]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/sparc/mm/init_64.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / arch / sparc / mm / init_64.c
1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/extable.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory. These two
60 * bits determine what page size we use for kernel linear
61 * translations. They form an index into kern_linear_pte_xor[]. The
62 * value in the indexed slot is XOR'd with the TLB miss virtual
63 * address to form the resulting TTE. The mapping is:
64 *
65 * 0 ==> 4MB
66 * 1 ==> 256MB
67 * 2 ==> 2GB
68 * 3 ==> 16GB
69 *
70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
71 * support 2GB pages, and hopefully future cpus will support the 16GB
72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73 * if these larger page sizes are not supported by the cpu.
74 *
75 * It would be nice to determine this from the machine description
76 * 'cpu' properties, but we need to have this table setup before the
77 * MDESC is initialized.
78 */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
84 */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS 1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100 const struct linux_prom64_registers *x = a, *y = b;
101
102 if (x->phys_addr > y->phys_addr)
103 return 1;
104 if (x->phys_addr < y->phys_addr)
105 return -1;
106 return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110 struct linux_prom64_registers *regs,
111 int *num_ents)
112 {
113 phandle node = prom_finddevice("/memory");
114 int prop_size = prom_getproplen(node, property);
115 int ents, ret, i;
116
117 ents = prop_size / sizeof(struct linux_prom64_registers);
118 if (ents > MAX_BANKS) {
119 prom_printf("The machine has more %s property entries than "
120 "this kernel can support (%d).\n",
121 property, MAX_BANKS);
122 prom_halt();
123 }
124
125 ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 if (ret == -1) {
127 prom_printf("Couldn't get %s property from /memory.\n",
128 property);
129 prom_halt();
130 }
131
132 /* Sanitize what we got from the firmware, by page aligning
133 * everything.
134 */
135 for (i = 0; i < ents; i++) {
136 unsigned long base, size;
137
138 base = regs[i].phys_addr;
139 size = regs[i].reg_size;
140
141 size &= PAGE_MASK;
142 if (base & ~PAGE_MASK) {
143 unsigned long new_base = PAGE_ALIGN(base);
144
145 size -= new_base - base;
146 if ((long) size < 0L)
147 size = 0UL;
148 base = new_base;
149 }
150 if (size == 0UL) {
151 /* If it is empty, simply get rid of it.
152 * This simplifies the logic of the other
153 * functions that process these arrays.
154 */
155 memmove(&regs[i], &regs[i + 1],
156 (ents - i - 1) * sizeof(regs[0]));
157 i--;
158 ents--;
159 continue;
160 }
161 regs[i].phys_addr = base;
162 regs[i].reg_size = size;
163 }
164
165 *num_ents = ents;
166
167 sort(regs, ents, sizeof(struct linux_prom64_registers),
168 cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes. */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 __flush_dcache_page(page_address(page),
207 ((tlb_type == spitfire) &&
208 page_mapping(page) != NULL));
209 #else
210 if (page_mapping(page) != NULL &&
211 tlb_type == spitfire)
212 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty PG_arch_1
217 #define PG_dcache_cpu_shift 32UL
218 #define PG_dcache_cpu_mask \
219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 unsigned long mask = this_cpu;
227 unsigned long non_cpu_bits;
228
229 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232 __asm__ __volatile__("1:\n\t"
233 "ldx [%2], %%g7\n\t"
234 "and %%g7, %1, %%g1\n\t"
235 "or %%g1, %0, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
237 "cmp %%g7, %%g1\n\t"
238 "bne,pn %%xcc, 1b\n\t"
239 " nop"
240 : /* no outputs */
241 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 unsigned long mask = (1UL << PG_dcache_dirty);
248
249 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 "1:\n\t"
251 "ldx [%2], %%g7\n\t"
252 "srlx %%g7, %4, %%g1\n\t"
253 "and %%g1, %3, %%g1\n\t"
254 "cmp %%g1, %0\n\t"
255 "bne,pn %%icc, 2f\n\t"
256 " andn %%g7, %1, %%g1\n\t"
257 "casx [%2], %%g7, %%g1\n\t"
258 "cmp %%g7, %%g1\n\t"
259 "bne,pn %%xcc, 1b\n\t"
260 " nop\n"
261 "2:"
262 : /* no outputs */
263 : "r" (cpu), "r" (mask), "r" (&page->flags),
264 "i" (PG_dcache_cpu_mask),
265 "i" (PG_dcache_cpu_shift)
266 : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 unsigned long tsb_addr = (unsigned long) ent;
272
273 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 tsb_addr = __pa(tsb_addr);
275
276 __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283 struct page *page;
284
285 page = pfn_to_page(pfn);
286 if (page) {
287 unsigned long pg_flags;
288
289 pg_flags = page->flags;
290 if (pg_flags & (1UL << PG_dcache_dirty)) {
291 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 PG_dcache_cpu_mask);
293 int this_cpu = get_cpu();
294
295 /* This is just to optimize away some function calls
296 * in the SMP case.
297 */
298 if (cpu == this_cpu)
299 flush_dcache_page_impl(page);
300 else
301 smp_flush_dcache_page_impl(page, cpu);
302
303 clear_dcache_dirty_cpu(page, cpu);
304
305 put_cpu();
306 }
307 }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 unsigned long tsb_hash_shift, unsigned long address,
313 unsigned long tte)
314 {
315 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 unsigned long tag;
317
318 if (unlikely(!tsb))
319 return;
320
321 tsb += ((address >> tsb_hash_shift) &
322 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 tag = (address >> 22UL);
324 tsb_insert(tsb, tag, tte);
325 }
326
327 #ifdef CONFIG_HUGETLB_PAGE
328 static int __init setup_hugepagesz(char *string)
329 {
330 unsigned long long hugepage_size;
331 unsigned int hugepage_shift;
332 unsigned short hv_pgsz_idx;
333 unsigned int hv_pgsz_mask;
334 int rc = 0;
335
336 hugepage_size = memparse(string, &string);
337 hugepage_shift = ilog2(hugepage_size);
338
339 switch (hugepage_shift) {
340 case HPAGE_256MB_SHIFT:
341 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
342 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
343 break;
344 case HPAGE_SHIFT:
345 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
346 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
347 break;
348 case HPAGE_64K_SHIFT:
349 hv_pgsz_mask = HV_PGSZ_MASK_64K;
350 hv_pgsz_idx = HV_PGSZ_IDX_64K;
351 break;
352 default:
353 hv_pgsz_mask = 0;
354 }
355
356 if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
357 pr_warn("hugepagesz=%llu not supported by MMU.\n",
358 hugepage_size);
359 goto out;
360 }
361
362 hugetlb_add_hstate(hugepage_shift - PAGE_SHIFT);
363 rc = 1;
364
365 out:
366 return rc;
367 }
368 __setup("hugepagesz=", setup_hugepagesz);
369 #endif /* CONFIG_HUGETLB_PAGE */
370
371 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
372 {
373 struct mm_struct *mm;
374 unsigned long flags;
375 pte_t pte = *ptep;
376
377 if (tlb_type != hypervisor) {
378 unsigned long pfn = pte_pfn(pte);
379
380 if (pfn_valid(pfn))
381 flush_dcache(pfn);
382 }
383
384 mm = vma->vm_mm;
385
386 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
387 if (!pte_accessible(mm, pte))
388 return;
389
390 spin_lock_irqsave(&mm->context.lock, flags);
391
392 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
393 if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
394 is_hugetlb_pmd(__pmd(pte_val(pte)))) {
395 /* We are fabricating 8MB pages using 4MB real hw pages. */
396 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
397 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
398 address, pte_val(pte));
399 } else
400 #endif
401 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
402 address, pte_val(pte));
403
404 spin_unlock_irqrestore(&mm->context.lock, flags);
405 }
406
407 void flush_dcache_page(struct page *page)
408 {
409 struct address_space *mapping;
410 int this_cpu;
411
412 if (tlb_type == hypervisor)
413 return;
414
415 /* Do not bother with the expensive D-cache flush if it
416 * is merely the zero page. The 'bigcore' testcase in GDB
417 * causes this case to run millions of times.
418 */
419 if (page == ZERO_PAGE(0))
420 return;
421
422 this_cpu = get_cpu();
423
424 mapping = page_mapping(page);
425 if (mapping && !mapping_mapped(mapping)) {
426 int dirty = test_bit(PG_dcache_dirty, &page->flags);
427 if (dirty) {
428 int dirty_cpu = dcache_dirty_cpu(page);
429
430 if (dirty_cpu == this_cpu)
431 goto out;
432 smp_flush_dcache_page_impl(page, dirty_cpu);
433 }
434 set_dcache_dirty(page, this_cpu);
435 } else {
436 /* We could delay the flush for the !page_mapping
437 * case too. But that case is for exec env/arg
438 * pages and those are %99 certainly going to get
439 * faulted into the tlb (and thus flushed) anyways.
440 */
441 flush_dcache_page_impl(page);
442 }
443
444 out:
445 put_cpu();
446 }
447 EXPORT_SYMBOL(flush_dcache_page);
448
449 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
450 {
451 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
452 if (tlb_type == spitfire) {
453 unsigned long kaddr;
454
455 /* This code only runs on Spitfire cpus so this is
456 * why we can assume _PAGE_PADDR_4U.
