]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sparc/mm/srmmu.c
regulator: st-pwm: Convert to get_voltage_sel
[mirror_ubuntu-artful-kernel.git] / arch / sparc / mm / srmmu.c
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/gfp.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23
24 #include <asm/mmu_context.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/io-unit.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/bitext.h>
31 #include <asm/vaddrs.h>
32 #include <asm/cache.h>
33 #include <asm/traps.h>
34 #include <asm/oplib.h>
35 #include <asm/mbus.h>
36 #include <asm/page.h>
37 #include <asm/asi.h>
38 #include <asm/msi.h>
39 #include <asm/smp.h>
40 #include <asm/io.h>
41
42 /* Now the cpu specific definitions. */
43 #include <asm/turbosparc.h>
44 #include <asm/tsunami.h>
45 #include <asm/viking.h>
46 #include <asm/swift.h>
47 #include <asm/leon.h>
48 #include <asm/mxcc.h>
49 #include <asm/ross.h>
50
51 #include "srmmu.h"
52
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57
58 extern struct resource sparc_iomap;
59
60 extern unsigned long last_valid_pfn;
61
62 static pgd_t *srmmu_swapper_pg_dir;
63
64 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
65
66 #ifdef CONFIG_SMP
67 const struct sparc32_cachetlb_ops *local_ops;
68
69 #define FLUSH_BEGIN(mm)
70 #define FLUSH_END
71 #else
72 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
73 #define FLUSH_END }
74 #endif
75
76 int flush_page_for_dma_global = 1;
77
78 char *srmmu_name;
79
80 ctxd_t *srmmu_ctx_table_phys;
81 static ctxd_t *srmmu_context_table;
82
83 int viking_mxcc_present;
84 static DEFINE_SPINLOCK(srmmu_context_spinlock);
85
86 static int is_hypersparc;
87
88 static int srmmu_cache_pagetables;
89
90 /* these will be initialized in srmmu_nocache_calcsize() */
91 static unsigned long srmmu_nocache_size;
92 static unsigned long srmmu_nocache_end;
93
94 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
95 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
96
97 /* The context table is a nocache user with the biggest alignment needs. */
98 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
99
100 void *srmmu_nocache_pool;
101 void *srmmu_nocache_bitmap;
102 static struct bit_map srmmu_nocache_map;
103
104 static inline int srmmu_pmd_none(pmd_t pmd)
105 { return !(pmd_val(pmd) & 0xFFFFFFF); }
106
107 /* XXX should we hyper_flush_whole_icache here - Anton */
108 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
109 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
110
111 void pmd_set(pmd_t *pmdp, pte_t *ptep)
112 {
113 unsigned long ptp; /* Physical address, shifted right by 4 */
114 int i;
115
116 ptp = __nocache_pa((unsigned long) ptep) >> 4;
117 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
118 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
119 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
120 }
121 }
122
123 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
124 {
125 unsigned long ptp; /* Physical address, shifted right by 4 */
126 int i;
127
128 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
129 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
130 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
131 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
132 }
133 }
134
135 /* Find an entry in the third-level page table.. */
136 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
137 {
138 void *pte;
139
140 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
141 return (pte_t *) pte +
142 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
143 }
144
145 /*
146 * size: bytes to allocate in the nocache area.
147 * align: bytes, number to align at.
148 * Returns the virtual address of the allocated area.
149 */
150 static void *__srmmu_get_nocache(int size, int align)
151 {
152 int offset;
153 unsigned long addr;
154
155 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
156 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
157 size);
158 size = SRMMU_NOCACHE_BITMAP_SHIFT;
159 }
160 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
161 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
162 size);
163 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
164 }
165 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
166
167 offset = bit_map_string_get(&srmmu_nocache_map,
168 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
169 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
170 if (offset == -1) {
171 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
172 size, (int) srmmu_nocache_size,
173 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
174 return 0;
175 }
176
177 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
178 return (void *)addr;
179 }
180
181 void *srmmu_get_nocache(int size, int align)
182 {
183 void *tmp;
184
185 tmp = __srmmu_get_nocache(size, align);
186
187 if (tmp)
188 memset(tmp, 0, size);
189
190 return tmp;
191 }
192
193 void srmmu_free_nocache(void *addr, int size)
194 {
195 unsigned long vaddr;
196 int offset;
197
198 vaddr = (unsigned long)addr;
199 if (vaddr < SRMMU_NOCACHE_VADDR) {
200 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
201 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
202 BUG();
203 }
204 if (vaddr + size > srmmu_nocache_end) {
205 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
206 vaddr, srmmu_nocache_end);
207 BUG();
208 }
209 if (!is_power_of_2(size)) {
210 printk("Size 0x%x is not a power of 2\n", size);
211 BUG();
212 }
213 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
214 printk("Size 0x%x is too small\n", size);
215 BUG();
216 }
217 if (vaddr & (size - 1)) {
218 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
219 BUG();
220 }
221
222 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
223 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
224
225 bit_map_clear(&srmmu_nocache_map, offset, size);
226 }
227
228 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
229 unsigned long end);
230
231 /* Return how much physical memory we have. */
232 static unsigned long __init probe_memory(void)
233 {
234 unsigned long total = 0;
235 int i;
236
237 for (i = 0; sp_banks[i].num_bytes; i++)
238 total += sp_banks[i].num_bytes;
239
240 return total;
241 }
242
243 /*
244 * Reserve nocache dynamically proportionally to the amount of
245 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
246 */
247 static void __init srmmu_nocache_calcsize(void)
248 {
249 unsigned long sysmemavail = probe_memory() / 1024;
250 int srmmu_nocache_npages;
251
252 srmmu_nocache_npages =
253 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
254
255 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
256 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
257 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
258 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
259
260 /* anything above 1280 blows up */
261 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
262 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
263
264 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
265 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
266 }
267
268 static void __init srmmu_nocache_init(void)
269 {
270 unsigned int bitmap_bits;
271 pgd_t *pgd;
272 pmd_t *pmd;
273 pte_t *pte;
274 unsigned long paddr, vaddr;
275 unsigned long pteval;
276
277 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
278
279 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
280 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
281 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
282
283 srmmu_nocache_bitmap =
284 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
285 SMP_CACHE_BYTES, 0UL);
286 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
287
288 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
289 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
290 init_mm.pgd = srmmu_swapper_pg_dir;
291
292 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
293
294 paddr = __pa((unsigned long)srmmu_nocache_pool);
295 vaddr = SRMMU_NOCACHE_VADDR;
296
297 while (vaddr < srmmu_nocache_end) {
298 pgd = pgd_offset_k(vaddr);
299 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
300 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
301
302 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
303
304 if (srmmu_cache_pagetables)
305 pteval |= SRMMU_CACHE;
306
307 set_pte(__nocache_fix(pte), __pte(pteval));
308
309 vaddr += PAGE_SIZE;
310 paddr += PAGE_SIZE;
311 }
312
313 flush_cache_all();
314 flush_tlb_all();
315 }
316
317 pgd_t *get_pgd_fast(void)
318 {
319 pgd_t *pgd = NULL;
320
321 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
322 if (pgd) {
323 pgd_t *init = pgd_offset_k(0);
324 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
325 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
326 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
327 }
328
329 return pgd;
330 }
331
332 /*
333 * Hardware needs alignment to 256 only, but we align to whole page size
334 * to reduce fragmentation problems due to the buddy principle.
