]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sparc/mm/srmmu.c
Merge remote-tracking branches 'asoc/topic/omap', 'asoc/topic/oom' and 'asoc/topic...
[mirror_ubuntu-artful-kernel.git] / arch / sparc / mm / srmmu.c
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/gfp.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24
25 #include <asm/mmu_context.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/io-unit.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/bitext.h>
32 #include <asm/vaddrs.h>
33 #include <asm/cache.h>
34 #include <asm/traps.h>
35 #include <asm/oplib.h>
36 #include <asm/mbus.h>
37 #include <asm/page.h>
38 #include <asm/asi.h>
39 #include <asm/msi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51
52 #include "mm_32.h"
53
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 int vac_line_size;
58
59 extern struct resource sparc_iomap;
60
61 extern unsigned long last_valid_pfn;
62
63 static pgd_t *srmmu_swapper_pg_dir;
64
65 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
66 EXPORT_SYMBOL(sparc32_cachetlb_ops);
67
68 #ifdef CONFIG_SMP
69 const struct sparc32_cachetlb_ops *local_ops;
70
71 #define FLUSH_BEGIN(mm)
72 #define FLUSH_END
73 #else
74 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
75 #define FLUSH_END }
76 #endif
77
78 int flush_page_for_dma_global = 1;
79
80 char *srmmu_name;
81
82 ctxd_t *srmmu_ctx_table_phys;
83 static ctxd_t *srmmu_context_table;
84
85 int viking_mxcc_present;
86 static DEFINE_SPINLOCK(srmmu_context_spinlock);
87
88 static int is_hypersparc;
89
90 static int srmmu_cache_pagetables;
91
92 /* these will be initialized in srmmu_nocache_calcsize() */
93 static unsigned long srmmu_nocache_size;
94 static unsigned long srmmu_nocache_end;
95
96 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
97 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
98
99 /* The context table is a nocache user with the biggest alignment needs. */
100 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
101
102 void *srmmu_nocache_pool;
103 static struct bit_map srmmu_nocache_map;
104
105 static inline int srmmu_pmd_none(pmd_t pmd)
106 { return !(pmd_val(pmd) & 0xFFFFFFF); }
107
108 /* XXX should we hyper_flush_whole_icache here - Anton */
109 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
110 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
111
112 void pmd_set(pmd_t *pmdp, pte_t *ptep)
113 {
114 unsigned long ptp; /* Physical address, shifted right by 4 */
115 int i;
116
117 ptp = __nocache_pa((unsigned long) ptep) >> 4;
118 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
119 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
120 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
121 }
122 }
123
124 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
125 {
126 unsigned long ptp; /* Physical address, shifted right by 4 */
127 int i;
128
129 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
130 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
131 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
132 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
133 }
134 }
135
136 /* Find an entry in the third-level page table.. */
137 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
138 {
139 void *pte;
140
141 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
142 return (pte_t *) pte +
143 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
144 }
145
146 /*
147 * size: bytes to allocate in the nocache area.
148 * align: bytes, number to align at.
149 * Returns the virtual address of the allocated area.
