720 }
2721
2722 static void __init sun4v_pgprot_init(void)
2723 {
2724 unsigned long page_none, page_shared, page_copy, page_readonly;
2725 unsigned long page_exec_bit;
2726 int i;
2727
2728 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2729 page_cache4v_flag | _PAGE_P_4V |
2730 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2731 _PAGE_EXEC_4V);
2732 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2733
2734 _PAGE_IE = _PAGE_IE_4V;
2735 _PAGE_E = _PAGE_E_4V;
2736 _PAGE_CACHE = page_cache4v_flag;
2737
2738 #ifdef CONFIG_DEBUG_PAGEALLOC
2739 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2740 #else
2741 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2742 PAGE_OFFSET;
2743 #endif
2744 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2745 _PAGE_W_4V);
2746
2747 for (i = 1; i < 4; i++)
2748 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2749
2750 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2751 __ACCESS_BITS_4V | _PAGE_E_4V);
2752
2753 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2754 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2755 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2756 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2757
2758 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2759 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2760 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2761 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2762 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2763 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2764 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2765
2766 page_exec_bit = _PAGE_EXEC_4V;
2767
2768 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2769 page_exec_bit);
2770 }
2771
2772 unsigned long pte_sz_bits(unsigned long sz)
2773 {
2774 if (tlb_type == hypervisor) {
2775 switch (sz) {
2776 case 8 * 1024:
2777 default:
2778 return _PAGE_SZ8K_4V;
2779 case 64 * 1024:
2780 return _PAGE_SZ64K_4V;
2781 case 512 * 1024:
2782 return _PAGE_SZ512K_4V;
2783 case 4 * 1024 * 1024:
2784 return _PAGE_SZ4MB_4V;
2785 }
2786 } else {
2787 switch (sz) {
2788 case 8 * 1024:
2789 default:
2790 return _PAGE_SZ8K_4U;
2791 case 64 * 1024:
2792 return _PAGE_SZ64K_4U;
2793 case 512 * 1024:
2794 return _PAGE_SZ512K_4U;
2795 case 4 * 1024 * 1024:
2796 return _PAGE_SZ4MB_4U;
2797 }
2798 }
2799 }
2800
2801 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2802 {
2803 pte_t pte;
2804
2805 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2806 pte_val(pte) |= (((unsigned long)space) << 32);
2807 pte_val(pte) |= pte_sz_bits(page_size);
2808
2809 return pte;
2810 }
2811
2812 static unsigned long kern_large_tte(unsigned long paddr)
2813 {
2814 unsigned long val;
2815
2816 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2817 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2818 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2819 if (tlb_type == hypervisor)
2820 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2821 page_cache4v_flag | _PAGE_P_4V |
2822 _PAGE_EXEC_4V | _PAGE_W_4V);
2823
2824 return val | paddr;
2825 }
2826
2827 /* If not locked, zap it. */
2828 void __flush_tlb_all(void)
2829 {
2830 unsigned long pstate;
2831 int i;
2832
2833 __asm__ __volatile__("flushw\n\t"
2834 "rdpr %%pstate, %0\n\t"
2835 "wrpr %0, %1, %%pstate"
2836 : "=r" (pstate)
2837 : "i" (PSTATE_IE));
2838 if (tlb_type == hypervisor) {
2839 sun4v_mmu_demap_all();
2840 } else if (tlb_type == spitfire) {
2841 for (i = 0; i < 64; i++) {
2842 /* Spitfire Errata #32 workaround */
2843 /* NOTE: Always runs on spitfire, so no
2844 * cheetah+ page size encodings.
2845 */
2846 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2847 "flush %%g6"
2848 : /* No outputs */
2849 : "r" (0),
2850 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2851
2852 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2853 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2854 "membar #Sync"
2855 : /* no outputs */
2856 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2857 spitfire_put_dtlb_data(i, 0x0UL);
2858 }
2859
2860 /* Spitfire Errata #32 workaround */
2861 /* NOTE: Always runs on spitfire, so no
2862 * cheetah+ page size encodings.