335 * XXX Provide actual fragmentation statistics in /proc.
336 *
337 * Alignments up to the page size are the same for physical and virtual
338 * addresses of the nocache area.
339 */
340 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
341 {
342 unsigned long pte;
343 struct page *page;
344
345 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
346 return NULL;
347 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
348 if (!pgtable_page_ctor(page)) {
349 __free_page(page);
350 return NULL;
351 }
352 return page;
353 }
354
355 void pte_free(struct mm_struct *mm, pgtable_t pte)
356 {
357 unsigned long p;
358
359 pgtable_page_dtor(pte);
360 p = (unsigned long)page_address(pte); /* Cached address (for test) */
361 if (p == 0)
362 BUG();
363 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
364
365 /* free non cached virtual address*/
366 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
367 }
368
369 /* context handling - a dynamically sized pool is used */
370 #define NO_CONTEXT -1
371
372 struct ctx_list {
373 struct ctx_list *next;
374 struct ctx_list *prev;
375 unsigned int ctx_number;
376 struct mm_struct *ctx_mm;
377 };
378
379 static struct ctx_list *ctx_list_pool;
380 static struct ctx_list ctx_free;
381 static struct ctx_list ctx_used;
382
383 /* At boot time we determine the number of contexts */
384 static int num_contexts;
385
386 static inline void remove_from_ctx_list(struct ctx_list *entry)
387 {
388 entry->next->prev = entry->prev;
389 entry->prev->next = entry->next;
390 }
391
392 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
393 {
394 entry->next = head;
395 (entry->prev = head->prev)->next = entry;
396 head->prev = entry;
397 }
398 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
399 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
400
401
402 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
403 {
404 struct ctx_list *ctxp;
405
406 ctxp = ctx_free.next;
407 if (ctxp != &ctx_free) {
408 remove_from_ctx_list(ctxp);
409 add_to_used_ctxlist(ctxp);
410 mm->context = ctxp->ctx_number;
411 ctxp->ctx_mm = mm;
412 return;
413 }
414 ctxp = ctx_used.next;
415 if (ctxp->ctx_mm == old_mm)
416 ctxp = ctxp->next;
417 if (ctxp == &ctx_used)
418 panic("out of mmu contexts");
419 flush_cache_mm(ctxp->ctx_mm);
420 flush_tlb_mm(ctxp->ctx_mm);
421 remove_from_ctx_list(ctxp);
422 add_to_used_ctxlist(ctxp);
423 ctxp->ctx_mm->context = NO_CONTEXT;
424 ctxp->ctx_mm = mm;
425 mm->context = ctxp->ctx_number;
426 }
427
428 static inline void free_context(int context)
429 {
430 struct ctx_list *ctx_old;
431
432 ctx_old = ctx_list_pool + context;
433 remove_from_ctx_list(ctx_old);
434 add_to_free_ctxlist(ctx_old);
435 }
436
437 static void __init sparc_context_init(int numctx)
438 {
439 int ctx;
440 unsigned long size;
441
442 size = numctx * sizeof(struct ctx_list);
443 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
444
445 for (ctx = 0; ctx < numctx; ctx++) {
446 struct ctx_list *clist;
447
448 clist = (ctx_list_pool + ctx);
449 clist->ctx_number = ctx;
450 clist->ctx_mm = NULL;
451 }
452 ctx_free.next = ctx_free.prev = &ctx_free;
453 ctx_used.next = ctx_used.prev = &ctx_used;
454 for (ctx = 0; ctx < numctx; ctx++)
455 add_to_free_ctxlist(ctx_list_pool + ctx);
456 }
457
458 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
459 struct task_struct *tsk)
460 {
461 if (mm->context == NO_CONTEXT) {
462 spin_lock(&srmmu_context_spinlock);
463 alloc_context(old_mm, mm);
464 spin_unlock(&srmmu_context_spinlock);
465 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
466 }
467
468 if (sparc_cpu_model == sparc_leon)
469 leon_switch_mm();
470
471 if (is_hypersparc)
472 hyper_flush_whole_icache();
473
474 srmmu_set_context(mm->context);
475 }
476
477 /* Low level IO area allocation on the SRMMU. */
478 static inline void srmmu_mapioaddr(unsigned long physaddr,
479 unsigned long virt_addr, int bus_type)
480 {
481 pgd_t *pgdp;
482 pmd_t *pmdp;
483 pte_t *ptep;
484 unsigned long tmp;
485
486 physaddr &= PAGE_MASK;
487 pgdp = pgd_offset_k(virt_addr);
488 pmdp = pmd_offset(pgdp, virt_addr);
489 ptep = pte_offset_kernel(pmdp, virt_addr);
490 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
491
492 /* I need to test whether this is consistent over all
493 * sun4m's. The bus_type represents the upper 4 bits of
494 * 36-bit physical address on the I/O space lines...