150 */
151 static void *__srmmu_get_nocache(int size, int align)
152 {
153 int offset;
154 unsigned long addr;
155
156 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
157 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
158 size);
159 size = SRMMU_NOCACHE_BITMAP_SHIFT;
160 }
161 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
162 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
163 size);
164 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
165 }
166 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
167
168 offset = bit_map_string_get(&srmmu_nocache_map,
169 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
170 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
171 if (offset == -1) {
172 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
173 size, (int) srmmu_nocache_size,
174 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175 return NULL;
176 }
177
178 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
179 return (void *)addr;
180 }
181
182 void *srmmu_get_nocache(int size, int align)
183 {
184 void *tmp;
185
186 tmp = __srmmu_get_nocache(size, align);
187
188 if (tmp)
189 memset(tmp, 0, size);
190
191 return tmp;
192 }
193
194 void srmmu_free_nocache(void *addr, int size)
195 {
196 unsigned long vaddr;
197 int offset;
198
199 vaddr = (unsigned long)addr;
200 if (vaddr < SRMMU_NOCACHE_VADDR) {
201 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
202 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
203 BUG();
204 }
205 if (vaddr + size > srmmu_nocache_end) {
206 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
207 vaddr, srmmu_nocache_end);
208 BUG();
209 }
210 if (!is_power_of_2(size)) {
211 printk("Size 0x%x is not a power of 2\n", size);
212 BUG();
213 }
214 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
215 printk("Size 0x%x is too small\n", size);
216 BUG();
217 }
218 if (vaddr & (size - 1)) {
219 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
220 BUG();
221 }
222
223 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
224 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
225
226 bit_map_clear(&srmmu_nocache_map, offset, size);
227 }
228
229 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
230 unsigned long end);
231
232 /* Return how much physical memory we have. */
233 static unsigned long __init probe_memory(void)
234 {
235 unsigned long total = 0;
236 int i;
237
238 for (i = 0; sp_banks[i].num_bytes; i++)
239 total += sp_banks[i].num_bytes;
240
241 return total;
242 }
243
244 /*
245 * Reserve nocache dynamically proportionally to the amount of
246 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
247 */
248 static void __init srmmu_nocache_calcsize(void)
249 {
250 unsigned long sysmemavail = probe_memory() / 1024;
251 int srmmu_nocache_npages;
252
253 srmmu_nocache_npages =
254 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
255
256 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
257 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
258 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
259 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
260
261 /* anything above 1280 blows up */
262 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
263 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
264
265 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
266 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
267 }
268
269 static void __init srmmu_nocache_init(void)
270 {
271 void *srmmu_nocache_bitmap;
272 unsigned int bitmap_bits;
273 pgd_t *pgd;
274 pmd_t *pmd;
275 pte_t *pte;
276 unsigned long paddr, vaddr;
277 unsigned long pteval;
278
279 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
280
281 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
282 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
283 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
284
285 srmmu_nocache_bitmap =
286 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
287 SMP_CACHE_BYTES, 0UL);
288 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
289
290 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
291 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
292 init_mm.pgd = srmmu_swapper_pg_dir;
293
294 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
295
296 paddr = __pa((unsigned long)srmmu_nocache_pool);
297 vaddr = SRMMU_NOCACHE_VADDR;
298
299 while (vaddr < srmmu_nocache_end) {
300 pgd = pgd_offset_k(vaddr);
301 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
302 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
303
304 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
305
306 if (srmmu_cache_pagetables)
307 pteval |= SRMMU_CACHE;
308
309 set_pte(__nocache_fix(pte), __pte(pteval));
310
311 vaddr += PAGE_SIZE;
312 paddr += PAGE_SIZE;
313 }
314
315 flush_cache_all();
316 flush_tlb_all();
317 }
318
319 pgd_t *get_pgd_fast(void)
320 {
321 pgd_t *pgd = NULL;
322
323 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
324 if (pgd) {
325 pgd_t *init = pgd_offset_k(0);
326 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
327 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
328 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
329 }
330
331 return pgd;
332 }
333
334 /*
335 * Hardware needs alignment to 256 only, but we align to whole page size
336 * to reduce fragmentation problems due to the buddy principle.
337 * XXX Provide actual fragmentation statistics in /proc.
338 *
339 * Alignments up to the page size are the same for physical and virtual
340 * addresses of the nocache area.