457 */
458 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
459 unsigned long paddr, mask = _PAGE_PADDR_4U;
460
461 if (kaddr >= PAGE_OFFSET)
462 paddr = kaddr & mask;
463 else {
464 pgd_t *pgdp = pgd_offset_k(kaddr);
465 pud_t *pudp = pud_offset(pgdp, kaddr);
466 pmd_t *pmdp = pmd_offset(pudp, kaddr);
467 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
468
469 paddr = pte_val(*ptep) & mask;
470 }
471 __flush_icache_page(paddr);
472 }
473 }
474 }
475 EXPORT_SYMBOL(flush_icache_range);
476
477 void mmu_info(struct seq_file *m)
478 {
479 static const char *pgsz_strings[] = {
480 "8K", "64K", "512K", "4MB", "32MB",
481 "256MB", "2GB", "16GB",
482 };
483 int i, printed;
484
485 if (tlb_type == cheetah)
486 seq_printf(m, "MMU Type\t: Cheetah\n");
487 else if (tlb_type == cheetah_plus)
488 seq_printf(m, "MMU Type\t: Cheetah+\n");
489 else if (tlb_type == spitfire)
490 seq_printf(m, "MMU Type\t: Spitfire\n");
491 else if (tlb_type == hypervisor)
492 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
493 else
494 seq_printf(m, "MMU Type\t: ???\n");
495
496 seq_printf(m, "MMU PGSZs\t: ");
497 printed = 0;
498 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
499 if (cpu_pgsz_mask & (1UL << i)) {
500 seq_printf(m, "%s%s",
501 printed ? "," : "", pgsz_strings[i]);
502 printed++;
503 }
504 }
505 seq_putc(m, '\n');
506
507 #ifdef CONFIG_DEBUG_DCFLUSH
508 seq_printf(m, "DCPageFlushes\t: %d\n",
509 atomic_read(&dcpage_flushes));
510 #ifdef CONFIG_SMP
511 seq_printf(m, "DCPageFlushesXC\t: %d\n",
512 atomic_read(&dcpage_flushes_xcall));
513 #endif /* CONFIG_SMP */
514 #endif /* CONFIG_DEBUG_DCFLUSH */
515 }
516
517 struct linux_prom_translation prom_trans[512] __read_mostly;
518 unsigned int prom_trans_ents __read_mostly;
519
520 unsigned long kern_locked_tte_data;
521
522 /* The obp translations are saved based on 8k pagesize, since obp can
523 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
524 * HI_OBP_ADDRESS range are handled in ktlb.S.
525 */
526 static inline int in_obp_range(unsigned long vaddr)
527 {
528 return (vaddr >= LOW_OBP_ADDRESS &&
529 vaddr < HI_OBP_ADDRESS);
530 }
531
532 static int cmp_ptrans(const void *a, const void *b)
533 {
534 const struct linux_prom_translation *x = a, *y = b;
535
536 if (x->virt > y->virt)
537 return 1;
538 if (x->virt < y->virt)
539 return -1;
540 return 0;
541 }
542
543 /* Read OBP translations property into 'prom_trans[]'. */
544 static void __init read_obp_translations(void)
545 {
546 int n, node, ents, first, last, i;
547
548 node = prom_finddevice("/virtual-memory");
549 n = prom_getproplen(node, "translations");
550 if (unlikely(n == 0 || n == -1)) {
551 prom_printf("prom_mappings: Couldn't get size.\n");
552 prom_halt();
553 }
554 if (unlikely(n > sizeof(prom_trans))) {
555 prom_printf("prom_mappings: Size %d is too big.\n", n);
556 prom_halt();
557 }
558
559 if ((n = prom_getproperty(node, "translations",
560 (char *)&prom_trans[0],
561 sizeof(prom_trans))) == -1) {
562 prom_printf("prom_mappings: Couldn't get property.\n");
563 prom_halt();
564 }
565
566 n = n / sizeof(struct linux_prom_translation);
567
568 ents = n;
569
570 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
571 cmp_ptrans, NULL);
572
573 /* Now kick out all the non-OBP entries. */
574 for (i = 0; i < ents; i++) {
575 if (in_obp_range(prom_trans[i].virt))
576 break;
577 }
578 first = i;
579 for (; i < ents; i++) {
580 if (!in_obp_range(prom_trans[i].virt))
581 break;
582 }
583 last = i;
584
585 for (i = 0; i < (last - first); i++) {
586 struct linux_prom_translation *src = &prom_trans[i + first];
587 struct linux_prom_translation *dest = &prom_trans[i];
588
589 *dest = *src;
590 }
591 for (; i < ents; i++) {
592 struct linux_prom_translation *dest = &prom_trans[i];
593 dest->virt = dest->size = dest->data = 0x0UL;
594 }
595
596 prom_trans_ents = last - first;
597
598 if (tlb_type == spitfire) {
599 /* Clear diag TTE bits. */
600 for (i = 0; i < prom_trans_ents; i++)
601 prom_trans[i].data &= ~0x0003fe0000000000UL;
602 }
603
604 /* Force execute bit on. */
605 for (i = 0; i < prom_trans_ents; i++)
606 prom_trans[i].data |= (tlb_type == hypervisor ?
607 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
608 }
609
610 static void __init hypervisor_tlb_lock(unsigned long vaddr,
611 unsigned long pte,
612 unsigned long mmu)
613 {
614 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
615
616 if (ret != 0) {
617 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
618 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
619 prom_halt();
620 }
621 }
622
623 static unsigned long kern_large_tte(unsigned long paddr);
624
625 static void __init remap_kernel(void)
626 {
627 unsigned long phys_page, tte_vaddr, tte_data;
628 int i, tlb_ent = sparc64_highest_locked_tlbent();
629
630 tte_vaddr = (unsigned long) KERNBASE;
631 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
632 tte_data = kern_large_tte(phys_page);
633
634 kern_locked_tte_data = tte_data;
635
636 /* Now lock us into the TLBs via Hypervisor or OBP. */
637 if (tlb_type == hypervisor) {
638 for (i = 0; i < num_kernel_image_mappings; i++) {
639 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
640 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
641 tte_vaddr += 0x400000;
642 tte_data += 0x400000;
643 }
644 } else {
645 for (i = 0; i < num_kernel_image_mappings; i++) {
646 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
647 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
648 tte_vaddr += 0x400000;
649 tte_data += 0x400000;
650 }
651 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
652 }
653 if (tlb_type == cheetah_plus) {
654 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
655 CTX_CHEETAH_PLUS_NUC);
656 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
657 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
658 }
659 }
660
661
662 static void __init inherit_prom_mappings(void)
663 {
664 /* Now fixup OBP's idea about where we really are mapped. */
665 printk("Remapping the kernel... ");
666 remap_kernel();
667 printk("done.\n");
668 }
669
670 void prom_world(int enter)
671 {
672 if (!enter)
673 set_fs(get_fs());
674
675 __asm__ __volatile__("flushw");
676 }
677
678 void __flush_dcache_range(unsigned long start, unsigned long end)
679 {
680 unsigned long va;
681
682 if (tlb_type == spitfire) {
683 int n = 0;
684
685 for (va = start; va < end; va += 32) {
686 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
687 if (++n >= 512)
688 break;
689 }
690 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
691 start = __pa(start);
692 end = __pa(end);
693 for (va = start; va < end; va += 32)
694 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
695 "membar #Sync"
696 : /* no outputs */
697 : "r" (va),
698 "i" (ASI_DCACHE_INVALIDATE));
699 }
700 }
701 EXPORT_SYMBOL(__flush_dcache_range);
702
703 /* get_new_mmu_context() uses "cache + 1". */
704 DEFINE_SPINLOCK(ctx_alloc_lock);
705 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
706 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
707 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
708 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
709
710 /* Caller does TLB context flushing on local CPU if necessary.
711 * The caller also ensures that CTX_VALID(mm->context) is false.
712 *
713 * We must be careful about boundary cases so that we never
714 * let the user have CTX 0 (nucleus) or we ever use a CTX
715 * version of zero (and thus NO_CONTEXT would not be caught
716 * by version mis-match tests in mmu_context.h).
717 *
718 * Always invoked with interrupts disabled.
719 */
720 void get_new_mmu_context(struct mm_struct *mm)
721 {
722 unsigned long ctx, new_ctx;
723 unsigned long orig_pgsz_bits;
724 int new_version;
725
726 spin_lock(&ctx_alloc_lock);
727 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
728 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
729 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
730 new_version = 0;
731 if (new_ctx >= (1 << CTX_NR_BITS)) {
732 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
733 if (new_ctx >= ctx) {
734 int i;
735 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
736 CTX_FIRST_VERSION;
737 if (new_ctx == 1)
738 new_ctx = CTX_FIRST_VERSION;
739
740 /* Don't call memset, for 16 entries that's just
741 * plain silly...
742 */
743 mmu_context_bmap[0] = 3;
744 mmu_context_bmap[1] = 0;
745 mmu_context_bmap[2] = 0;
746 mmu_context_bmap[3] = 0;
747 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
748 mmu_context_bmap[i + 0] = 0;
749 mmu_context_bmap[i + 1] = 0;
750 mmu_context_bmap[i + 2] = 0;
751 mmu_context_bmap[i + 3] = 0;
752 }
753 new_version = 1;
754 goto out;
755 }
756 }
757 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
758 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
759 out:
760 tlb_context_cache = new_ctx;
761 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
762 spin_unlock(&ctx_alloc_lock);
763
764 if (unlikely(new_version))
765 smp_new_mmu_context_version();
766 }
767
768 static int numa_enabled = 1;
769 static int numa_debug;
770
771 static int __init early_numa(char *p)
772 {
773 if (!p)
774 return 0;
775
776 if (strstr(p, "off"))
777 numa_enabled = 0;
778
779 if (strstr(p, "debug"))
780 numa_debug = 1;
781
782 return 0;
783 }
784 early_param("numa", early_numa);
785
786 #define numadbg(f, a...) \
787 do { if (numa_debug) \
788 printk(KERN_INFO f, ## a); \
789 } while (0)
790
791 static void __init find_ramdisk(unsigned long phys_base)
792 {
793 #ifdef CONFIG_BLK_DEV_INITRD
794 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
795 unsigned long ramdisk_image;
796
797 /* Older versions of the bootloader only supported a
798 * 32-bit physical address for the ramdisk image
799 * location, stored at sparc_ramdisk_image. Newer
800 * SILO versions set sparc_ramdisk_image to zero and
801 * provide a full 64-bit physical address at
802 * sparc_ramdisk_image64.
803 */
804 ramdisk_image = sparc_ramdisk_image;
805 if (!ramdisk_image)
806 ramdisk_image = sparc_ramdisk_image64;
807
808 /* Another bootloader quirk. The bootloader normalizes
809 * the physical address to KERNBASE, so we have to
810 * factor that back out and add in the lowest valid
811 * physical page address to get the true physical address.