495 */
496 tmp |= (bus_type << 28);
497 tmp |= SRMMU_PRIV;
498 __flush_page_to_ram(virt_addr);
499 set_pte(ptep, __pte(tmp));
500 }
501
502 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
503 unsigned long xva, unsigned int len)
504 {
505 while (len != 0) {
506 len -= PAGE_SIZE;
507 srmmu_mapioaddr(xpa, xva, bus);
508 xva += PAGE_SIZE;
509 xpa += PAGE_SIZE;
510 }
511 flush_tlb_all();
512 }
513
514 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
515 {
516 pgd_t *pgdp;
517 pmd_t *pmdp;
518 pte_t *ptep;
519
520 pgdp = pgd_offset_k(virt_addr);
521 pmdp = pmd_offset(pgdp, virt_addr);
522 ptep = pte_offset_kernel(pmdp, virt_addr);
523
524 /* No need to flush uncacheable page. */
525 __pte_clear(ptep);
526 }
527
528 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
529 {
530 while (len != 0) {
531 len -= PAGE_SIZE;
532 srmmu_unmapioaddr(virt_addr);
533 virt_addr += PAGE_SIZE;
534 }
535 flush_tlb_all();
536 }
537
538 /* tsunami.S */
539 extern void tsunami_flush_cache_all(void);
540 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
541 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
542 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
543 extern void tsunami_flush_page_to_ram(unsigned long page);
544 extern void tsunami_flush_page_for_dma(unsigned long page);
545 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
546 extern void tsunami_flush_tlb_all(void);
547 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
548 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
549 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
550 extern void tsunami_setup_blockops(void);
551
552 /* swift.S */
553 extern void swift_flush_cache_all(void);
554 extern void swift_flush_cache_mm(struct mm_struct *mm);
555 extern void swift_flush_cache_range(struct vm_area_struct *vma,
556 unsigned long start, unsigned long end);
557 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
558 extern void swift_flush_page_to_ram(unsigned long page);
559 extern void swift_flush_page_for_dma(unsigned long page);
560 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
561 extern void swift_flush_tlb_all(void);
562 extern void swift_flush_tlb_mm(struct mm_struct *mm);
563 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
564 unsigned long start, unsigned long end);
565 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
566
567 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
568 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
569 {
570 int cctx, ctx1;
571
572 page &= PAGE_MASK;
573 if ((ctx1 = vma->vm_mm->context) != -1) {
574 cctx = srmmu_get_context();
575 /* Is context # ever different from current context? P3 */
576 if (cctx != ctx1) {
577 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
578 srmmu_set_context(ctx1);
579 swift_flush_page(page);
580 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
581 "r" (page), "i" (ASI_M_FLUSH_PROBE));
582 srmmu_set_context(cctx);
583 } else {
584 /* Rm. prot. bits from virt. c. */
585 /* swift_flush_cache_all(); */
586 /* swift_flush_cache_page(vma, page); */
587 swift_flush_page(page);
588
589 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
590 "r" (page), "i" (ASI_M_FLUSH_PROBE));
591 /* same as above: srmmu_flush_tlb_page() */
592 }
593 }
594 }
595 #endif
596
597 /*
598 * The following are all MBUS based SRMMU modules, and therefore could
599 * be found in a multiprocessor configuration. On the whole, these
600 * chips seems to be much more touchy about DVMA and page tables
601 * with respect to cache coherency.
602 */
603
604 /* viking.S */
605 extern void viking_flush_cache_all(void);
606 extern void viking_flush_cache_mm(struct mm_struct *mm);
607 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
608 unsigned long end);
609 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
610 extern void viking_flush_page_to_ram(unsigned long page);
611 extern void viking_flush_page_for_dma(unsigned long page);
612 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
613 extern void viking_flush_page(unsigned long page);
614 extern void viking_mxcc_flush_page(unsigned long page);
615 extern void viking_flush_tlb_all(void);
616 extern void viking_flush_tlb_mm(struct mm_struct *mm);
617 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
618 unsigned long end);
619 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
620 unsigned long page);
621 extern void sun4dsmp_flush_tlb_all(void);
622 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
623 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
624 unsigned long end);
625 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
626 unsigned long page);
627
628 /* hypersparc.S */
629 extern void hypersparc_flush_cache_all(void);
630 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
631 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
632 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
633 extern void hypersparc_flush_page_to_ram(unsigned long page);
634 extern void hypersparc_flush_page_for_dma(unsigned long page);
635 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
636 extern void hypersparc_flush_tlb_all(void);
637 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
638 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
639 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
640 extern void hypersparc_setup_blockops(void);
641
642 /*
643 * NOTE: All of this startup code assumes the low 16mb (approx.) of
644 * kernel mappings are done with one single contiguous chunk of
645 * ram. On small ram machines (classics mainly) we only get
646 * around 8mb mapped for us.
647 */
648
649 static void __init early_pgtable_allocfail(char *type)
650 {
651 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
652 prom_halt();
653 }
654
655 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
656 unsigned long end)
657 {
658 pgd_t *pgdp;
659 pmd_t *pmdp;
660 pte_t *ptep;
661
662 while (start < end) {
663 pgdp = pgd_offset_k(start);
664 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
665 pmdp = __srmmu_get_nocache(
666 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
667 if (pmdp == NULL)
668 early_pgtable_allocfail("pmd");
669 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
670 pgd_set(__nocache_fix(pgdp), pmdp);
671 }
672 pmdp = pmd_offset(__nocache_fix(pgdp), start);
673 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
674 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
675 if (ptep == NULL)
676 early_pgtable_allocfail("pte");
677 memset(__nocache_fix(ptep), 0, PTE_SIZE);
678 pmd_set(__nocache_fix(pmdp), ptep);
679 }
680 if (start > (0xffffffffUL - PMD_SIZE))
681 break;
682 start = (start + PMD_SIZE) & PMD_MASK;
683 }
684 }
685
686 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
687 unsigned long end)
688 {
689 pgd_t *pgdp;
690 pmd_t *pmdp;
691 pte_t *ptep;
692
693 while (start < end) {
694 pgdp = pgd_offset_k(start);
695 if (pgd_none(*pgdp)) {
696 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
697 if (pmdp == NULL)
698 early_pgtable_allocfail("pmd");
699 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
700 pgd_set(pgdp, pmdp);
701 }
702 pmdp = pmd_offset(pgdp, start);
703 if (srmmu_pmd_none(*pmdp)) {
704 ptep = __srmmu_get_nocache(PTE_SIZE,
705 PTE_SIZE);
706 if (ptep == NULL)
707 early_pgtable_allocfail("pte");
708 memset(ptep, 0, PTE_SIZE);
709 pmd_set(pmdp, ptep);
710 }
711 if (start > (0xffffffffUL - PMD_SIZE))
712 break;
713 start = (start + PMD_SIZE) & PMD_MASK;
714 }
715 }
716
717 /* These flush types are not available on all chips... */
718 static inline unsigned long srmmu_probe(unsigned long vaddr)
719 {
720 unsigned long retval;
721
722 if (sparc_cpu_model != sparc_leon) {
723
724 vaddr &= PAGE_MASK;
725 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
726 "=r" (retval) :
727 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
728 } else {
729 retval = leon_swprobe(vaddr, 0);
730 }
731 return retval;
732 }
733
734 /*
735 * This is much cleaner than poking around physical address space
736 * looking at the prom's page table directly which is what most
737 * other OS's do. Yuck... this is much better.