341 */
342 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
343 {
344 unsigned long pte;
345 struct page *page;
346
347 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
348 return NULL;
349 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
350 if (!pgtable_page_ctor(page)) {
351 __free_page(page);
352 return NULL;
353 }
354 return page;
355 }
356
357 void pte_free(struct mm_struct *mm, pgtable_t pte)
358 {
359 unsigned long p;
360
361 pgtable_page_dtor(pte);
362 p = (unsigned long)page_address(pte); /* Cached address (for test) */
363 if (p == 0)
364 BUG();
365 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
366
367 /* free non cached virtual address*/
368 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
369 }
370
371 /* context handling - a dynamically sized pool is used */
372 #define NO_CONTEXT -1
373
374 struct ctx_list {
375 struct ctx_list *next;
376 struct ctx_list *prev;
377 unsigned int ctx_number;
378 struct mm_struct *ctx_mm;
379 };
380
381 static struct ctx_list *ctx_list_pool;
382 static struct ctx_list ctx_free;
383 static struct ctx_list ctx_used;
384
385 /* At boot time we determine the number of contexts */
386 static int num_contexts;
387
388 static inline void remove_from_ctx_list(struct ctx_list *entry)
389 {
390 entry->next->prev = entry->prev;
391 entry->prev->next = entry->next;
392 }
393
394 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
395 {
396 entry->next = head;
397 (entry->prev = head->prev)->next = entry;
398 head->prev = entry;
399 }
400 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
401 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
402
403
404 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
405 {
406 struct ctx_list *ctxp;
407
408 ctxp = ctx_free.next;
409 if (ctxp != &ctx_free) {
410 remove_from_ctx_list(ctxp);
411 add_to_used_ctxlist(ctxp);
412 mm->context = ctxp->ctx_number;
413 ctxp->ctx_mm = mm;
414 return;
415 }
416 ctxp = ctx_used.next;
417 if (ctxp->ctx_mm == old_mm)
418 ctxp = ctxp->next;
419 if (ctxp == &ctx_used)
420 panic("out of mmu contexts");
421 flush_cache_mm(ctxp->ctx_mm);
422 flush_tlb_mm(ctxp->ctx_mm);
423 remove_from_ctx_list(ctxp);
424 add_to_used_ctxlist(ctxp);
425 ctxp->ctx_mm->context = NO_CONTEXT;
426 ctxp->ctx_mm = mm;
427 mm->context = ctxp->ctx_number;
428 }
429
430 static inline void free_context(int context)
431 {
432 struct ctx_list *ctx_old;
433
434 ctx_old = ctx_list_pool + context;
435 remove_from_ctx_list(ctx_old);
436 add_to_free_ctxlist(ctx_old);
437 }
438
439 static void __init sparc_context_init(int numctx)
440 {
441 int ctx;
442 unsigned long size;
443
444 size = numctx * sizeof(struct ctx_list);
445 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
446
447 for (ctx = 0; ctx < numctx; ctx++) {
448 struct ctx_list *clist;
449
450 clist = (ctx_list_pool + ctx);
451 clist->ctx_number = ctx;
452 clist->ctx_mm = NULL;
453 }
454 ctx_free.next = ctx_free.prev = &ctx_free;
455 ctx_used.next = ctx_used.prev = &ctx_used;
456 for (ctx = 0; ctx < numctx; ctx++)
457 add_to_free_ctxlist(ctx_list_pool + ctx);
458 }
459
460 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
461 struct task_struct *tsk)
462 {
463 if (mm->context == NO_CONTEXT) {
464 spin_lock(&srmmu_context_spinlock);
465 alloc_context(old_mm, mm);
466 spin_unlock(&srmmu_context_spinlock);
467 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
468 }
469
470 if (sparc_cpu_model == sparc_leon)
471 leon_switch_mm();
472
473 if (is_hypersparc)
474 hyper_flush_whole_icache();
475
476 srmmu_set_context(mm->context);
477 }
478
479 /* Low level IO area allocation on the SRMMU. */
480 static inline void srmmu_mapioaddr(unsigned long physaddr,
481 unsigned long virt_addr, int bus_type)
482 {
483 pgd_t *pgdp;
484 pmd_t *pmdp;
485 pte_t *ptep;
486 unsigned long tmp;
487
488 physaddr &= PAGE_MASK;
489 pgdp = pgd_offset_k(virt_addr);
490 pmdp = pmd_offset(pgdp, virt_addr);
491 ptep = pte_offset_kernel(pmdp, virt_addr);
492 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
493
494 /* I need to test whether this is consistent over all
495 * sun4m's. The bus_type represents the upper 4 bits of
496 * 36-bit physical address on the I/O space lines...