812 */
813 ramdisk_image -= KERNBASE;
814 ramdisk_image += phys_base;
815
816 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
817 ramdisk_image, sparc_ramdisk_size);
818
819 initrd_start = ramdisk_image;
820 initrd_end = ramdisk_image + sparc_ramdisk_size;
821
822 memblock_reserve(initrd_start, sparc_ramdisk_size);
823
824 initrd_start += PAGE_OFFSET;
825 initrd_end += PAGE_OFFSET;
826 }
827 #endif
828 }
829
830 struct node_mem_mask {
831 unsigned long mask;
832 unsigned long match;
833 };
834 static struct node_mem_mask node_masks[MAX_NUMNODES];
835 static int num_node_masks;
836
837 #ifdef CONFIG_NEED_MULTIPLE_NODES
838
839 struct mdesc_mlgroup {
840 u64 node;
841 u64 latency;
842 u64 match;
843 u64 mask;
844 };
845
846 static struct mdesc_mlgroup *mlgroups;
847 static int num_mlgroups;
848
849 int numa_cpu_lookup_table[NR_CPUS];
850 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
851
852 struct mdesc_mblock {
853 u64 base;
854 u64 size;
855 u64 offset; /* RA-to-PA */
856 };
857 static struct mdesc_mblock *mblocks;
858 static int num_mblocks;
859
860 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
861 {
862 struct mdesc_mblock *m = NULL;
863 int i;
864
865 for (i = 0; i < num_mblocks; i++) {
866 m = &mblocks[i];
867
868 if (addr >= m->base &&
869 addr < (m->base + m->size)) {
870 break;
871 }
872 }
873
874 return m;
875 }
876
877 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
878 {
879 int prev_nid, new_nid;
880
881 prev_nid = -1;
882 for ( ; start < end; start += PAGE_SIZE) {
883 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
884 struct node_mem_mask *p = &node_masks[new_nid];
885
886 if ((start & p->mask) == p->match) {
887 if (prev_nid == -1)
888 prev_nid = new_nid;
889 break;
890 }
891 }
892
893 if (new_nid == num_node_masks) {
894 prev_nid = 0;
895 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
896 start);
897 break;
898 }
899
900 if (prev_nid != new_nid)
901 break;
902 }
903 *nid = prev_nid;
904
905 return start > end ? end : start;
906 }
907
908 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
909 {
910 u64 ret_end, pa_start, m_mask, m_match, m_end;
911 struct mdesc_mblock *mblock;
912 int _nid, i;
913
914 if (tlb_type != hypervisor)
915 return memblock_nid_range_sun4u(start, end, nid);
916
917 mblock = addr_to_mblock(start);
918 if (!mblock) {
919 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
920 start);
921
922 _nid = 0;
923 ret_end = end;
924 goto done;
925 }
926
927 pa_start = start + mblock->offset;
928 m_match = 0;
929 m_mask = 0;
930
931 for (_nid = 0; _nid < num_node_masks; _nid++) {
932 struct node_mem_mask *const m = &node_masks[_nid];
933
934 if ((pa_start & m->mask) == m->match) {
935 m_match = m->match;
936 m_mask = m->mask;
937 break;
938 }
939 }
940
941 if (num_node_masks == _nid) {
942 /* We could not find NUMA group, so default to 0, but lets
943 * search for latency group, so we could calculate the correct
944 * end address that we return
945 */
946 _nid = 0;
947
948 for (i = 0; i < num_mlgroups; i++) {
949 struct mdesc_mlgroup *const m = &mlgroups[i];
950
951 if ((pa_start & m->mask) == m->match) {
952 m_match = m->match;
953 m_mask = m->mask;
954 break;
955 }
956 }
957
958 if (i == num_mlgroups) {
959 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
960 start);
961
962 ret_end = end;
963 goto done;
964 }
965 }
966
967 /*
968 * Each latency group has match and mask, and each memory block has an
969 * offset. An address belongs to a latency group if its address matches
970 * the following formula: ((addr + offset) & mask) == match
971 * It is, however, slow to check every single page if it matches a
972 * particular latency group. As optimization we calculate end value by
973 * using bit arithmetics.
974 */
975 m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
976 m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
977 ret_end = m_end > end ? end : m_end;
978
979 done:
980 *nid = _nid;
981 return ret_end;
982 }
983 #endif
984
985 /* This must be invoked after performing all of the necessary
986 * memblock_set_node() calls for 'nid'. We need to be able to get
987 * correct data from get_pfn_range_for_nid().
988 */
989 static void __init allocate_node_data(int nid)
990 {
991 struct pglist_data *p;
992 unsigned long start_pfn, end_pfn;
993 #ifdef CONFIG_NEED_MULTIPLE_NODES
994 unsigned long paddr;
995
996 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
997 if (!paddr) {
998 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
999 prom_halt();
1000 }
1001 NODE_DATA(nid) = __va(paddr);
1002 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1003
1004 NODE_DATA(nid)->node_id = nid;
1005 #endif
1006
1007 p = NODE_DATA(nid);
1008
1009 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1010 p->node_start_pfn = start_pfn;
1011 p->node_spanned_pages = end_pfn - start_pfn;
1012 }
1013
1014 static void init_node_masks_nonnuma(void)
1015 {
1016 #ifdef CONFIG_NEED_MULTIPLE_NODES
1017 int i;
1018 #endif
1019
1020 numadbg("Initializing tables for non-numa.\n");
1021
1022 node_masks[0].mask = 0;
1023 node_masks[0].match = 0;
1024 num_node_masks = 1;
1025
1026 #ifdef CONFIG_NEED_MULTIPLE_NODES
1027 for (i = 0; i < NR_CPUS; i++)
1028 numa_cpu_lookup_table[i] = 0;
1029
1030 cpumask_setall(&numa_cpumask_lookup_table[0]);
1031 #endif
1032 }
1033
1034 #ifdef CONFIG_NEED_MULTIPLE_NODES
1035 struct pglist_data *node_data[MAX_NUMNODES];
1036
1037 EXPORT_SYMBOL(numa_cpu_lookup_table);
1038 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1039 EXPORT_SYMBOL(node_data);
1040
1041 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1042 u32 cfg_handle)
1043 {
1044 u64 arc;
1045
1046 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1047 u64 target = mdesc_arc_target(md, arc);
1048 const u64 *val;
1049
1050 val = mdesc_get_property(md, target,
1051 "cfg-handle", NULL);
1052 if (val && *val == cfg_handle)
1053 return 0;
1054 }
1055 return -ENODEV;
1056 }
1057
1058 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1059 u32 cfg_handle)
1060 {
1061 u64 arc, candidate, best_latency = ~(u64)0;
1062
1063 candidate = MDESC_NODE_NULL;
1064 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1065 u64 target = mdesc_arc_target(md, arc);
1066 const char *name = mdesc_node_name(md, target);
1067 const u64 *val;
1068
1069 if (strcmp(name, "pio-latency-group"))
1070 continue;
1071
1072 val = mdesc_get_property(md, target, "latency", NULL);
1073 if (!val)
1074 continue;
1075
1076 if (*val < best_latency) {
1077 candidate = target;
1078 best_latency = *val;
1079 }
1080 }
1081
1082 if (candidate == MDESC_NODE_NULL)
1083 return -ENODEV;
1084
1085 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1086 }
1087
1088 int of_node_to_nid(struct device_node *dp)
1089 {
1090 const struct linux_prom64_registers *regs;
1091 struct mdesc_handle *md;
1092 u32 cfg_handle;
1093 int count, nid;
1094 u64 grp;
1095
1096 /* This is the right thing to do on currently supported
1097 * SUN4U NUMA platforms as well, as the PCI controller does
1098 * not sit behind any particular memory controller.
1099 */
1100 if (!mlgroups)
1101 return -1;
1102
1103 regs = of_get_property(dp, "reg", NULL);
1104 if (!regs)
1105 return -1;
1106
1107 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1108
1109 md = mdesc_grab();
1110
1111 count = 0;
1112 nid = -1;
1113 mdesc_for_each_node_by_name(md, grp, "group") {
1114 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1115 nid = count;
1116 break;
1117 }
1118 count++;
1119 }
1120
1121 mdesc_release(md);
1122
1123 return nid;
1124 }
1125
1126 static void __init add_node_ranges(void)
1127 {
1128 struct memblock_region *reg;
1129 unsigned long prev_max;
1130
1131 memblock_resized:
1132 prev_max = memblock.memory.max;
1133
1134 for_each_memblock(memory, reg) {
1135 unsigned long size = reg->size;
1136 unsigned long start, end;
1137
1138 start = reg->base;
1139 end = start + size;
1140 while (start < end) {
1141 unsigned long this_end;
1142 int nid;
1143
1144 this_end = memblock_nid_range(start, end, &nid);
1145
1146 numadbg("Setting memblock NUMA node nid[%d] "
1147 "start[%lx] end[%lx]\n",
1148 nid, start, this_end);
1149
1150 memblock_set_node(start, this_end - start,
1151 &memblock.memory, nid);
1152 if (memblock.memory.max != prev_max)
1153 goto memblock_resized;
1154 start = this_end;
1155 }
1156 }
1157 }
1158
1159 static int __init grab_mlgroups(struct mdesc_handle *md)
1160 {
1161 unsigned long paddr;
1162 int count = 0;
1163 u64 node;
1164
1165 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1166 count++;
1167 if (!count)
1168 return -ENOENT;
1169
1170 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1171 SMP_CACHE_BYTES);
1172 if (!paddr)
1173 return -ENOMEM;
1174
1175 mlgroups = __va(paddr);
1176 num_mlgroups = count;
1177
1178 count = 0;
1179 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1180 struct mdesc_mlgroup *m = &mlgroups[count++];
1181 const u64 *val;
1182
1183 m->node = node;
1184
1185 val = mdesc_get_property(md, node, "latency", NULL);
1186 m->latency = *val;
1187 val = mdesc_get_property(md, node, "address-match", NULL);
1188 m->match = *val;
1189 val = mdesc_get_property(md, node, "address-mask", NULL);
1190 m->mask = *val;
1191
1192 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1193 "match[%llx] mask[%llx]\n",
1194 count - 1, m->node, m->latency, m->match, m->mask);
1195 }
1196
1197 return 0;
1198 }
1199
1200 static int __init grab_mblocks(struct mdesc_handle *md)
1201 {
1202 unsigned long paddr;
1203 int count = 0;
1204 u64 node;
1205
1206 mdesc_for_each_node_by_name(md, node, "mblock")
1207 count++;
1208 if (!count)
1209 return -ENOENT;
1210
1211 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1212 SMP_CACHE_BYTES);
1213 if (!paddr)
1214 return -ENOMEM;
1215
1216 mblocks = __va(paddr);
1217 num_mblocks = count;
1218
1219 count = 0;
1220 mdesc_for_each_node_by_name(md, node, "mblock") {
1221 struct mdesc_mblock *m = &mblocks[count++];
1222 const u64 *val;
1223
1224 val = mdesc_get_property(md, node, "base", NULL);
1225 m->base = *val;
1226 val = mdesc_get_property(md, node, "size", NULL);
1227 m->size = *val;
1228 val = mdesc_get_property(md, node,
1229 "address-congruence-offset", NULL);
1230
1231 /* The address-congruence-offset property is optional.