738 */
739 static void __init srmmu_inherit_prom_mappings(unsigned long start,
740 unsigned long end)
741 {
742 unsigned long probed;
743 unsigned long addr;
744 pgd_t *pgdp;
745 pmd_t *pmdp;
746 pte_t *ptep;
747 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
748
749 while (start <= end) {
750 if (start == 0)
751 break; /* probably wrap around */
752 if (start == 0xfef00000)
753 start = KADB_DEBUGGER_BEGVM;
754 probed = srmmu_probe(start);
755 if (!probed) {
756 /* continue probing until we find an entry */
757 start += PAGE_SIZE;
758 continue;
759 }
760
761 /* A red snapper, see what it really is. */
762 what = 0;
763 addr = start - PAGE_SIZE;
764
765 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
766 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
767 what = 1;
768 }
769
770 if (!(start & ~(SRMMU_PGDIR_MASK))) {
771 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
772 what = 2;
773 }
774
775 pgdp = pgd_offset_k(start);
776 if (what == 2) {
777 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
778 start += SRMMU_PGDIR_SIZE;
779 continue;
780 }
781 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
782 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
783 SRMMU_PMD_TABLE_SIZE);
784 if (pmdp == NULL)
785 early_pgtable_allocfail("pmd");
786 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
787 pgd_set(__nocache_fix(pgdp), pmdp);
788 }
789 pmdp = pmd_offset(__nocache_fix(pgdp), start);
790 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
791 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
792 if (ptep == NULL)
793 early_pgtable_allocfail("pte");
794 memset(__nocache_fix(ptep), 0, PTE_SIZE);
795 pmd_set(__nocache_fix(pmdp), ptep);
796 }
797 if (what == 1) {
798 /* We bend the rule where all 16 PTPs in a pmd_t point
799 * inside the same PTE page, and we leak a perfectly
800 * good hardware PTE piece. Alternatives seem worse.
801 */
802 unsigned int x; /* Index of HW PMD in soft cluster */
803 unsigned long *val;
804 x = (start >> PMD_SHIFT) & 15;
805 val = &pmdp->pmdv[x];
806 *(unsigned long *)__nocache_fix(val) = probed;
807 start += SRMMU_REAL_PMD_SIZE;
808 continue;
809 }
810 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
811 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
812 start += PAGE_SIZE;
813 }
814 }
815
816 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
817
818 /* Create a third-level SRMMU 16MB page mapping. */
819 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
820 {
821 pgd_t *pgdp = pgd_offset_k(vaddr);
822 unsigned long big_pte;
823
824 big_pte = KERNEL_PTE(phys_base >> 4);
825 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
826 }
827
828 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
829 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
830 {
831 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
832 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
833 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
834 /* Map "low" memory only */
835 const unsigned long min_vaddr = PAGE_OFFSET;
836 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
837
838 if (vstart < min_vaddr || vstart >= max_vaddr)
839 return vstart;
840
841 if (vend > max_vaddr || vend < min_vaddr)
842 vend = max_vaddr;
843
844 while (vstart < vend) {
845 do_large_mapping(vstart, pstart);
846 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
847 }
848 return vstart;
849 }
850
851 static void __init map_kernel(void)
852 {
853 int i;
854
855 if (phys_base > 0) {
856 do_large_mapping(PAGE_OFFSET, phys_base);
857 }
858
859 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
860 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
861 }
862 }
863
864 void (*poke_srmmu)(void) = NULL;
865
866 extern unsigned long bootmem_init(unsigned long *pages_avail);
867
868 void __init srmmu_paging_init(void)
869 {
870 int i;
871 phandle cpunode;
872 char node_str[128];
873 pgd_t *pgd;
874 pmd_t *pmd;
875 pte_t *pte;
876 unsigned long pages_avail;
877
878 init_mm.context = (unsigned long) NO_CONTEXT;
879 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
880
881 if (sparc_cpu_model == sun4d)
882 num_contexts = 65536; /* We know it is Viking */
883 else {
884 /* Find the number of contexts on the srmmu. */
885 cpunode = prom_getchild(prom_root_node);
886 num_contexts = 0;
887 while (cpunode != 0) {
888 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
889 if (!strcmp(node_str, "cpu")) {
890 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
891 break;
892 }
893 cpunode = prom_getsibling(cpunode);
894 }
895 }
896
897 if (!num_contexts) {
898 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
899 prom_halt();
900 }
901
902 pages_avail = 0;
903 last_valid_pfn = bootmem_init(&pages_avail);
904
905 srmmu_nocache_calcsize();
906 srmmu_nocache_init();
907 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
908 map_kernel();
909
910 /* ctx table has to be physically aligned to its size */
911 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
912 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
913
914 for (i = 0; i < num_contexts; i++)
915 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
916
917 flush_cache_all();
918 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
919 #ifdef CONFIG_SMP
920 /* Stop from hanging here... */
921 local_ops->tlb_all();
922 #else
923 flush_tlb_all();
924 #endif
925 poke_srmmu();
926
927 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
928 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
929
930 srmmu_allocate_ptable_skeleton(
931 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
932 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
933
934 pgd = pgd_offset_k(PKMAP_BASE);
935 pmd = pmd_offset(pgd, PKMAP_BASE);
936 pte = pte_offset_kernel(pmd, PKMAP_BASE);
937 pkmap_page_table = pte;
938
939 flush_cache_all();
940 flush_tlb_all();
941
942 sparc_context_init(num_contexts);
943
944 kmap_init();
945
946 {
947 unsigned long zones_size[MAX_NR_ZONES];
948 unsigned long zholes_size[MAX_NR_ZONES];
949 unsigned long npages;
950 int znum;
951
952 for (znum = 0; znum < MAX_NR_ZONES; znum++)
953 zones_size[znum] = zholes_size[znum] = 0;
954
955 npages = max_low_pfn - pfn_base;
956
957 zones_size[ZONE_DMA] = npages;
958 zholes_size[ZONE_DMA] = npages - pages_avail;
959
960 npages = highend_pfn - max_low_pfn;
961 zones_size[ZONE_HIGHMEM] = npages;
962 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
963
964 free_area_init_node(0, zones_size, pfn_base, zholes_size);
965 }
966 }
967
968 void mmu_info(struct seq_file *m)
969 {
970 seq_printf(m,
971 "MMU type\t: %s\n"
972 "contexts\t: %d\n"
973 "nocache total\t: %ld\n"
974 "nocache used\t: %d\n",
975 srmmu_name,
976 num_contexts,
977 srmmu_nocache_size,
978 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
979 }
980
981 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
982 {
983 mm->context = NO_CONTEXT;
984 return 0;
985 }
986
987 void destroy_context(struct mm_struct *mm)
988 {
989
990 if (mm->context != NO_CONTEXT) {
991 flush_cache_mm(mm);
992 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
993 flush_tlb_mm(mm);
994 spin_lock(&srmmu_context_spinlock);
995 free_context(mm->context);
996 spin_unlock(&srmmu_context_spinlock);
997 mm->context = NO_CONTEXT;
998 }
999 }
1000
1001 /* Init various srmmu chip types. */
1002 static void __init srmmu_is_bad(void)
1003 {
1004 prom_printf("Could not determine SRMMU chip type.\n");
1005 prom_halt();
1006 }
1007
1008 static void __init init_vac_layout(void)
1009 {
1010 phandle nd;
1011 int cache_lines;
1012 char node_str[128];
1013 #ifdef CONFIG_SMP
1014 int cpu = 0;
1015 unsigned long max_size = 0;
1016 unsigned long min_line_size = 0x10000000;
1017 #endif
1018
1019 nd = prom_getchild(prom_root_node);
1020 while ((nd = prom_getsibling(nd)) != 0) {
1021 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1022 if (!strcmp(node_str, "cpu")) {
1023 vac_line_size = prom_getint(nd, "cache-line-size");
1024 if (vac_line_size == -1) {
1025 prom_printf("can't determine cache-line-size, halting.\n");
1026 prom_halt();
1027 }
1028 cache_lines = prom_getint(nd, "cache-nlines");
1029 if (cache_lines == -1) {
1030 prom_printf("can't determine cache-nlines, halting.\n");
1031 prom_halt();
1032 }
1033
1034 vac_cache_size = cache_lines * vac_line_size;
1035 #ifdef CONFIG_SMP
1036 if (vac_cache_size > max_size)
1037 max_size = vac_cache_size;
1038 if (vac_line_size < min_line_size)
1039 min_line_size = vac_line_size;
1040 //FIXME: cpus not contiguous!!