497 */
498 tmp |= (bus_type << 28);
499 tmp |= SRMMU_PRIV;
500 __flush_page_to_ram(virt_addr);
501 set_pte(ptep, __pte(tmp));
502 }
503
504 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
505 unsigned long xva, unsigned int len)
506 {
507 while (len != 0) {
508 len -= PAGE_SIZE;
509 srmmu_mapioaddr(xpa, xva, bus);
510 xva += PAGE_SIZE;
511 xpa += PAGE_SIZE;
512 }
513 flush_tlb_all();
514 }
515
516 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
517 {
518 pgd_t *pgdp;
519 pmd_t *pmdp;
520 pte_t *ptep;
521
522 pgdp = pgd_offset_k(virt_addr);
523 pmdp = pmd_offset(pgdp, virt_addr);
524 ptep = pte_offset_kernel(pmdp, virt_addr);
525
526 /* No need to flush uncacheable page. */
527 __pte_clear(ptep);
528 }
529
530 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
531 {
532 while (len != 0) {
533 len -= PAGE_SIZE;
534 srmmu_unmapioaddr(virt_addr);
535 virt_addr += PAGE_SIZE;
536 }
537 flush_tlb_all();
538 }
539
540 /* tsunami.S */
541 extern void tsunami_flush_cache_all(void);
542 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
543 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
544 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
545 extern void tsunami_flush_page_to_ram(unsigned long page);
546 extern void tsunami_flush_page_for_dma(unsigned long page);
547 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
548 extern void tsunami_flush_tlb_all(void);
549 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
550 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
551 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
552 extern void tsunami_setup_blockops(void);
553
554 /* swift.S */
555 extern void swift_flush_cache_all(void);
556 extern void swift_flush_cache_mm(struct mm_struct *mm);
557 extern void swift_flush_cache_range(struct vm_area_struct *vma,
558 unsigned long start, unsigned long end);
559 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
560 extern void swift_flush_page_to_ram(unsigned long page);
561 extern void swift_flush_page_for_dma(unsigned long page);
562 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
563 extern void swift_flush_tlb_all(void);
564 extern void swift_flush_tlb_mm(struct mm_struct *mm);
565 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
566 unsigned long start, unsigned long end);
567 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
568
569 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
570 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
571 {
572 int cctx, ctx1;
573
574 page &= PAGE_MASK;
575 if ((ctx1 = vma->vm_mm->context) != -1) {
576 cctx = srmmu_get_context();
577 /* Is context # ever different from current context? P3 */
578 if (cctx != ctx1) {
579 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
580 srmmu_set_context(ctx1);
581 swift_flush_page(page);
582 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
583 "r" (page), "i" (ASI_M_FLUSH_PROBE));
584 srmmu_set_context(cctx);
585 } else {
586 /* Rm. prot. bits from virt. c. */
587 /* swift_flush_cache_all(); */
588 /* swift_flush_cache_page(vma, page); */
589 swift_flush_page(page);
590
591 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
592 "r" (page), "i" (ASI_M_FLUSH_PROBE));
593 /* same as above: srmmu_flush_tlb_page() */
594 }
595 }
596 }
597 #endif
598
599 /*
600 * The following are all MBUS based SRMMU modules, and therefore could
601 * be found in a multiprocessor configuration. On the whole, these
602 * chips seems to be much more touchy about DVMA and page tables
603 * with respect to cache coherency.
604 */
605
606 /* viking.S */
607 extern void viking_flush_cache_all(void);
608 extern void viking_flush_cache_mm(struct mm_struct *mm);
609 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
610 unsigned long end);
611 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
612 extern void viking_flush_page_to_ram(unsigned long page);
613 extern void viking_flush_page_for_dma(unsigned long page);
614 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
615 extern void viking_flush_page(unsigned long page);
616 extern void viking_mxcc_flush_page(unsigned long page);
617 extern void viking_flush_tlb_all(void);
618 extern void viking_flush_tlb_mm(struct mm_struct *mm);
619 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
620 unsigned long end);
621 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
622 unsigned long page);
623 extern void sun4dsmp_flush_tlb_all(void);
624 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
625 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
626 unsigned long end);
627 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
628 unsigned long page);
629
630 /* hypersparc.S */
631 extern void hypersparc_flush_cache_all(void);
632 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
633 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
634 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
635 extern void hypersparc_flush_page_to_ram(unsigned long page);
636 extern void hypersparc_flush_page_for_dma(unsigned long page);
637 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
638 extern void hypersparc_flush_tlb_all(void);
639 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
640 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
641 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
642 extern void hypersparc_setup_blockops(void);
643
644 /*
645 * NOTE: All of this startup code assumes the low 16mb (approx.) of
646 * kernel mappings are done with one single contiguous chunk of
647 * ram. On small ram machines (classics mainly) we only get
648 * around 8mb mapped for us.