2863 */
2864 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2865 "flush %%g6"
2866 : /* No outputs */
2867 : "r" (0),
2868 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2869
2870 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2871 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2872 "membar #Sync"
2873 : /* no outputs */
2874 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2875 spitfire_put_itlb_data(i, 0x0UL);
2876 }
2877 }
2878 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2879 cheetah_flush_dtlb_all();
2880 cheetah_flush_itlb_all();
2881 }
2882 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2883 : : "r" (pstate));
2884 }
2885
2886 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2887 unsigned long address)
2888 {
2889 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2890 pte_t *pte = NULL;
2891
2892 if (page)
2893 pte = (pte_t *) page_address(page);
2894
2895 return pte;
2896 }
2897
2898 pgtable_t pte_alloc_one(struct mm_struct *mm,
2899 unsigned long address)
2900 {
2901 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2902 if (!page)
2903 return NULL;
2904 if (!pgtable_page_ctor(page)) {
2905 free_hot_cold_page(page, 0);
2906 return NULL;
2907 }
2908 return (pte_t *) page_address(page);
2909 }
2910
2911 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2912 {
2913 free_page((unsigned long)pte);
2914 }
2915
2916 static void __pte_free(pgtable_t pte)
2917 {
2918 struct page *page = virt_to_page(pte);
2919
2920 pgtable_page_dtor(page);
2921 __free_page(page);
2922 }
2923
2924 void pte_free(struct mm_struct *mm, pgtable_t pte)
2925 {
2926 __pte_free(pte);
2927 }
2928
2929 void pgtable_free(void *table, bool is_page)
2930 {
2931 if (is_page)
2932 __pte_free(table);
2933 else
2934 kmem_cache_free(pgtable_cache, table);
2935 }
2936
2937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2938 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2939 pmd_t *pmd)
2940 {
2941 unsigned long pte, flags;
2942 struct mm_struct *mm;
2943 pmd_t entry = *pmd;
2944
2945 if (!pmd_large(entry) || !pmd_young(entry))
2946 return;
2947
2948 pte = pmd_val(entry);
2949
2950 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2951 if (!(pte & _PAGE_VALID))
2952 return;
2953
2954 /* We are fabricating 8MB pages using 4MB real hw pages. */
2955 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2956
2957 mm = vma->vm_mm;
2958
2959 spin_lock_irqsave(&mm->context.lock, flags);
2960
2961 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2962 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2963 addr, pte);
2964
2965 spin_unlock_irqrestore(&mm->context.lock, flags);
2966 }
2967 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2968
2969 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2970 static void context_reload(void *__data)
2971 {
2972 struct mm_struct *mm = __data;
2973
2974 if (mm == current->mm)
2975 load_secondary_context(mm);
2976 }
2977
2978 void hugetlb_setup(struct pt_regs *regs)
2979 {
2980 struct mm_struct *mm = current->mm;
2981 struct tsb_config *tp;
2982
2983 if (faulthandler_disabled() || !mm) {
2984 const struct exception_table_entry *entry;
2985
2986 entry = search_exception_tables(regs->tpc);
2987 if (entry) {
2988 regs->tpc = entry->fixup;
2989 regs->tnpc = regs->tpc + 4;
2990 return;
2991 }
2992 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2993 die_if_kernel("HugeTSB in atomic", regs);
2994 }
2995
2996 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2997 if (likely(tp->tsb == NULL))
2998 tsb_grow(mm, MM_TSB_HUGE, 0);
2999
3000 tsb_context_switch(mm);
3001 smp_tsb_sync(mm);
3002
3003 /* On UltraSPARC-III+ and later, configure the second half of
3004 * the Data-TLB for huge pages.
3005 */
3006 if (tlb_type == cheetah_plus) {
3007 bool need_context_reload = false;
3008 unsigned long ctx;
3009
3010 spin_lock_irq(&ctx_alloc_lock);
3011 ctx = mm->context.sparc64_ctx_val;
3012 ctx &= ~CTX_PGSZ_MASK;
3013 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3014 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3015
3016 if (ctx != mm->context.sparc64_ctx_val) {
3017 /* When changing the page size fields, we
3018 * must perform a context flush so that no
3019 * stale entries match. This flush must
3020 * occur with the original context register
3021 * settings.
3022 */
3023 do_flush_tlb_mm(mm);
3024
3025 /* Reload the context register of all processors
3026 * also executing in this address space.
3027 */
3028 mm->context.sparc64_ctx_val = ctx;
3029 need_context_reload = true;
3030 }
3031 spin_unlock_irq(&ctx_alloc_lock);
3032
3033 if (need_context_reload)
3034 on_each_cpu(context_reload, mm, 0);
3035 }
3036 }
3037 #endif
3038
3039 static struct resource code_resource = {
3040 .name = "Kernel code",
3041 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3042 };
3043
3044 static struct resource data_resource = {
3045 .name = "Kernel data",
3046 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3047 };
3048
3049 static struct resource bss_resource = {
3050 .name = "Kernel bss",
3051 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3052 };
3053
3054 static inline resource_size_t compute_kern_paddr(void *addr)
3055 {
3056 return (resource_size_t) (addr - KERNBASE + kern_base);
3057 }
3058
3059 static void __init kernel_lds_init(void)
3060 {
3061 code_resource.start = compute_kern_paddr(_text);
3062 code_resource.end = compute_kern_paddr(_etext - 1);
3063 data_resource.start = compute_kern_paddr(_etext);
3064 data_resource.end = compute_kern_paddr(_edata - 1);
3065 bss_resource.start = compute_kern_paddr(__bss_start);
3066 bss_resource.end = compute_kern_paddr(_end - 1);
3067 }
3068
3069 static int __init report_memory(void)
3070 {
3071 int i;
3072 struct resource *res;
3073
3074 kernel_lds_init();
3075
3076 for (i = 0; i < pavail_ents; i++) {
3077 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3078
3079 if (!res) {
3080 pr_warn("Failed to allocate source.\n");
3081 break;
3082 }
3083
3084 res->name = "System RAM";
3085 res->start = pavail[i].phys_addr;
3086 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3087 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3088
3089 if (insert_resource(&iomem_resource, res) < 0) {
3090 pr_warn("Resource insertion failed.\n");
3091 break;
3092 }
3093
3094 insert_resource(res, &code_resource);
3095 insert_resource(res, &data_resource);
3096 insert_resource(res, &bss_resource);
3097 }
3098
3099 return 0;
3100 }
3101 arch_initcall(report_memory);
3102
3103 #ifdef CONFIG_SMP
3104 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3105 #else
3106 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3107 #endif
3108
3109 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3110 {
3111 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3112 if (start < LOW_OBP_ADDRESS) {
3113 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3114 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3115 }
3116 if (end > HI_OBP_ADDRESS) {
3117 flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3118 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3119 }
3120 } else {
3121 flush_tsb_kernel_range(start, end);
3122 do_flush_tlb_kernel_range(start, end);
3123 }
3124 }