1041 cpu++;
1042 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1043 break;
1044 #else
1045 break;
1046 #endif
1047 }
1048 }
1049 if (nd == 0) {
1050 prom_printf("No CPU nodes found, halting.\n");
1051 prom_halt();
1052 }
1053 #ifdef CONFIG_SMP
1054 vac_cache_size = max_size;
1055 vac_line_size = min_line_size;
1056 #endif
1057 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1058 (int)vac_cache_size, (int)vac_line_size);
1059 }
1060
1061 static void poke_hypersparc(void)
1062 {
1063 volatile unsigned long clear;
1064 unsigned long mreg = srmmu_get_mmureg();
1065
1066 hyper_flush_unconditional_combined();
1067
1068 mreg &= ~(HYPERSPARC_CWENABLE);
1069 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1070 mreg |= (HYPERSPARC_CMODE);
1071
1072 srmmu_set_mmureg(mreg);
1073
1074 #if 0 /* XXX I think this is bad news... -DaveM */
1075 hyper_clear_all_tags();
1076 #endif
1077
1078 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1079 hyper_flush_whole_icache();
1080 clear = srmmu_get_faddr();
1081 clear = srmmu_get_fstatus();
1082 }
1083
1084 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1085 .cache_all = hypersparc_flush_cache_all,
1086 .cache_mm = hypersparc_flush_cache_mm,
1087 .cache_page = hypersparc_flush_cache_page,
1088 .cache_range = hypersparc_flush_cache_range,
1089 .tlb_all = hypersparc_flush_tlb_all,
1090 .tlb_mm = hypersparc_flush_tlb_mm,
1091 .tlb_page = hypersparc_flush_tlb_page,
1092 .tlb_range = hypersparc_flush_tlb_range,
1093 .page_to_ram = hypersparc_flush_page_to_ram,
1094 .sig_insns = hypersparc_flush_sig_insns,
1095 .page_for_dma = hypersparc_flush_page_for_dma,
1096 };
1097
1098 static void __init init_hypersparc(void)
1099 {
1100 srmmu_name = "ROSS HyperSparc";
1101 srmmu_modtype = HyperSparc;
1102
1103 init_vac_layout();
1104
1105 is_hypersparc = 1;
1106 sparc32_cachetlb_ops = &hypersparc_ops;
1107
1108 poke_srmmu = poke_hypersparc;
1109
1110 hypersparc_setup_blockops();
1111 }
1112
1113 static void poke_swift(void)
1114 {
1115 unsigned long mreg;
1116
1117 /* Clear any crap from the cache or else... */
1118 swift_flush_cache_all();
1119
1120 /* Enable I & D caches */
1121 mreg = srmmu_get_mmureg();
1122 mreg |= (SWIFT_IE | SWIFT_DE);
1123 /*
1124 * The Swift branch folding logic is completely broken. At
1125 * trap time, if things are just right, if can mistakenly
1126 * think that a trap is coming from kernel mode when in fact
1127 * it is coming from user mode (it mis-executes the branch in
1128 * the trap code). So you see things like crashme completely
1129 * hosing your machine which is completely unacceptable. Turn
1130 * this shit off... nice job Fujitsu.
1131 */
1132 mreg &= ~(SWIFT_BF);
1133 srmmu_set_mmureg(mreg);
1134 }
1135
1136 static const struct sparc32_cachetlb_ops swift_ops = {
1137 .cache_all = swift_flush_cache_all,
1138 .cache_mm = swift_flush_cache_mm,
1139 .cache_page = swift_flush_cache_page,
1140 .cache_range = swift_flush_cache_range,
1141 .tlb_all = swift_flush_tlb_all,
1142 .tlb_mm = swift_flush_tlb_mm,
1143 .tlb_page = swift_flush_tlb_page,
1144 .tlb_range = swift_flush_tlb_range,
1145 .page_to_ram = swift_flush_page_to_ram,
1146 .sig_insns = swift_flush_sig_insns,
1147 .page_for_dma = swift_flush_page_for_dma,
1148 };
1149
1150 #define SWIFT_MASKID_ADDR 0x10003018
1151 static void __init init_swift(void)
1152 {
1153 unsigned long swift_rev;
1154
1155 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1156 "srl %0, 0x18, %0\n\t" :
1157 "=r" (swift_rev) :
1158 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1159 srmmu_name = "Fujitsu Swift";
1160 switch (swift_rev) {
1161 case 0x11:
1162 case 0x20:
1163 case 0x23:
1164 case 0x30:
1165 srmmu_modtype = Swift_lots_o_bugs;
1166 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1167 /*
1168 * Gee george, I wonder why Sun is so hush hush about
1169 * this hardware bug... really braindamage stuff going
1170 * on here. However I think we can find a way to avoid
1171 * all of the workaround overhead under Linux. Basically,
1172 * any page fault can cause kernel pages to become user
1173 * accessible (the mmu gets confused and clears some of
1174 * the ACC bits in kernel ptes). Aha, sounds pretty
1175 * horrible eh? But wait, after extensive testing it appears
1176 * that if you use pgd_t level large kernel pte's (like the
1177 * 4MB pages on the Pentium) the bug does not get tripped
1178 * at all. This avoids almost all of the major overhead.
1179 * Welcome to a world where your vendor tells you to,
1180 * "apply this kernel patch" instead of "sorry for the
1181 * broken hardware, send it back and we'll give you
1182 * properly functioning parts"
1183 */
1184 break;
1185 case 0x25:
1186 case 0x31:
1187 srmmu_modtype = Swift_bad_c;
1188 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1189 /*
1190 * You see Sun allude to this hardware bug but never
1191 * admit things directly, they'll say things like,
1192 * "the Swift chip cache problems" or similar.