649 */
650
651 static void __init early_pgtable_allocfail(char *type)
652 {
653 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
654 prom_halt();
655 }
656
657 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
658 unsigned long end)
659 {
660 pgd_t *pgdp;
661 pmd_t *pmdp;
662 pte_t *ptep;
663
664 while (start < end) {
665 pgdp = pgd_offset_k(start);
666 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
667 pmdp = __srmmu_get_nocache(
668 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
669 if (pmdp == NULL)
670 early_pgtable_allocfail("pmd");
671 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
672 pgd_set(__nocache_fix(pgdp), pmdp);
673 }
674 pmdp = pmd_offset(__nocache_fix(pgdp), start);
675 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
676 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
677 if (ptep == NULL)
678 early_pgtable_allocfail("pte");
679 memset(__nocache_fix(ptep), 0, PTE_SIZE);
680 pmd_set(__nocache_fix(pmdp), ptep);
681 }
682 if (start > (0xffffffffUL - PMD_SIZE))
683 break;
684 start = (start + PMD_SIZE) & PMD_MASK;
685 }
686 }
687
688 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
689 unsigned long end)
690 {
691 pgd_t *pgdp;
692 pmd_t *pmdp;
693 pte_t *ptep;
694
695 while (start < end) {
696 pgdp = pgd_offset_k(start);
697 if (pgd_none(*pgdp)) {
698 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
699 if (pmdp == NULL)
700 early_pgtable_allocfail("pmd");
701 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
702 pgd_set(pgdp, pmdp);
703 }
704 pmdp = pmd_offset(pgdp, start);
705 if (srmmu_pmd_none(*pmdp)) {
706 ptep = __srmmu_get_nocache(PTE_SIZE,
707 PTE_SIZE);
708 if (ptep == NULL)
709 early_pgtable_allocfail("pte");
710 memset(ptep, 0, PTE_SIZE);
711 pmd_set(pmdp, ptep);
712 }
713 if (start > (0xffffffffUL - PMD_SIZE))
714 break;
715 start = (start + PMD_SIZE) & PMD_MASK;
716 }
717 }
718
719 /* These flush types are not available on all chips... */
720 static inline unsigned long srmmu_probe(unsigned long vaddr)
721 {
722 unsigned long retval;
723
724 if (sparc_cpu_model != sparc_leon) {
725
726 vaddr &= PAGE_MASK;
727 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
728 "=r" (retval) :
729 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
730 } else {
731 retval = leon_swprobe(vaddr, NULL);
732 }
733 return retval;
734 }
735
736 /*
737 * This is much cleaner than poking around physical address space
738 * looking at the prom's page table directly which is what most
739 * other OS's do. Yuck... this is much better.
740 */
741 static void __init srmmu_inherit_prom_mappings(unsigned long start,
742 unsigned long end)
743 {
744 unsigned long probed;
745 unsigned long addr;
746 pgd_t *pgdp;
747 pmd_t *pmdp;
748 pte_t *ptep;
749 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
750
751 while (start <= end) {
752 if (start == 0)
753 break; /* probably wrap around */
754 if (start == 0xfef00000)
755 start = KADB_DEBUGGER_BEGVM;
756 probed = srmmu_probe(start);
757 if (!probed) {
758 /* continue probing until we find an entry */
759 start += PAGE_SIZE;
760 continue;
761 }
762
763 /* A red snapper, see what it really is. */
764 what = 0;
765 addr = start - PAGE_SIZE;
766
767 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
768 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
769 what = 1;
770 }
771
772 if (!(start & ~(SRMMU_PGDIR_MASK))) {
773 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
774 what = 2;
775 }
776
777 pgdp = pgd_offset_k(start);
778 if (what == 2) {
779 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
780 start += SRMMU_PGDIR_SIZE;
781 continue;
782 }
783 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
784 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
785 SRMMU_PMD_TABLE_SIZE);
786 if (pmdp == NULL)
787 early_pgtable_allocfail("pmd");
788 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
789 pgd_set(__nocache_fix(pgdp), pmdp);
790 }
791 pmdp = pmd_offset(__nocache_fix(pgdp), start);
792 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
793 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
794 if (ptep == NULL)
795 early_pgtable_allocfail("pte");
796 memset(__nocache_fix(ptep), 0, PTE_SIZE);
797 pmd_set(__nocache_fix(pmdp), ptep);
798 }
799 if (what == 1) {
800 /* We bend the rule where all 16 PTPs in a pmd_t point
801 * inside the same PTE page, and we leak a perfectly
802 * good hardware PTE piece. Alternatives seem worse.