1232 * Explicity zero it be identifty this.
1233 */
1234 if (val)
1235 m->offset = *val;
1236 else
1237 m->offset = 0UL;
1238
1239 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1240 count - 1, m->base, m->size, m->offset);
1241 }
1242
1243 return 0;
1244 }
1245
1246 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1247 u64 grp, cpumask_t *mask)
1248 {
1249 u64 arc;
1250
1251 cpumask_clear(mask);
1252
1253 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1254 u64 target = mdesc_arc_target(md, arc);
1255 const char *name = mdesc_node_name(md, target);
1256 const u64 *id;
1257
1258 if (strcmp(name, "cpu"))
1259 continue;
1260 id = mdesc_get_property(md, target, "id", NULL);
1261 if (*id < nr_cpu_ids)
1262 cpumask_set_cpu(*id, mask);
1263 }
1264 }
1265
1266 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1267 {
1268 int i;
1269
1270 for (i = 0; i < num_mlgroups; i++) {
1271 struct mdesc_mlgroup *m = &mlgroups[i];
1272 if (m->node == node)
1273 return m;
1274 }
1275 return NULL;
1276 }
1277
1278 int __node_distance(int from, int to)
1279 {
1280 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1281 pr_warn("Returning default NUMA distance value for %d->%d\n",
1282 from, to);
1283 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1284 }
1285 return numa_latency[from][to];
1286 }
1287
1288 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1289 {
1290 int i;
1291
1292 for (i = 0; i < MAX_NUMNODES; i++) {
1293 struct node_mem_mask *n = &node_masks[i];
1294
1295 if ((grp->mask == n->mask) && (grp->match == n->match))
1296 break;
1297 }
1298 return i;
1299 }
1300
1301 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1302 u64 grp, int index)
1303 {
1304 u64 arc;
1305
1306 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1307 int tnode;
1308 u64 target = mdesc_arc_target(md, arc);
1309 struct mdesc_mlgroup *m = find_mlgroup(target);
1310
1311 if (!m)
1312 continue;
1313 tnode = find_best_numa_node_for_mlgroup(m);
1314 if (tnode == MAX_NUMNODES)
1315 continue;
1316 numa_latency[index][tnode] = m->latency;
1317 }
1318 }
1319
1320 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1321 int index)
1322 {
1323 struct mdesc_mlgroup *candidate = NULL;
1324 u64 arc, best_latency = ~(u64)0;
1325 struct node_mem_mask *n;
1326
1327 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1328 u64 target = mdesc_arc_target(md, arc);
1329 struct mdesc_mlgroup *m = find_mlgroup(target);
1330 if (!m)
1331 continue;
1332 if (m->latency < best_latency) {
1333 candidate = m;
1334 best_latency = m->latency;
1335 }
1336 }
1337 if (!candidate)
1338 return -ENOENT;
1339
1340 if (num_node_masks != index) {
1341 printk(KERN_ERR "Inconsistent NUMA state, "
1342 "index[%d] != num_node_masks[%d]\n",
1343 index, num_node_masks);
1344 return -EINVAL;
1345 }
1346
1347 n = &node_masks[num_node_masks++];
1348
1349 n->mask = candidate->mask;
1350 n->match = candidate->match;
1351
1352 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1353 index, n->mask, n->match, candidate->latency);
1354
1355 return 0;
1356 }
1357
1358 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1359 int index)
1360 {
1361 cpumask_t mask;
1362 int cpu;
1363
1364 numa_parse_mdesc_group_cpus(md, grp, &mask);
1365
1366 for_each_cpu(cpu, &mask)
1367 numa_cpu_lookup_table[cpu] = index;
1368 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1369
1370 if (numa_debug) {
1371 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1372 for_each_cpu(cpu, &mask)
1373 printk("%d ", cpu);
1374 printk("]\n");
1375 }
1376
1377 return numa_attach_mlgroup(md, grp, index);
1378 }
1379
1380 static int __init numa_parse_mdesc(void)
1381 {
1382 struct mdesc_handle *md = mdesc_grab();
1383 int i, j, err, count;
1384 u64 node;
1385
1386 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1387 if (node == MDESC_NODE_NULL) {
1388 mdesc_release(md);
1389 return -ENOENT;
1390 }
1391
1392 err = grab_mblocks(md);
1393 if (err < 0)
1394 goto out;
1395
1396 err = grab_mlgroups(md);
1397 if (err < 0)
1398 goto out;
1399
1400 count = 0;
1401 mdesc_for_each_node_by_name(md, node, "group") {
1402 err = numa_parse_mdesc_group(md, node, count);
1403 if (err < 0)
1404 break;
1405 count++;
1406 }
1407
1408 count = 0;
1409 mdesc_for_each_node_by_name(md, node, "group") {
1410 find_numa_latencies_for_group(md, node, count);
1411 count++;
1412 }
1413
1414 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1415 for (i = 0; i < MAX_NUMNODES; i++) {
1416 u64 self_latency = numa_latency[i][i];
1417
1418 for (j = 0; j < MAX_NUMNODES; j++) {
1419 numa_latency[i][j] =
1420 (numa_latency[i][j] * LOCAL_DISTANCE) /
1421 self_latency;
1422 }
1423 }
1424
1425 add_node_ranges();
1426
1427 for (i = 0; i < num_node_masks; i++) {
1428 allocate_node_data(i);
1429 node_set_online(i);
1430 }
1431
1432 err = 0;
1433 out:
1434 mdesc_release(md);
1435 return err;
1436 }
1437
1438 static int __init numa_parse_jbus(void)
1439 {
1440 unsigned long cpu, index;
1441
1442 /* NUMA node id is encoded in bits 36 and higher, and there is
1443 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1444 */
1445 index = 0;
1446 for_each_present_cpu(cpu) {
1447 numa_cpu_lookup_table[cpu] = index;
1448 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1449 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1450 node_masks[index].match = cpu << 36UL;
1451
1452 index++;
1453 }
1454 num_node_masks = index;
1455
1456 add_node_ranges();
1457
1458 for (index = 0; index < num_node_masks; index++) {
1459 allocate_node_data(index);
1460 node_set_online(index);
1461 }
1462
1463 return 0;
1464 }
1465
1466 static int __init numa_parse_sun4u(void)
1467 {
1468 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1469 unsigned long ver;
1470
1471 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1472 if ((ver >> 32UL) == __JALAPENO_ID ||
1473 (ver >> 32UL) == __SERRANO_ID)
1474 return numa_parse_jbus();
1475 }
1476 return -1;
1477 }
1478
1479 static int __init bootmem_init_numa(void)
1480 {
1481 int i, j;
1482 int err = -1;
1483
1484 numadbg("bootmem_init_numa()\n");
1485
1486 /* Some sane defaults for numa latency values */
1487 for (i = 0; i < MAX_NUMNODES; i++) {
1488 for (j = 0; j < MAX_NUMNODES; j++)
1489 numa_latency[i][j] = (i == j) ?
1490 LOCAL_DISTANCE : REMOTE_DISTANCE;
1491 }
1492
1493 if (numa_enabled) {
1494 if (tlb_type == hypervisor)
1495 err = numa_parse_mdesc();
1496 else
1497 err = numa_parse_sun4u();
1498 }
1499 return err;
1500 }
1501
1502 #else
1503
1504 static int bootmem_init_numa(void)
1505 {
1506 return -1;
1507 }
1508
1509 #endif
1510
1511 static void __init bootmem_init_nonnuma(void)
1512 {
1513 unsigned long top_of_ram = memblock_end_of_DRAM();
1514 unsigned long total_ram = memblock_phys_mem_size();
1515
1516 numadbg("bootmem_init_nonnuma()\n");
1517
1518 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1519 top_of_ram, total_ram);
1520 printk(KERN_INFO "Memory hole size: %ldMB\n",
1521 (top_of_ram - total_ram) >> 20);
1522
1523 init_node_masks_nonnuma();
1524 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1525 allocate_node_data(0);
1526 node_set_online(0);
1527 }
1528
1529 static unsigned long __init bootmem_init(unsigned long phys_base)
1530 {
1531 unsigned long end_pfn;
1532
1533 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1534 max_pfn = max_low_pfn = end_pfn;
1535 min_low_pfn = (phys_base >> PAGE_SHIFT);
1536
1537 if (bootmem_init_numa() < 0)
1538 bootmem_init_nonnuma();
1539
1540 /* Dump memblock with node info. */
1541 memblock_dump_all();
1542
1543 /* XXX cpu notifier XXX */
1544
1545 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1546 sparse_init();
1547
1548 return end_pfn;
1549 }
1550
1551 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1552 static int pall_ents __initdata;
1553
1554 static unsigned long max_phys_bits = 40;
1555
1556 bool kern_addr_valid(unsigned long addr)
1557 {
1558 pgd_t *pgd;
1559 pud_t *pud;
1560 pmd_t *pmd;
1561 pte_t *pte;
1562
1563 if ((long)addr < 0L) {
1564 unsigned long pa = __pa(addr);
1565
1566 if ((addr >> max_phys_bits) != 0UL)
1567 return false;
1568
1569 return pfn_valid(pa >> PAGE_SHIFT);
1570 }
1571
1572 if (addr >= (unsigned long) KERNBASE &&
1573 addr < (unsigned long)&_end)
1574 return true;
1575
1576 pgd = pgd_offset_k(addr);
1577 if (pgd_none(*pgd))
1578 return 0;
1579
1580 pud = pud_offset(pgd, addr);
1581 if (pud_none(*pud))
1582 return 0;
1583
1584 if (pud_large(*pud))
1585 return pfn_valid(pud_pfn(*pud));
1586
1587 pmd = pmd_offset(pud, addr);
1588 if (pmd_none(*pmd))
1589 return 0;
1590
1591 if (pmd_large(*pmd))
1592 return pfn_valid(pmd_pfn(*pmd));
1593
1594 pte = pte_offset_kernel(pmd, addr);
1595 if (pte_none(*pte))
1596 return 0;
1597
1598 return pfn_valid(pte_pfn(*pte));
1599 }
1600 EXPORT_SYMBOL(kern_addr_valid);
1601
1602 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1603 unsigned long vend,
1604 pud_t *pud)
1605 {
1606 const unsigned long mask16gb = (1UL << 34) - 1UL;
1607 u64 pte_val = vstart;
1608
1609 /* Each PUD is 8GB */
1610 if ((vstart & mask16gb) ||
1611 (vend - vstart <= mask16gb)) {
1612 pte_val ^= kern_linear_pte_xor[2];
1613 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1614
1615 return vstart + PUD_SIZE;
1616 }
1617
1618 pte_val ^= kern_linear_pte_xor[3];
1619 pte_val |= _PAGE_PUD_HUGE;
1620
1621 vend = vstart + mask16gb + 1UL;
1622 while (vstart < vend) {
1623 pud_val(*pud) = pte_val;
1624