1193 */
1194 break;
1195 default:
1196 srmmu_modtype = Swift_ok;
1197 break;
1198 }
1199
1200 sparc32_cachetlb_ops = &swift_ops;
1201 flush_page_for_dma_global = 0;
1202
1203 /*
1204 * Are you now convinced that the Swift is one of the
1205 * biggest VLSI abortions of all time? Bravo Fujitsu!
1206 * Fujitsu, the !#?!%$'d up processor people. I bet if
1207 * you examined the microcode of the Swift you'd find
1208 * XXX's all over the place.
1209 */
1210 poke_srmmu = poke_swift;
1211 }
1212
1213 static void turbosparc_flush_cache_all(void)
1214 {
1215 flush_user_windows();
1216 turbosparc_idflash_clear();
1217 }
1218
1219 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1220 {
1221 FLUSH_BEGIN(mm)
1222 flush_user_windows();
1223 turbosparc_idflash_clear();
1224 FLUSH_END
1225 }
1226
1227 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1228 {
1229 FLUSH_BEGIN(vma->vm_mm)
1230 flush_user_windows();
1231 turbosparc_idflash_clear();
1232 FLUSH_END
1233 }
1234
1235 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1236 {
1237 FLUSH_BEGIN(vma->vm_mm)
1238 flush_user_windows();
1239 if (vma->vm_flags & VM_EXEC)
1240 turbosparc_flush_icache();
1241 turbosparc_flush_dcache();
1242 FLUSH_END
1243 }
1244
1245 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1246 static void turbosparc_flush_page_to_ram(unsigned long page)
1247 {
1248 #ifdef TURBOSPARC_WRITEBACK
1249 volatile unsigned long clear;
1250
1251 if (srmmu_probe(page))
1252 turbosparc_flush_page_cache(page);
1253 clear = srmmu_get_fstatus();
1254 #endif
1255 }
1256
1257 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1258 {
1259 }
1260
1261 static void turbosparc_flush_page_for_dma(unsigned long page)
1262 {
1263 turbosparc_flush_dcache();
1264 }
1265
1266 static void turbosparc_flush_tlb_all(void)
1267 {
1268 srmmu_flush_whole_tlb();
1269 }
1270
1271 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1272 {
1273 FLUSH_BEGIN(mm)
1274 srmmu_flush_whole_tlb();
1275 FLUSH_END
1276 }
1277
1278 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1279 {
1280 FLUSH_BEGIN(vma->vm_mm)
1281 srmmu_flush_whole_tlb();
1282 FLUSH_END
1283 }
1284
1285 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1286 {
1287 FLUSH_BEGIN(vma->vm_mm)
1288 srmmu_flush_whole_tlb();
1289 FLUSH_END
1290 }
1291
1292
1293 static void poke_turbosparc(void)
1294 {
1295 unsigned long mreg = srmmu_get_mmureg();
1296 unsigned long ccreg;
1297
1298 /* Clear any crap from the cache or else... */
1299 turbosparc_flush_cache_all();
1300 /* Temporarily disable I & D caches */
1301 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1302 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1303 srmmu_set_mmureg(mreg);
1304
1305 ccreg = turbosparc_get_ccreg();
1306
1307 #ifdef TURBOSPARC_WRITEBACK
1308 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1309 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1310 /* Write-back D-cache, emulate VLSI
1311 * abortion number three, not number one */
1312 #else
1313 /* For now let's play safe, optimize later */
1314 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1315 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1316 ccreg &= ~(TURBOSPARC_uS2);
1317 /* Emulate VLSI abortion number three, not number one */
1318 #endif
1319
1320 switch (ccreg & 7) {
1321 case 0: /* No SE cache */
1322 case 7: /* Test mode */
1323 break;
1324 default:
1325 ccreg |= (TURBOSPARC_SCENABLE);
1326 }
1327 turbosparc_set_ccreg(ccreg);
1328
1329 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1330 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1331 srmmu_set_mmureg(mreg);
1332 }
1333
1334 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1335 .cache_all = turbosparc_flush_cache_all,
1336 .cache_mm = turbosparc_flush_cache_mm,
1337 .cache_page = turbosparc_flush_cache_page,
1338 .cache_range = turbosparc_flush_cache_range,
1339 .tlb_all = turbosparc_flush_tlb_all,
1340 .tlb_mm = turbosparc_flush_tlb_mm,
1341 .tlb_page = turbosparc_flush_tlb_page,
1342 .tlb_range = turbosparc_flush_tlb_range,
1343 .page_to_ram = turbosparc_flush_page_to_ram,
1344 .sig_insns = turbosparc_flush_sig_insns,
1345 .page_for_dma = turbosparc_flush_page_for_dma,
1346 };
1347
1348 static void __init init_turbosparc(void)
1349 {
1350 srmmu_name = "Fujitsu TurboSparc";
1351 srmmu_modtype = TurboSparc;
1352 sparc32_cachetlb_ops = &turbosparc_ops;
1353 poke_srmmu = poke_turbosparc;
1354 }
1355
1356 static void poke_tsunami(void)
1357 {
1358 unsigned long mreg = srmmu_get_mmureg();
1359
1360 tsunami_flush_icache();
1361 tsunami_flush_dcache();
1362 mreg &= ~TSUNAMI_ITD;
1363 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1364 srmmu_set_mmureg(mreg);
1365 }
1366
1367 static const struct sparc32_cachetlb_ops tsunami_ops = {
1368 .cache_all = tsunami_flush_cache_all,
1369 .cache_mm = tsunami_flush_cache_mm,
1370 .cache_page = tsunami_flush_cache_page,
1371 .cache_range = tsunami_flush_cache_range,
1372 .tlb_all = tsunami_flush_tlb_all,
1373 .tlb_mm = tsunami_flush_tlb_mm,
1374 .tlb_page = tsunami_flush_tlb_page,
1375 .tlb_range = tsunami_flush_tlb_range,
1376 .page_to_ram = tsunami_flush_page_to_ram,
1377 .sig_insns = tsunami_flush_sig_insns,
1378 .page_for_dma = tsunami_flush_page_for_dma,
1379 };
1380
1381 static void __init init_tsunami(void)
1382 {
1383 /*
1384 * Tsunami's pretty sane, Sun and TI actually got it
1385 * somewhat right this time. Fujitsu should have
1386 * taken some lessons from them.