803 */
804 unsigned int x; /* Index of HW PMD in soft cluster */
805 unsigned long *val;
806 x = (start >> PMD_SHIFT) & 15;
807 val = &pmdp->pmdv[x];
808 *(unsigned long *)__nocache_fix(val) = probed;
809 start += SRMMU_REAL_PMD_SIZE;
810 continue;
811 }
812 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
813 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
814 start += PAGE_SIZE;
815 }
816 }
817
818 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
819
820 /* Create a third-level SRMMU 16MB page mapping. */
821 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
822 {
823 pgd_t *pgdp = pgd_offset_k(vaddr);
824 unsigned long big_pte;
825
826 big_pte = KERNEL_PTE(phys_base >> 4);
827 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
828 }
829
830 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
831 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
832 {
833 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
834 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
835 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
836 /* Map "low" memory only */
837 const unsigned long min_vaddr = PAGE_OFFSET;
838 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
839
840 if (vstart < min_vaddr || vstart >= max_vaddr)
841 return vstart;
842
843 if (vend > max_vaddr || vend < min_vaddr)
844 vend = max_vaddr;
845
846 while (vstart < vend) {
847 do_large_mapping(vstart, pstart);
848 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
849 }
850 return vstart;
851 }
852
853 static void __init map_kernel(void)
854 {
855 int i;
856
857 if (phys_base > 0) {
858 do_large_mapping(PAGE_OFFSET, phys_base);
859 }
860
861 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
862 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
863 }
864 }
865
866 void (*poke_srmmu)(void) = NULL;
867
868 void __init srmmu_paging_init(void)
869 {
870 int i;
871 phandle cpunode;
872 char node_str[128];
873 pgd_t *pgd;
874 pmd_t *pmd;
875 pte_t *pte;
876 unsigned long pages_avail;
877
878 init_mm.context = (unsigned long) NO_CONTEXT;
879 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
880
881 if (sparc_cpu_model == sun4d)
882 num_contexts = 65536; /* We know it is Viking */
883 else {
884 /* Find the number of contexts on the srmmu. */
885 cpunode = prom_getchild(prom_root_node);
886 num_contexts = 0;
887 while (cpunode != 0) {
888 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
889 if (!strcmp(node_str, "cpu")) {
890 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
891 break;
892 }
893 cpunode = prom_getsibling(cpunode);
894 }
895 }
896
897 if (!num_contexts) {
898 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
899 prom_halt();
900 }
901
902 pages_avail = 0;
903 last_valid_pfn = bootmem_init(&pages_avail);
904
905 srmmu_nocache_calcsize();
906 srmmu_nocache_init();
907 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
908 map_kernel();
909
910 /* ctx table has to be physically aligned to its size */
911 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
912 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
913
914 for (i = 0; i < num_contexts; i++)
915 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
916
917 flush_cache_all();
918 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
919 #ifdef CONFIG_SMP
920 /* Stop from hanging here... */
921 local_ops->tlb_all();
922 #else
923 flush_tlb_all();
924 #endif
925 poke_srmmu();
926
927 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
928 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
929
930 srmmu_allocate_ptable_skeleton(
931 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
932 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
933
934 pgd = pgd_offset_k(PKMAP_BASE);
935 pmd = pmd_offset(pgd, PKMAP_BASE);
936 pte = pte_offset_kernel(pmd, PKMAP_BASE);
937 pkmap_page_table = pte;
938
939 flush_cache_all();
940 flush_tlb_all();
941
942 sparc_context_init(num_contexts);
943
944 kmap_init();
945
946 {
947 unsigned long zones_size[MAX_NR_ZONES];
948 unsigned long zholes_size[MAX_NR_ZONES];
949 unsigned long npages;
950 int znum;
951
952 for (znum = 0; znum < MAX_NR_ZONES; znum++)
953 zones_size[znum] = zholes_size[znum] = 0;
954
955 npages = max_low_pfn - pfn_base;
956
957 zones_size[ZONE_DMA] = npages;
958 zholes_size[ZONE_DMA] = npages - pages_avail;
959
960 npages = highend_pfn - max_low_pfn;
961 zones_size[ZONE_HIGHMEM] = npages;
962 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
963
964 free_area_init_node(0, zones_size, pfn_base, zholes_size);
965 }
966 }
967
968 void mmu_info(struct seq_file *m)
969 {