1625 pte_val += PUD_SIZE;
1626 vstart += PUD_SIZE;
1627 pud++;
1628 }
1629 return vstart;
1630 }
1631
1632 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1633 bool guard)
1634 {
1635 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1636 return true;
1637
1638 return false;
1639 }
1640
1641 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1642 unsigned long vend,
1643 pmd_t *pmd)
1644 {
1645 const unsigned long mask256mb = (1UL << 28) - 1UL;
1646 const unsigned long mask2gb = (1UL << 31) - 1UL;
1647 u64 pte_val = vstart;
1648
1649 /* Each PMD is 8MB */
1650 if ((vstart & mask256mb) ||
1651 (vend - vstart <= mask256mb)) {
1652 pte_val ^= kern_linear_pte_xor[0];
1653 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1654
1655 return vstart + PMD_SIZE;
1656 }
1657
1658 if ((vstart & mask2gb) ||
1659 (vend - vstart <= mask2gb)) {
1660 pte_val ^= kern_linear_pte_xor[1];
1661 pte_val |= _PAGE_PMD_HUGE;
1662 vend = vstart + mask256mb + 1UL;
1663 } else {
1664 pte_val ^= kern_linear_pte_xor[2];
1665 pte_val |= _PAGE_PMD_HUGE;
1666 vend = vstart + mask2gb + 1UL;
1667 }
1668
1669 while (vstart < vend) {
1670 pmd_val(*pmd) = pte_val;
1671
1672 pte_val += PMD_SIZE;
1673 vstart += PMD_SIZE;
1674 pmd++;
1675 }
1676
1677 return vstart;
1678 }
1679
1680 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1681 bool guard)
1682 {
1683 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1684 return true;
1685
1686 return false;
1687 }
1688
1689 static unsigned long __ref kernel_map_range(unsigned long pstart,
1690 unsigned long pend, pgprot_t prot,
1691 bool use_huge)
1692 {
1693 unsigned long vstart = PAGE_OFFSET + pstart;
1694 unsigned long vend = PAGE_OFFSET + pend;
1695 unsigned long alloc_bytes = 0UL;
1696
1697 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1698 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1699 vstart, vend);
1700 prom_halt();
1701 }
1702
1703 while (vstart < vend) {
1704 unsigned long this_end, paddr = __pa(vstart);
1705 pgd_t *pgd = pgd_offset_k(vstart);
1706 pud_t *pud;
1707 pmd_t *pmd;
1708 pte_t *pte;
1709
1710 if (pgd_none(*pgd)) {
1711 pud_t *new;
1712
1713 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1714 alloc_bytes += PAGE_SIZE;
1715 pgd_populate(&init_mm, pgd, new);
1716 }
1717 pud = pud_offset(pgd, vstart);
1718 if (pud_none(*pud)) {
1719 pmd_t *new;
1720
1721 if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1722 vstart = kernel_map_hugepud(vstart, vend, pud);
1723 continue;
1724 }
1725 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1726 alloc_bytes += PAGE_SIZE;
1727 pud_populate(&init_mm, pud, new);
1728 }
1729
1730 pmd = pmd_offset(pud, vstart);
1731 if (pmd_none(*pmd)) {
1732 pte_t *new;
1733
1734 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1735 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1736 continue;
1737 }
1738 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1739 alloc_bytes += PAGE_SIZE;
1740 pmd_populate_kernel(&init_mm, pmd, new);
1741 }
1742
1743 pte = pte_offset_kernel(pmd, vstart);
1744 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1745 if (this_end > vend)
1746 this_end = vend;
1747
1748 while (vstart < this_end) {
1749 pte_val(*pte) = (paddr | pgprot_val(prot));
1750
1751 vstart += PAGE_SIZE;
1752 paddr += PAGE_SIZE;
1753 pte++;
1754 }
1755 }
1756
1757 return alloc_bytes;
1758 }
1759
1760 static void __init flush_all_kernel_tsbs(void)
1761 {
1762 int i;
1763
1764 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1765 struct tsb *ent = &swapper_tsb[i];
1766
1767 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1768 }
1769 #ifndef CONFIG_DEBUG_PAGEALLOC
1770 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1771 struct tsb *ent = &swapper_4m_tsb[i];
1772
1773 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1774 }
1775 #endif
1776 }
1777
1778 extern unsigned int kvmap_linear_patch[1];
1779
1780 static void __init kernel_physical_mapping_init(void)
1781 {
1782 unsigned long i, mem_alloced = 0UL;
1783 bool use_huge = true;
1784
1785 #ifdef CONFIG_DEBUG_PAGEALLOC
1786 use_huge = false;
1787 #endif
1788 for (i = 0; i < pall_ents; i++) {
1789 unsigned long phys_start, phys_end;
1790
1791 phys_start = pall[i].phys_addr;
1792 phys_end = phys_start + pall[i].reg_size;
1793
1794 mem_alloced += kernel_map_range(phys_start, phys_end,
1795 PAGE_KERNEL, use_huge);
1796 }
1797
1798 printk("Allocated %ld bytes for kernel page tables.\n",
1799 mem_alloced);
1800
1801 kvmap_linear_patch[0] = 0x01000000; /* nop */
1802 flushi(&kvmap_linear_patch[0]);
1803
1804 flush_all_kernel_tsbs();
1805
1806 __flush_tlb_all();
1807 }
1808
1809 #ifdef CONFIG_DEBUG_PAGEALLOC
1810 void __kernel_map_pages(struct page *page, int numpages, int enable)
1811 {
1812 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1813 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1814
1815 kernel_map_range(phys_start, phys_end,
1816 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1817
1818 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1819 PAGE_OFFSET + phys_end);
1820
1821 /* we should perform an IPI and flush all tlbs,
1822 * but that can deadlock->flush only current cpu.
1823 */
1824 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1825 PAGE_OFFSET + phys_end);
1826 }
1827 #endif
1828
1829 unsigned long __init find_ecache_flush_span(unsigned long size)
1830 {
1831 int i;
1832
1833 for (i = 0; i < pavail_ents; i++) {
1834 if (pavail[i].reg_size >= size)
1835 return pavail[i].phys_addr;
1836 }
1837
1838 return ~0UL;
1839 }
1840
1841 unsigned long PAGE_OFFSET;
1842 EXPORT_SYMBOL(PAGE_OFFSET);
1843
1844 unsigned long VMALLOC_END = 0x0000010000000000UL;
1845 EXPORT_SYMBOL(VMALLOC_END);
1846
1847 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
1848 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1849
1850 static void __init setup_page_offset(void)
1851 {
1852 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1853 /* Cheetah/Panther support a full 64-bit virtual
1854 * address, so we can use all that our page tables
1855 * support.
1856 */
1857 sparc64_va_hole_top = 0xfff0000000000000UL;
1858 sparc64_va_hole_bottom = 0x0010000000000000UL;
1859
1860 max_phys_bits = 42;
1861 } else if (tlb_type == hypervisor) {
1862 switch (sun4v_chip_type) {
1863 case SUN4V_CHIP_NIAGARA1:
1864 case SUN4V_CHIP_NIAGARA2:
1865 /* T1 and T2 support 48-bit virtual addresses. */
1866 sparc64_va_hole_top = 0xffff800000000000UL;
1867 sparc64_va_hole_bottom = 0x0000800000000000UL;
1868
1869 max_phys_bits = 39;
1870 break;
1871 case SUN4V_CHIP_NIAGARA3:
1872 /* T3 supports 48-bit virtual addresses. */
1873 sparc64_va_hole_top = 0xffff800000000000UL;
1874 sparc64_va_hole_bottom = 0x0000800000000000UL;
1875
1876 max_phys_bits = 43;
1877 break;
1878 case SUN4V_CHIP_NIAGARA4:
1879 case SUN4V_CHIP_NIAGARA5:
1880 case SUN4V_CHIP_SPARC64X:
1881 case SUN4V_CHIP_SPARC_M6:
1882 /* T4 and later support 52-bit virtual addresses. */
1883 sparc64_va_hole_top = 0xfff8000000000000UL;
1884 sparc64_va_hole_bottom = 0x0008000000000000UL;
1885 max_phys_bits = 47;
1886 break;
1887 case SUN4V_CHIP_SPARC_M7:
1888 case SUN4V_CHIP_SPARC_SN:
1889 default:
1890 /* M7 and later support 52-bit virtual addresses. */
1891 sparc64_va_hole_top = 0xfff8000000000000UL;
1892 sparc64_va_hole_bottom = 0x0008000000000000UL;
1893 max_phys_bits = 49;
1894 break;
1895 }
1896 }
1897
1898 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1899 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1900 max_phys_bits);
1901 prom_halt();
1902 }
1903
1904 PAGE_OFFSET = sparc64_va_hole_top;
1905 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1906 (sparc64_va_hole_bottom >> 2));
1907
1908 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1909 PAGE_OFFSET, max_phys_bits);
1910 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1911 VMALLOC_START, VMALLOC_END);
1912 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1913 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1914 }
1915
1916 static void __init tsb_phys_patch(void)
1917 {
1918 struct tsb_ldquad_phys_patch_entry *pquad;
1919 struct tsb_phys_patch_entry *p;
1920
1921 pquad = &__tsb_ldquad_phys_patch;
1922 while (pquad < &__tsb_ldquad_phys_patch_end) {
1923 unsigned long addr = pquad->addr;
1924
1925 if (tlb_type == hypervisor)
1926 *(unsigned int *) addr = pquad->sun4v_insn;
1927 else
1928 *(unsigned int *) addr = pquad->sun4u_insn;
1929 wmb();
1930 __asm__ __volatile__("flush %0"
1931 : /* no outputs */
1932 : "r" (addr));
1933
1934 pquad++;
1935 }
1936
1937 p = &__tsb_phys_patch;
1938 while (p < &__tsb_phys_patch_end) {
1939 unsigned long addr = p->addr;
1940
1941 *(unsigned int *) addr = p->insn;
1942 wmb();
1943 __asm__ __volatile__("flush %0"
1944 : /* no outputs */
1945 : "r" (addr));
1946
1947 p++;
1948 }
1949 }
1950
1951 /* Don't mark as init, we give this to the Hypervisor. */
1952 #ifndef CONFIG_DEBUG_PAGEALLOC
1953 #define NUM_KTSB_DESCR 2
1954 #else
1955 #define NUM_KTSB_DESCR 1
1956 #endif
1957 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1958
1959 /* The swapper TSBs are loaded with a base sequence of:
1960 *
1961 * sethi %uhi(SYMBOL), REG1
1962 * sethi %hi(SYMBOL), REG2
1963 * or REG1, %ulo(SYMBOL), REG1
1964 * or REG2, %lo(SYMBOL), REG2
1965 * sllx REG1, 32, REG1
1966 * or REG1, REG2, REG1
1967 *
1968 * When we use physical addressing for the TSB accesses, we patch the
1969 * first four instructions in the above sequence.