1387 */
1388
1389 srmmu_name = "TI Tsunami";
1390 srmmu_modtype = Tsunami;
1391 sparc32_cachetlb_ops = &tsunami_ops;
1392 poke_srmmu = poke_tsunami;
1393
1394 tsunami_setup_blockops();
1395 }
1396
1397 static void poke_viking(void)
1398 {
1399 unsigned long mreg = srmmu_get_mmureg();
1400 static int smp_catch;
1401
1402 if (viking_mxcc_present) {
1403 unsigned long mxcc_control = mxcc_get_creg();
1404
1405 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1406 mxcc_control &= ~(MXCC_CTL_RRC);
1407 mxcc_set_creg(mxcc_control);
1408
1409 /*
1410 * We don't need memory parity checks.
1411 * XXX This is a mess, have to dig out later. ecd.
1412 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1413 */
1414
1415 /* We do cache ptables on MXCC. */
1416 mreg |= VIKING_TCENABLE;
1417 } else {
1418 unsigned long bpreg;
1419
1420 mreg &= ~(VIKING_TCENABLE);
1421 if (smp_catch++) {
1422 /* Must disable mixed-cmd mode here for other cpu's. */
1423 bpreg = viking_get_bpreg();
1424 bpreg &= ~(VIKING_ACTION_MIX);
1425 viking_set_bpreg(bpreg);
1426
1427 /* Just in case PROM does something funny. */
1428 msi_set_sync();
1429 }
1430 }
1431
1432 mreg |= VIKING_SPENABLE;
1433 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1434 mreg |= VIKING_SBENABLE;
1435 mreg &= ~(VIKING_ACENABLE);
1436 srmmu_set_mmureg(mreg);
1437 }
1438
1439 static struct sparc32_cachetlb_ops viking_ops = {
1440 .cache_all = viking_flush_cache_all,
1441 .cache_mm = viking_flush_cache_mm,
1442 .cache_page = viking_flush_cache_page,
1443 .cache_range = viking_flush_cache_range,
1444 .tlb_all = viking_flush_tlb_all,
1445 .tlb_mm = viking_flush_tlb_mm,
1446 .tlb_page = viking_flush_tlb_page,
1447 .tlb_range = viking_flush_tlb_range,
1448 .page_to_ram = viking_flush_page_to_ram,
1449 .sig_insns = viking_flush_sig_insns,
1450 .page_for_dma = viking_flush_page_for_dma,
1451 };
1452
1453 #ifdef CONFIG_SMP
1454 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1455 * perform the local TLB flush and all the other cpus will see it.
1456 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1457 * that requires that we add some synchronization to these flushes.
1458 *
1459 * The bug is that the fifo which keeps track of all the pending TLB
1460 * broadcasts in the system is an entry or two too small, so if we
1461 * have too many going at once we'll overflow that fifo and lose a TLB
1462 * flush resulting in corruption.
1463 *
1464 * Our workaround is to take a global spinlock around the TLB flushes,
1465 * which guarentees we won't ever have too many pending. It's a big
1466 * hammer, but a semaphore like system to make sure we only have N TLB
1467 * flushes going at once will require SMP locking anyways so there's
1468 * no real value in trying any harder than this.
1469 */
1470 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1471 .cache_all = viking_flush_cache_all,
1472 .cache_mm = viking_flush_cache_mm,
1473 .cache_page = viking_flush_cache_page,
1474 .cache_range = viking_flush_cache_range,
1475 .tlb_all = sun4dsmp_flush_tlb_all,
1476 .tlb_mm = sun4dsmp_flush_tlb_mm,
1477 .tlb_page = sun4dsmp_flush_tlb_page,
1478 .tlb_range = sun4dsmp_flush_tlb_range,
1479 .page_to_ram = viking_flush_page_to_ram,
1480 .sig_insns = viking_flush_sig_insns,
1481 .page_for_dma = viking_flush_page_for_dma,
1482 };
1483 #endif
1484
1485 static void __init init_viking(void)
1486 {
1487 unsigned long mreg = srmmu_get_mmureg();
1488
1489 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1490 if (mreg & VIKING_MMODE) {
1491 srmmu_name = "TI Viking";
1492 viking_mxcc_present = 0;
1493 msi_set_sync();
1494
1495 /*
1496 * We need this to make sure old viking takes no hits
1497 * on it's cache for dma snoops to workaround the
1498 * "load from non-cacheable memory" interrupt bug.
1499 * This is only necessary because of the new way in
1500 * which we use the IOMMU.
1501 */
1502 viking_ops.page_for_dma = viking_flush_page;
1503 #ifdef CONFIG_SMP
1504 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1505 #endif
1506 flush_page_for_dma_global = 0;
1507 } else {
1508 srmmu_name = "TI Viking/MXCC";
1509 viking_mxcc_present = 1;
1510 srmmu_cache_pagetables = 1;
1511 }
1512
1513 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1514 &viking_ops;
1515 #ifdef CONFIG_SMP
1516 if (sparc_cpu_model == sun4d)
1517 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1518 &viking_sun4d_smp_ops;
1519 #endif
1520
1521 poke_srmmu = poke_viking;
1522 }
1523
1524 /* Probe for the srmmu chip version. */
1525 static void __init get_srmmu_type(void)
1526 {
1527 unsigned long mreg, psr;
1528 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1529
1530 srmmu_modtype = SRMMU_INVAL_MOD;
1531 hwbug_bitmask = 0;
1532
1533 mreg = srmmu_get_mmureg(); psr = get_psr();
1534 mod_typ = (mreg & 0xf0000000) >> 28;
1535 mod_rev = (mreg & 0x0f000000) >> 24;
1536 psr_typ = (psr >> 28) & 0xf;
1537 psr_vers = (psr >> 24) & 0xf;
1538
1539 /* First, check for sparc-leon. */
1540 if (sparc_cpu_model == sparc_leon) {
1541 init_leon();
1542 return;
1543 }
1544
1545 /* Second, check for HyperSparc or Cypress. */
1546 if (mod_typ == 1) {
1547 switch (mod_rev) {
1548 case 7:
1549 /* UP or MP Hypersparc */
1550 init_hypersparc();
1551 break;
1552 case 0:
1553 case 2:
1554 case 10:
1555 case 11:
1556 case 12:
1557 case 13:
1558 case 14:
1559 case 15:
1560 default:
1561 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1562 prom_halt();
1563 break;
1564 }
1565 return;
1566 }
1567
1568 /* Now Fujitsu TurboSparc. It might happen that it is
1569 * in Swift emulation mode, so we will check later...