970 seq_printf(m,
971 "MMU type\t: %s\n"
972 "contexts\t: %d\n"
973 "nocache total\t: %ld\n"
974 "nocache used\t: %d\n",
975 srmmu_name,
976 num_contexts,
977 srmmu_nocache_size,
978 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
979 }
980
981 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
982 {
983 mm->context = NO_CONTEXT;
984 return 0;
985 }
986
987 void destroy_context(struct mm_struct *mm)
988 {
989
990 if (mm->context != NO_CONTEXT) {
991 flush_cache_mm(mm);
992 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
993 flush_tlb_mm(mm);
994 spin_lock(&srmmu_context_spinlock);
995 free_context(mm->context);
996 spin_unlock(&srmmu_context_spinlock);
997 mm->context = NO_CONTEXT;
998 }
999 }
1000
1001 /* Init various srmmu chip types. */
1002 static void __init srmmu_is_bad(void)
1003 {
1004 prom_printf("Could not determine SRMMU chip type.\n");
1005 prom_halt();
1006 }
1007
1008 static void __init init_vac_layout(void)
1009 {
1010 phandle nd;
1011 int cache_lines;
1012 char node_str[128];
1013 #ifdef CONFIG_SMP
1014 int cpu = 0;
1015 unsigned long max_size = 0;
1016 unsigned long min_line_size = 0x10000000;
1017 #endif
1018
1019 nd = prom_getchild(prom_root_node);
1020 while ((nd = prom_getsibling(nd)) != 0) {
1021 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1022 if (!strcmp(node_str, "cpu")) {
1023 vac_line_size = prom_getint(nd, "cache-line-size");
1024 if (vac_line_size == -1) {
1025 prom_printf("can't determine cache-line-size, halting.\n");
1026 prom_halt();
1027 }
1028 cache_lines = prom_getint(nd, "cache-nlines");
1029 if (cache_lines == -1) {
1030 prom_printf("can't determine cache-nlines, halting.\n");
1031 prom_halt();
1032 }
1033
1034 vac_cache_size = cache_lines * vac_line_size;
1035 #ifdef CONFIG_SMP
1036 if (vac_cache_size > max_size)
1037 max_size = vac_cache_size;
1038 if (vac_line_size < min_line_size)
1039 min_line_size = vac_line_size;
1040 //FIXME: cpus not contiguous!!
1041 cpu++;
1042 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1043 break;
1044 #else
1045 break;
1046 #endif
1047 }
1048 }
1049 if (nd == 0) {
1050 prom_printf("No CPU nodes found, halting.\n");
1051 prom_halt();
1052 }
1053 #ifdef CONFIG_SMP
1054 vac_cache_size = max_size;
1055 vac_line_size = min_line_size;
1056 #endif
1057 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1058 (int)vac_cache_size, (int)vac_line_size);
1059 }
1060
1061 static void poke_hypersparc(void)
1062 {
1063 volatile unsigned long clear;
1064 unsigned long mreg = srmmu_get_mmureg();
1065
1066 hyper_flush_unconditional_combined();
1067
1068 mreg &= ~(HYPERSPARC_CWENABLE);
1069 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1070 mreg |= (HYPERSPARC_CMODE);
1071
1072 srmmu_set_mmureg(mreg);
1073
1074 #if 0 /* XXX I think this is bad news... -DaveM */
1075 hyper_clear_all_tags();
1076 #endif
1077
1078 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1079 hyper_flush_whole_icache();
1080 clear = srmmu_get_faddr();
1081 clear = srmmu_get_fstatus();
1082 }
1083
1084 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1085 .cache_all = hypersparc_flush_cache_all,
1086 .cache_mm = hypersparc_flush_cache_mm,
1087 .cache_page = hypersparc_flush_cache_page,
1088 .cache_range = hypersparc_flush_cache_range,
1089 .tlb_all = hypersparc_flush_tlb_all,
1090 .tlb_mm = hypersparc_flush_tlb_mm,
1091 .tlb_page = hypersparc_flush_tlb_page,
1092 .tlb_range = hypersparc_flush_tlb_range,
1093 .page_to_ram = hypersparc_flush_page_to_ram,
1094 .sig_insns = hypersparc_flush_sig_insns,
1095 .page_for_dma = hypersparc_flush_page_for_dma,
1096 };
1097
1098 static void __init init_hypersparc(void)
1099 {
1100 srmmu_name = "ROSS HyperSparc";
1101 srmmu_modtype = HyperSparc;
1102
1103 init_vac_layout();
1104
1105 is_hypersparc = 1;
1106 sparc32_cachetlb_ops = &hypersparc_ops;
1107
1108 poke_srmmu = poke_hypersparc;
1109
1110 hypersparc_setup_blockops();
1111 }
1112
1113 static void poke_swift(void)
1114 {
1115 unsigned long mreg;
1116
1117 /* Clear any crap from the cache or else... */
1118 swift_flush_cache_all();
1119
1120 /* Enable I & D caches */
1121 mreg = srmmu_get_mmureg();
1122 mreg |= (SWIFT_IE | SWIFT_DE);
1123 /*
1124 * The Swift branch folding logic is completely broken. At
1125 * trap time, if things are just right, if can mistakenly
1126 * think that a trap is coming from kernel mode when in fact
1127 * it is coming from user mode (it mis-executes the branch in
1128 * the trap code). So you see things like crashme completely
1129 * hosing your machine which is completely unacceptable. Turn
1130 * this shit off... nice job Fujitsu.