1970 */
1971
1972 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1973 {
1974 unsigned long high_bits, low_bits;
1975
1976 high_bits = (pa >> 32) & 0xffffffff;
1977 low_bits = (pa >> 0) & 0xffffffff;
1978
1979 while (start < end) {
1980 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1981
1982 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1983 __asm__ __volatile__("flush %0" : : "r" (ia));
1984
1985 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1986 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1987
1988 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1989 __asm__ __volatile__("flush %0" : : "r" (ia + 2));
1990
1991 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1992 __asm__ __volatile__("flush %0" : : "r" (ia + 3));
1993
1994 start++;
1995 }
1996 }
1997
1998 static void ktsb_phys_patch(void)
1999 {
2000 extern unsigned int __swapper_tsb_phys_patch;
2001 extern unsigned int __swapper_tsb_phys_patch_end;
2002 unsigned long ktsb_pa;
2003
2004 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2005 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2006 &__swapper_tsb_phys_patch_end, ktsb_pa);
2007 #ifndef CONFIG_DEBUG_PAGEALLOC
2008 {
2009 extern unsigned int __swapper_4m_tsb_phys_patch;
2010 extern unsigned int __swapper_4m_tsb_phys_patch_end;
2011 ktsb_pa = (kern_base +
2012 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2013 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2014 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2015 }
2016 #endif
2017 }
2018
2019 static void __init sun4v_ktsb_init(void)
2020 {
2021 unsigned long ktsb_pa;
2022
2023 /* First KTSB for PAGE_SIZE mappings. */
2024 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2025
2026 switch (PAGE_SIZE) {
2027 case 8 * 1024:
2028 default:
2029 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2030 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2031 break;
2032
2033 case 64 * 1024:
2034 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2035 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2036 break;
2037
2038 case 512 * 1024:
2039 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2040 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2041 break;
2042
2043 case 4 * 1024 * 1024:
2044 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2045 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2046 break;
2047 }
2048
2049 ktsb_descr[0].assoc = 1;
2050 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2051 ktsb_descr[0].ctx_idx = 0;
2052 ktsb_descr[0].tsb_base = ktsb_pa;
2053 ktsb_descr[0].resv = 0;
2054
2055 #ifndef CONFIG_DEBUG_PAGEALLOC
2056 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
2057 ktsb_pa = (kern_base +
2058 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2059
2060 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2061 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2062 HV_PGSZ_MASK_256MB |
2063 HV_PGSZ_MASK_2GB |
2064 HV_PGSZ_MASK_16GB) &
2065 cpu_pgsz_mask);
2066 ktsb_descr[1].assoc = 1;
2067 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2068 ktsb_descr[1].ctx_idx = 0;
2069 ktsb_descr[1].tsb_base = ktsb_pa;
2070 ktsb_descr[1].resv = 0;
2071 #endif
2072 }
2073
2074 void sun4v_ktsb_register(void)
2075 {
2076 unsigned long pa, ret;
2077
2078 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2079
2080 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2081 if (ret != 0) {
2082 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2083 "errors with %lx\n", pa, ret);
2084 prom_halt();
2085 }
2086 }
2087
2088 static void __init sun4u_linear_pte_xor_finalize(void)
2089 {
2090 #ifndef CONFIG_DEBUG_PAGEALLOC
2091 /* This is where we would add Panther support for
2092 * 32MB and 256MB pages.
2093 */
2094 #endif
2095 }
2096
2097 static void __init sun4v_linear_pte_xor_finalize(void)
2098 {
2099 unsigned long pagecv_flag;
2100
2101 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2102 * enables MCD error. Do not set bit 9 on M7 processor.
2103 */
2104 switch (sun4v_chip_type) {
2105 case SUN4V_CHIP_SPARC_M7:
2106 case SUN4V_CHIP_SPARC_SN:
2107 pagecv_flag = 0x00;
2108 break;
2109 default:
2110 pagecv_flag = _PAGE_CV_4V;
2111 break;
2112 }
2113 #ifndef CONFIG_DEBUG_PAGEALLOC
2114 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2115 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2116 PAGE_OFFSET;
2117 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2118 _PAGE_P_4V | _PAGE_W_4V);
2119 } else {
2120 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2121 }
2122
2123 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2124 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2125 PAGE_OFFSET;
2126 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2127 _PAGE_P_4V | _PAGE_W_4V);
2128 } else {
2129 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2130 }
2131
2132 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2133 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2134 PAGE_OFFSET;
2135 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2136 _PAGE_P_4V | _PAGE_W_4V);
2137 } else {
2138 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2139 }
2140 #endif
2141 }
2142
2143 /* paging_init() sets up the page tables */
2144
2145 static unsigned long last_valid_pfn;
2146
2147 static void sun4u_pgprot_init(void);
2148 static void sun4v_pgprot_init(void);
2149
2150 static phys_addr_t __init available_memory(void)
2151 {
2152 phys_addr_t available = 0ULL;
2153 phys_addr_t pa_start, pa_end;
2154 u64 i;
2155
2156 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2157 &pa_end, NULL)
2158 available = available + (pa_end - pa_start);
2159
2160 return available;
2161 }
2162
2163 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2164 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2165 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2166 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2167 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2168 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2169
2170 /* We need to exclude reserved regions. This exclusion will include
2171 * vmlinux and initrd. To be more precise the initrd size could be used to
2172 * compute a new lower limit because it is freed later during initialization.
2173 */
2174 static void __init reduce_memory(phys_addr_t limit_ram)
2175 {
2176 phys_addr_t avail_ram = available_memory();
2177 phys_addr_t pa_start, pa_end;
2178 u64 i;
2179
2180 if (limit_ram >= avail_ram)
2181 return;
2182
2183 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2184 &pa_end, NULL) {
2185 phys_addr_t region_size = pa_end - pa_start;
2186 phys_addr_t clip_start = pa_start;
2187
2188 avail_ram = avail_ram - region_size;
2189 /* Are we consuming too much? */
2190 if (avail_ram < limit_ram) {
2191 phys_addr_t give_back = limit_ram - avail_ram;
2192
2193 region_size = region_size - give_back;
2194 clip_start = clip_start + give_back;
2195 }
2196
2197 memblock_remove(clip_start, region_size);
2198
2199 if (avail_ram <= limit_ram)
2200 break;
2201 i = 0UL;
2202 }
2203 }
2204
2205 void __init paging_init(void)
2206 {
2207 unsigned long end_pfn, shift, phys_base;
2208 unsigned long real_end, i;
2209
2210 setup_page_offset();
2211
2212 /* These build time checkes make sure that the dcache_dirty_cpu()
2213 * page->flags usage will work.
2214 *
2215 * When a page gets marked as dcache-dirty, we store the
2216 * cpu number starting at bit 32 in the page->flags. Also,
2217 * functions like clear_dcache_dirty_cpu use the cpu mask
2218 * in 13-bit signed-immediate instruction fields.
2219 */
2220
2221 /*
2222 * Page flags must not reach into upper 32 bits that are used
2223 * for the cpu number
2224 */
2225 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2226
2227 /*
2228 * The bit fields placed in the high range must not reach below
2229 * the 32 bit boundary. Otherwise we cannot place the cpu field
2230 * at the 32 bit boundary.
2231 */
2232 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2233 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2234
2235 BUILD_BUG_ON(NR_CPUS > 4096);
2236
2237 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2238 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2239
2240 /* Invalidate both kernel TSBs. */
2241 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2242 #ifndef CONFIG_DEBUG_PAGEALLOC
2243 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2244 #endif
2245
2246 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2247 * bit on M7 processor. This is a conflicting usage of the same
2248 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2249 * Detection error on all pages and this will lead to problems
2250 * later. Kernel does not run with MCD enabled and hence rest
2251 * of the required steps to fully configure memory corruption
2252 * detection are not taken. We need to ensure TTE.mcde is not
2253 * set on M7 processor. Compute the value of cacheability
2254 * flag for use later taking this into consideration.
2255 */
2256 switch (sun4v_chip_type) {
2257 case SUN4V_CHIP_SPARC_M7:
2258 case SUN4V_CHIP_SPARC_SN:
2259 page_cache4v_flag = _PAGE_CP_4V;
2260 break;
2261 default:
2262 page_cache4v_flag = _PAGE_CACHE_4V;
2263 break;
2264 }
2265
2266 if (tlb_type == hypervisor)
2267 sun4v_pgprot_init();
2268 else
2269 sun4u_pgprot_init();
2270
2271 if (tlb_type == cheetah_plus ||
2272 tlb_type == hypervisor) {
2273 tsb_phys_patch();
2274 ktsb_phys_patch();
2275 }
2276
2277 if (tlb_type == hypervisor)
2278 sun4v_patch_tlb_handlers();
2279
2280 /* Find available physical memory...
2281 *
2282 * Read it twice in order to work around a bug in openfirmware.
2283 * The call to grab this table itself can cause openfirmware to
2284 * allocate memory, which in turn can take away some space from
2285 * the list of available memory. Reading it twice makes sure
2286 * we really do get the final value.
2287 */
2288 read_obp_translations();
2289 read_obp_memory("reg", &pall[0], &pall_ents);
2290 read_obp_memory("available", &pavail[0], &pavail_ents);
2291 read_obp_memory("available", &pavail[0], &pavail_ents);
2292
2293 phys_base = 0xffffffffffffffffUL;
2294 for (i = 0; i < pavail_ents; i++) {
2295 phys_base = min(phys_base, pavail[i].phys_addr);
2296 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2297 }
2298
2299 memblock_reserve(kern_base, kern_size);
2300
2301 find_ramdisk(phys_base);
2302
2303 if (cmdline_memory_size)
2304 reduce_memory(cmdline_memory_size);
2305
2306 memblock_allow_resize();
2307 memblock_dump_all();
2308
2309 set_bit(0, mmu_context_bmap);
2310
2311 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2312
2313 real_end = (unsigned long)_end;
2314 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2315 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2316 num_kernel_image_mappings);
2317
2318 /* Set kernel pgd to upper alias so physical page computations
2319 * work.