1570 */
1571 if (psr_typ == 0 && psr_vers == 5) {
1572 init_turbosparc();
1573 return;
1574 }
1575
1576 /* Next check for Fujitsu Swift. */
1577 if (psr_typ == 0 && psr_vers == 4) {
1578 phandle cpunode;
1579 char node_str[128];
1580
1581 /* Look if it is not a TurboSparc emulating Swift... */
1582 cpunode = prom_getchild(prom_root_node);
1583 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1584 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1585 if (!strcmp(node_str, "cpu")) {
1586 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1587 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1588 init_turbosparc();
1589 return;
1590 }
1591 break;
1592 }
1593 }
1594
1595 init_swift();
1596 return;
1597 }
1598
1599 /* Now the Viking family of srmmu. */
1600 if (psr_typ == 4 &&
1601 ((psr_vers == 0) ||
1602 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1603 init_viking();
1604 return;
1605 }
1606
1607 /* Finally the Tsunami. */
1608 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1609 init_tsunami();
1610 return;
1611 }
1612
1613 /* Oh well */
1614 srmmu_is_bad();
1615 }
1616
1617 #ifdef CONFIG_SMP
1618 /* Local cross-calls. */
1619 static void smp_flush_page_for_dma(unsigned long page)
1620 {
1621 xc1((smpfunc_t) local_ops->page_for_dma, page);
1622 local_ops->page_for_dma(page);
1623 }
1624
1625 static void smp_flush_cache_all(void)
1626 {
1627 xc0((smpfunc_t) local_ops->cache_all);
1628 local_ops->cache_all();
1629 }
1630
1631 static void smp_flush_tlb_all(void)
1632 {
1633 xc0((smpfunc_t) local_ops->tlb_all);
1634 local_ops->tlb_all();
1635 }
1636
1637 static void smp_flush_cache_mm(struct mm_struct *mm)
1638 {
1639 if (mm->context != NO_CONTEXT) {
1640 cpumask_t cpu_mask;
1641 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1642 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1643 if (!cpumask_empty(&cpu_mask))
1644 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1645 local_ops->cache_mm(mm);
1646 }
1647 }
1648
1649 static void smp_flush_tlb_mm(struct mm_struct *mm)
1650 {
1651 if (mm->context != NO_CONTEXT) {
1652 cpumask_t cpu_mask;
1653 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1654 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1655 if (!cpumask_empty(&cpu_mask)) {
1656 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1657 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1658 cpumask_copy(mm_cpumask(mm),
1659 cpumask_of(smp_processor_id()));
1660 }
1661 local_ops->tlb_mm(mm);
1662 }
1663 }
1664
1665 static void smp_flush_cache_range(struct vm_area_struct *vma,
1666 unsigned long start,
1667 unsigned long end)
1668 {
1669 struct mm_struct *mm = vma->vm_mm;
1670
1671 if (mm->context != NO_CONTEXT) {
1672 cpumask_t cpu_mask;
1673 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1674 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1675 if (!cpumask_empty(&cpu_mask))
1676 xc3((smpfunc_t) local_ops->cache_range,
1677 (unsigned long) vma, start, end);
1678 local_ops->cache_range(vma, start, end);
1679 }
1680 }
1681
1682 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1683 unsigned long start,
1684 unsigned long end)
1685 {
1686 struct mm_struct *mm = vma->vm_mm;
1687
1688 if (mm->context != NO_CONTEXT) {
1689 cpumask_t cpu_mask;
1690 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1691 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1692 if (!cpumask_empty(&cpu_mask))
1693 xc3((smpfunc_t) local_ops->tlb_range,
1694 (unsigned long) vma, start, end);
1695 local_ops->tlb_range(vma, start, end);
1696 }
1697 }
1698
1699 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1700 {
1701 struct mm_struct *mm = vma->vm_mm;
1702
1703 if (mm->context != NO_CONTEXT) {
1704 cpumask_t cpu_mask;
1705 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1706 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1707 if (!cpumask_empty(&cpu_mask))
1708 xc2((smpfunc_t) local_ops->cache_page,
1709 (unsigned long) vma, page);
1710 local_ops->cache_page(vma, page);
1711 }
1712 }
1713
1714 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1715 {
1716 struct mm_struct *mm = vma->vm_mm;
1717
1718 if (mm->context != NO_CONTEXT) {
1719 cpumask_t cpu_mask;
1720 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1721 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1722 if (!cpumask_empty(&cpu_mask))
1723 xc2((smpfunc_t) local_ops->tlb_page,
1724 (unsigned long) vma, page);
1725 local_ops->tlb_page(vma, page);
1726 }
1727 }
1728
1729 static void smp_flush_page_to_ram(unsigned long page)
1730 {
1731 /* Current theory is that those who call this are the one's
1732 * who have just dirtied their cache with the pages contents
1733 * in kernel space, therefore we only run this on local cpu.
1734 *
1735 * XXX This experiment failed, research further... -DaveM
1736 */
1737 #if 1
1738 xc1((smpfunc_t) local_ops->page_to_ram, page);
1739 #endif
1740 local_ops->page_to_ram(page);
1741 }
1742
1743 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1744 {
1745 cpumask_t cpu_mask;
1746 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1747 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1748 if (!cpumask_empty(&cpu_mask))
1749 xc2((smpfunc_t) local_ops->sig_insns,
1750 (unsigned long) mm, insn_addr);
1751 local_ops->sig_insns(mm, insn_addr);
1752 }
1753
1754 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1755 .cache_all = smp_flush_cache_all,
1756 .cache_mm = smp_flush_cache_mm,
1757 .cache_page = smp_flush_cache_page,
1758 .cache_range = smp_flush_cache_range,
1759 .tlb_all = smp_flush_tlb_all,
1760 .tlb_mm = smp_flush_tlb_mm,
1761 .tlb_page = smp_flush_tlb_page,
1762 .tlb_range = smp_flush_tlb_range,
1763 .page_to_ram = smp_flush_page_to_ram,
1764 .sig_insns = smp_flush_sig_insns,
1765 .page_for_dma = smp_flush_page_for_dma,
1766 };
1767 #endif
1768
1769 /* Load up routines and constants for sun4m and sun4d mmu */
1770 void __init load_mmu(void)
1771 {
1772 extern void ld_mmu_iommu(void);
1773 extern void ld_mmu_iounit(void);
1774
1775 /* Functions */
1776 get_srmmu_type();
1777
1778 #ifdef CONFIG_SMP
1779 /* El switcheroo... */
1780 local_ops = sparc32_cachetlb_ops;
1781
1782 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1783 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1784 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1785 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1786 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1787 }
1788
1789 if (poke_srmmu == poke_viking) {
1790 /* Avoid unnecessary cross calls. */
1791 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1792 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1793 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1794 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1795
1796 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1797 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1798 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1799 }
1800
1801 /* It really is const after this point. */
1802 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1803 &smp_cachetlb_ops;
1804 #endif
1805
1806 if (sparc_cpu_model == sun4d)
1807 ld_mmu_iounit();
1808 else
1809 ld_mmu_iommu();
1810 #ifdef CONFIG_SMP
1811 if (sparc_cpu_model == sun4d)
1812 sun4d_init_smp();
1813 else if (sparc_cpu_model == sparc_leon)
1814 leon_init_smp();
1815 else
1816 sun4m_init_smp();
1817 #endif
1818 }