2320 */
2321 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2322
2323 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2324
2325 inherit_prom_mappings();
2326
2327 /* Ok, we can use our TLB miss and window trap handlers safely. */
2328 setup_tba();
2329
2330 __flush_tlb_all();
2331
2332 prom_build_devicetree();
2333 of_populate_present_mask();
2334 #ifndef CONFIG_SMP
2335 of_fill_in_cpu_data();
2336 #endif
2337
2338 if (tlb_type == hypervisor) {
2339 sun4v_mdesc_init();
2340 mdesc_populate_present_mask(cpu_all_mask);
2341 #ifndef CONFIG_SMP
2342 mdesc_fill_in_cpu_data(cpu_all_mask);
2343 #endif
2344 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2345
2346 sun4v_linear_pte_xor_finalize();
2347
2348 sun4v_ktsb_init();
2349 sun4v_ktsb_register();
2350 } else {
2351 unsigned long impl, ver;
2352
2353 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2354 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2355
2356 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2357 impl = ((ver >> 32) & 0xffff);
2358 if (impl == PANTHER_IMPL)
2359 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2360 HV_PGSZ_MASK_256MB);
2361
2362 sun4u_linear_pte_xor_finalize();
2363 }
2364
2365 /* Flush the TLBs and the 4M TSB so that the updated linear
2366 * pte XOR settings are realized for all mappings.
2367 */
2368 __flush_tlb_all();
2369 #ifndef CONFIG_DEBUG_PAGEALLOC
2370 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2371 #endif
2372 __flush_tlb_all();
2373
2374 /* Setup bootmem... */
2375 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2376
2377 kernel_physical_mapping_init();
2378
2379 {
2380 unsigned long max_zone_pfns[MAX_NR_ZONES];
2381
2382 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2383
2384 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2385
2386 free_area_init_nodes(max_zone_pfns);
2387 }
2388
2389 printk("Booting Linux...\n");
2390 }
2391
2392 int page_in_phys_avail(unsigned long paddr)
2393 {
2394 int i;
2395
2396 paddr &= PAGE_MASK;
2397
2398 for (i = 0; i < pavail_ents; i++) {
2399 unsigned long start, end;
2400
2401 start = pavail[i].phys_addr;
2402 end = start + pavail[i].reg_size;
2403
2404 if (paddr >= start && paddr < end)
2405 return 1;
2406 }
2407 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2408 return 1;
2409 #ifdef CONFIG_BLK_DEV_INITRD
2410 if (paddr >= __pa(initrd_start) &&
2411 paddr < __pa(PAGE_ALIGN(initrd_end)))
2412 return 1;
2413 #endif
2414
2415 return 0;
2416 }
2417
2418 static void __init register_page_bootmem_info(void)
2419 {
2420 #ifdef CONFIG_NEED_MULTIPLE_NODES
2421 int i;
2422
2423 for_each_online_node(i)
2424 if (NODE_DATA(i)->node_spanned_pages)
2425 register_page_bootmem_info_node(NODE_DATA(i));
2426 #endif
2427 }
2428 void __init mem_init(void)
2429 {
2430 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2431
2432 register_page_bootmem_info();
2433 free_all_bootmem();
2434
2435 /*
2436 * Set up the zero page, mark it reserved, so that page count
2437 * is not manipulated when freeing the page from user ptes.
2438 */
2439 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2440 if (mem_map_zero == NULL) {
2441 prom_printf("paging_init: Cannot alloc zero page.\n");
2442 prom_halt();
2443 }
2444 mark_page_reserved(mem_map_zero);
2445
2446 mem_init_print_info(NULL);
2447
2448 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2449 cheetah_ecache_flush_init();
2450 }
2451
2452 void free_initmem(void)
2453 {
2454 unsigned long addr, initend;
2455 int do_free = 1;
2456
2457 /* If the physical memory maps were trimmed by kernel command
2458 * line options, don't even try freeing this initmem stuff up.
2459 * The kernel image could have been in the trimmed out region
2460 * and if so the freeing below will free invalid page structs.
2461 */
2462 if (cmdline_memory_size)
2463 do_free = 0;
2464
2465 /*
2466 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2467 */
2468 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2469 initend = (unsigned long)(__init_end) & PAGE_MASK;
2470 for (; addr < initend; addr += PAGE_SIZE) {
2471 unsigned long page;
2472
2473 page = (addr +
2474 ((unsigned long) __va(kern_base)) -
2475 ((unsigned long) KERNBASE));
2476 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2477
2478 if (do_free)
2479 free_reserved_page(virt_to_page(page));
2480 }
2481 }
2482
2483 #ifdef CONFIG_BLK_DEV_INITRD
2484 void free_initrd_mem(unsigned long start, unsigned long end)
2485 {
2486 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2487 "initrd");
2488 }
2489 #endif
2490
2491 pgprot_t PAGE_KERNEL __read_mostly;
2492 EXPORT_SYMBOL(PAGE_KERNEL);
2493
2494 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2495 pgprot_t PAGE_COPY __read_mostly;
2496
2497 pgprot_t PAGE_SHARED __read_mostly;
2498 EXPORT_SYMBOL(PAGE_SHARED);
2499
2500 unsigned long pg_iobits __read_mostly;
2501
2502 unsigned long _PAGE_IE __read_mostly;
2503 EXPORT_SYMBOL(_PAGE_IE);
2504
2505 unsigned long _PAGE_E __read_mostly;
2506 EXPORT_SYMBOL(_PAGE_E);
2507
2508 unsigned long _PAGE_CACHE __read_mostly;
2509 EXPORT_SYMBOL(_PAGE_CACHE);
2510
2511 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2512 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2513 int node)
2514 {
2515 unsigned long pte_base;
2516
2517 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2518 _PAGE_CP_4U | _PAGE_CV_4U |
2519 _PAGE_P_4U | _PAGE_W_4U);
2520 if (tlb_type == hypervisor)
2521 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2522 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2523
2524 pte_base |= _PAGE_PMD_HUGE;
2525
2526 vstart = vstart & PMD_MASK;
2527 vend = ALIGN(vend, PMD_SIZE);
2528 for (; vstart < vend; vstart += PMD_SIZE) {
2529 pgd_t *pgd = pgd_offset_k(vstart);
2530 unsigned long pte;
2531 pud_t *pud;
2532 pmd_t *pmd;
2533
2534 if (pgd_none(*pgd)) {
2535 pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2536
2537 if (!new)
2538 return -ENOMEM;
2539 pgd_populate(&init_mm, pgd, new);
2540 }
2541
2542 pud = pud_offset(pgd, vstart);
2543 if (pud_none(*pud)) {
2544 pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2545
2546 if (!new)
2547 return -ENOMEM;
2548 pud_populate(&init_mm, pud, new);
2549 }
2550
2551 pmd = pmd_offset(pud, vstart);
2552
2553 pte = pmd_val(*pmd);
2554 if (!(pte & _PAGE_VALID)) {
2555 void *block = vmemmap_alloc_block(PMD_SIZE, node);
2556
2557 if (!block)
2558 return -ENOMEM;
2559
2560 pmd_val(*pmd) = pte_base | __pa(block);
2561 }
2562 }
2563
2564 return 0;
2565 }
2566
2567 void vmemmap_free(unsigned long start, unsigned long end)
2568 {
2569 }
2570 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2571
2572 static void prot_init_common(unsigned long page_none,
2573 unsigned long page_shared,
2574 unsigned long page_copy,
2575 unsigned long page_readonly,
2576 unsigned long page_exec_bit)
2577 {
2578 PAGE_COPY = __pgprot(page_copy);
2579 PAGE_SHARED = __pgprot(page_shared);
2580
2581 protection_map[0x0] = __pgprot(page_none);
2582 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2583 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2584 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2585 protection_map[0x4] = __pgprot(page_readonly);
2586 protection_map[0x5] = __pgprot(page_readonly);
2587 protection_map[0x6] = __pgprot(page_copy);
2588 protection_map[0x7] = __pgprot(page_copy);
2589 protection_map[0x8] = __pgprot(page_none);
2590 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2591 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2592 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2593 protection_map[0xc] = __pgprot(page_readonly);
2594 protection_map[0xd] = __pgprot(page_readonly);
2595 protection_map[0xe] = __pgprot(page_shared);
2596 protection_map[0xf] = __pgprot(page_shared);
2597 }
2598
2599 static void __init sun4u_pgprot_init(void)
2600 {
2601 unsigned long page_none, page_shared, page_copy, page_readonly;
2602 unsigned long page_exec_bit;
2603 int i;
2604
2605 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2606 _PAGE_CACHE_4U | _PAGE_P_4U |
2607 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2608 _PAGE_EXEC_4U);
2609 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2610 _PAGE_CACHE_4U | _PAGE_P_4U |
2611 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2612 _PAGE_EXEC_4U | _PAGE_L_4U);
2613
2614 _PAGE_IE = _PAGE_IE_4U;
2615 _PAGE_E = _PAGE_E_4U;
2616 _PAGE_CACHE = _PAGE_CACHE_4U;
2617
2618 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2619 __ACCESS_BITS_4U | _PAGE_E_4U);
2620
2621 #ifdef CONFIG_DEBUG_PAGEALLOC
2622 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2623 #else
2624 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2625 PAGE_OFFSET;
2626 #endif
2627 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2628 _PAGE_P_4U | _PAGE_W_4U);
2629
2630 for (i = 1; i < 4; i++)
2631 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2632
2633 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2634 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2635 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2636
2637
2638 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2639 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2640 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2641 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2642 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2643 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2644 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2645
2646 page_exec_bit = _PAGE_EXEC_4U;
2647
2648 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2649 page_exec_bit);
2650 }
2651
2652 static void __init sun4v_pgprot_init(void)
2653 {
2654 unsigned long page_none, page_shared, page_copy, page_readonly;
2655 unsigned long page_exec_bit;
2656 int i;
2657
2658 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2659 page_cache4v_flag | _PAGE_P_4V |
2660 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2661 _PAGE_EXEC_4V);
2662 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2663
2664 _PAGE_IE = _PAGE_IE_4V;
2665 _PAGE_E = _PAGE_E_4V;
2666 _PAGE_CACHE = page_cache4v_flag;
2667
2668 #ifdef CONFIG_DEBUG_PAGEALLOC
2669 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2670 #else
2671 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2672 PAGE_OFFSET;
2673 #endif
2674 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2675 _PAGE_W_4V);
2676
2677 for (i = 1; i < 4; i++)
2678 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2679
2680 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2681 __ACCESS_BITS_4V | _PAGE_E_4V);
2682
2683 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2684 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2685 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2686 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2687
2688 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2689 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2690 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2691 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2692 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2693 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2694 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2695
2696 page_exec_bit = _PAGE_EXEC_4V;
2697
2698 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2699 page_exec_bit);
2700 }
2701
2702 unsigned long pte_sz_bits(unsigned long sz)
2703 {
2704 if (tlb_type == hypervisor) {
2705 switch (sz) {
2706 case 8 * 1024:
2707 default:
2708 return _PAGE_SZ8K_4V;
2709 case 64 * 1024:
2710 return _PAGE_SZ64K_4V;
2711 case 512 * 1024:
2712 return _PAGE_SZ512K_4V;
2713 case 4 * 1024 * 1024:
2714 return _PAGE_SZ4MB_4V;
2715 }
2716 } else {
2717 switch (sz) {
2718 case 8 * 1024:
2719 default:
2720 return _PAGE_SZ8K_4U;
2721 case 64 * 1024:
2722 return _PAGE_SZ64K_4U;
2723 case 512 * 1024:
2724 return _PAGE_SZ512K_4U;
2725 case 4 * 1024 * 1024:
2726 return _PAGE_SZ4MB_4U;
2727 }
2728 }
2729 }
2730
2731 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2732 {
2733 pte_t pte;
2734
2735 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2736 pte_val(pte) |= (((unsigned long)space) << 32);
2737 pte_val(pte) |= pte_sz_bits(page_size);
2738
2739 return pte;
2740 }
2741
2742 static unsigned long kern_large_tte(unsigned long paddr)
2743 {
2744 unsigned long val;
2745
2746 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2747 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2748 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2749 if (tlb_type == hypervisor)
2750 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2751 page_cache4v_flag | _PAGE_P_4V |
2752 _PAGE_EXEC_4V | _PAGE_W_4V);
2753
2754 return val | paddr;
2755 }
2756
2757 /* If not locked, zap it. */
2758 void __flush_tlb_all(void)
2759 {
2760 unsigned long pstate;
2761 int i;
2762
2763 __asm__ __volatile__("flushw\n\t"
2764 "rdpr %%pstate, %0\n\t"
2765 "wrpr %0, %1, %%pstate"
2766 : "=r" (pstate)
2767 : "i" (PSTATE_IE));
2768 if (tlb_type == hypervisor) {
2769 sun4v_mmu_demap_all();
2770 } else if (tlb_type == spitfire) {
2771 for (i = 0; i < 64; i++) {
2772 /* Spitfire Errata #32 workaround */
2773 /* NOTE: Always runs on spitfire, so no
2774 * cheetah+ page size encodings.
2775 */
2776 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2777 "flush %%g6"
2778 : /* No outputs */
2779 : "r" (0),
2780 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2781
2782 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2783 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2784 "membar #Sync"
2785 : /* no outputs */
2786 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2787 spitfire_put_dtlb_data(i, 0x0UL);
2788 }
2789
2790 /* Spitfire Errata #32 workaround */
2791 /* NOTE: Always runs on spitfire, so no
2792 * cheetah+ page size encodings.
2793 */
2794 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2795 "flush %%g6"
2796 : /* No outputs */
2797 : "r" (0),
2798 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2799
2800 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2801 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2802 "membar #Sync"
2803 : /* no outputs */
2804 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2805 spitfire_put_itlb_data(i, 0x0UL);
2806 }
2807 }
2808 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2809 cheetah_flush_dtlb_all();
2810 cheetah_flush_itlb_all();
2811 }
2812 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2813 : : "r" (pstate));
2814 }
2815
2816 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2817 unsigned long address)
2818 {
2819 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2820 pte_t *pte = NULL;
2821
2822 if (page)
2823 pte = (pte_t *) page_address(page);
2824
2825 return pte;
2826 }
2827
2828 pgtable_t pte_alloc_one(struct mm_struct *mm,
2829 unsigned long address)
2830 {
2831 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2832 if (!page)
2833 return NULL;
2834 if (!pgtable_page_ctor(page)) {
2835 free_hot_cold_page(page, 0);
2836 return NULL;
2837 }
2838 return (pte_t *) page_address(page);
2839 }
2840
2841 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2842 {
2843 free_page((unsigned long)pte);
2844 }
2845
2846 static void __pte_free(pgtable_t pte)
2847 {
2848 struct page *page = virt_to_page(pte);
2849
2850 pgtable_page_dtor(page);
2851 __free_page(page);
2852 }
2853
2854 void pte_free(struct mm_struct *mm, pgtable_t pte)
2855 {
2856 __pte_free(pte);
2857 }
2858
2859 void pgtable_free(void *table, bool is_page)
2860 {
2861 if (is_page)
2862 __pte_free(table);
2863 else
2864 kmem_cache_free(pgtable_cache, table);
2865 }
2866
2867 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2868 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2869 pmd_t *pmd)
2870 {
2871 unsigned long pte, flags;
2872 struct mm_struct *mm;
2873 pmd_t entry = *pmd;
2874
2875 if (!pmd_large(entry) || !pmd_young(entry))
2876 return;
2877
2878 pte = pmd_val(entry);
2879
2880 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2881 if (!(pte & _PAGE_VALID))
2882 return;
2883
2884 /* We are fabricating 8MB pages using 4MB real hw pages. */
2885 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2886
2887 mm = vma->vm_mm;
2888
2889 spin_lock_irqsave(&mm->context.lock, flags);
2890
2891 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2892 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2893 addr, pte);
2894
2895 spin_unlock_irqrestore(&mm->context.lock, flags);
2896 }
2897 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2898
2899 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2900 static void context_reload(void *__data)
2901 {
2902 struct mm_struct *mm = __data;
2903
2904 if (mm == current->mm)
2905 load_secondary_context(mm);
2906 }
2907
2908 void hugetlb_setup(struct pt_regs *regs)
2909 {
2910 struct mm_struct *mm = current->mm;
2911 struct tsb_config *tp;
2912
2913 if (faulthandler_disabled() || !mm) {
2914 const struct exception_table_entry *entry;
2915
2916 entry = search_exception_tables(regs->tpc);
2917 if (entry) {
2918 regs->tpc = entry->fixup;
2919 regs->tnpc = regs->tpc + 4;
2920 return;
2921 }
2922 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2923 die_if_kernel("HugeTSB in atomic", regs);
2924 }
2925
2926 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2927 if (likely(tp->tsb == NULL))
2928 tsb_grow(mm, MM_TSB_HUGE, 0);
2929
2930 tsb_context_switch(mm);
2931 smp_tsb_sync(mm);
2932
2933 /* On UltraSPARC-III+ and later, configure the second half of
2934 * the Data-TLB for huge pages.
2935 */
2936 if (tlb_type == cheetah_plus) {
2937 bool need_context_reload = false;
2938 unsigned long ctx;
2939
2940 spin_lock_irq(&ctx_alloc_lock);
2941 ctx = mm->context.sparc64_ctx_val;
2942 ctx &= ~CTX_PGSZ_MASK;
2943 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2944 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2945
2946 if (ctx != mm->context.sparc64_ctx_val) {
2947 /* When changing the page size fields, we
2948 * must perform a context flush so that no
2949 * stale entries match. This flush must
2950 * occur with the original context register
2951 * settings.
2952 */
2953 do_flush_tlb_mm(mm);
2954
2955 /* Reload the context register of all processors
2956 * also executing in this address space.
2957 */
2958 mm->context.sparc64_ctx_val = ctx;
2959 need_context_reload = true;
2960 }
2961 spin_unlock_irq(&ctx_alloc_lock);
2962
2963 if (need_context_reload)
2964 on_each_cpu(context_reload, mm, 0);
2965 }
2966 }
2967 #endif
2968
2969 static struct resource code_resource = {
2970 .name = "Kernel code",
2971 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2972 };
2973
2974 static struct resource data_resource = {
2975 .name = "Kernel data",
2976 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2977 };
2978
2979 static struct resource bss_resource = {
2980 .name = "Kernel bss",
2981 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2982 };
2983
2984 static inline resource_size_t compute_kern_paddr(void *addr)
2985 {
2986 return (resource_size_t) (addr - KERNBASE + kern_base);
2987 }
2988
2989 static void __init kernel_lds_init(void)
2990 {
2991 code_resource.start = compute_kern_paddr(_text);
2992 code_resource.end = compute_kern_paddr(_etext - 1);
2993 data_resource.start = compute_kern_paddr(_etext);
2994 data_resource.end = compute_kern_paddr(_edata - 1);
2995 bss_resource.start = compute_kern_paddr(__bss_start);
2996 bss_resource.end = compute_kern_paddr(_end - 1);
2997 }
2998
2999 static int __init report_memory(void)
3000 {
3001 int i;
3002 struct resource *res;
3003
3004 kernel_lds_init();
3005
3006 for (i = 0; i < pavail_ents; i++) {
3007 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3008
3009 if (!res) {
3010 pr_warn("Failed to allocate source.\n");
3011 break;
3012 }
3013
3014 res->name = "System RAM";
3015 res->start = pavail[i].phys_addr;
3016 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3017 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3018
3019 if (insert_resource(&iomem_resource, res) < 0) {
3020 pr_warn("Resource insertion failed.\n");
3021 break;
3022 }
3023
3024 insert_resource(res, &code_resource);
3025 insert_resource(res, &data_resource);
3026 insert_resource(res, &bss_resource);
3027 }
3028
3029 return 0;
3030 }
3031 arch_initcall(report_memory);
3032
3033 #ifdef CONFIG_SMP
3034 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3035 #else
3036 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3037 #endif
3038
3039 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3040 {
3041 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3042 if (start < LOW_OBP_ADDRESS) {
3043 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3044 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3045 }
3046 if (end > HI_OBP_ADDRESS) {
3047 flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3048 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3049 }
3050 } else {
3051 flush_tsb_kernel_range(start, end);
3052 do_flush_tlb_kernel_range(start, end);
3053 }
3054 }