1131 */
1132 mreg &= ~(SWIFT_BF);
1133 srmmu_set_mmureg(mreg);
1134 }
1135
1136 static const struct sparc32_cachetlb_ops swift_ops = {
1137 .cache_all = swift_flush_cache_all,
1138 .cache_mm = swift_flush_cache_mm,
1139 .cache_page = swift_flush_cache_page,
1140 .cache_range = swift_flush_cache_range,
1141 .tlb_all = swift_flush_tlb_all,
1142 .tlb_mm = swift_flush_tlb_mm,
1143 .tlb_page = swift_flush_tlb_page,
1144 .tlb_range = swift_flush_tlb_range,
1145 .page_to_ram = swift_flush_page_to_ram,
1146 .sig_insns = swift_flush_sig_insns,
1147 .page_for_dma = swift_flush_page_for_dma,
1148 };
1149
1150 #define SWIFT_MASKID_ADDR 0x10003018
1151 static void __init init_swift(void)
1152 {
1153 unsigned long swift_rev;
1154
1155 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1156 "srl %0, 0x18, %0\n\t" :
1157 "=r" (swift_rev) :
1158 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1159 srmmu_name = "Fujitsu Swift";
1160 switch (swift_rev) {
1161 case 0x11:
1162 case 0x20:
1163 case 0x23:
1164 case 0x30:
1165 srmmu_modtype = Swift_lots_o_bugs;
1166 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1167 /*
1168 * Gee george, I wonder why Sun is so hush hush about
1169 * this hardware bug... really braindamage stuff going
1170 * on here. However I think we can find a way to avoid
1171 * all of the workaround overhead under Linux. Basically,
1172 * any page fault can cause kernel pages to become user
1173 * accessible (the mmu gets confused and clears some of
1174 * the ACC bits in kernel ptes). Aha, sounds pretty
1175 * horrible eh? But wait, after extensive testing it appears
1176 * that if you use pgd_t level large kernel pte's (like the
1177 * 4MB pages on the Pentium) the bug does not get tripped
1178 * at all. This avoids almost all of the major overhead.
1179 * Welcome to a world where your vendor tells you to,
1180 * "apply this kernel patch" instead of "sorry for the
1181 * broken hardware, send it back and we'll give you
1182 * properly functioning parts"
1183 */
1184 break;
1185 case 0x25:
1186 case 0x31:
1187 srmmu_modtype = Swift_bad_c;
1188 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1189 /*
1190 * You see Sun allude to this hardware bug but never
1191 * admit things directly, they'll say things like,
1192 * "the Swift chip cache problems" or similar.
1193 */
1194 break;
1195 default:
1196 srmmu_modtype = Swift_ok;
1197 break;
1198 }
1199
1200 sparc32_cachetlb_ops = &swift_ops;
1201 flush_page_for_dma_global = 0;
1202
1203 /*
1204 * Are you now convinced that the Swift is one of the
1205 * biggest VLSI abortions of all time? Bravo Fujitsu!
1206 * Fujitsu, the !#?!%$'d up processor people. I bet if
1207 * you examined the microcode of the Swift you'd find
1208 * XXX's all over the place.
1209 */
1210 poke_srmmu = poke_swift;
1211 }
1212
1213 static void turbosparc_flush_cache_all(void)
1214 {
1215 flush_user_windows();
1216 turbosparc_idflash_clear();
1217 }
1218
1219 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1220 {
1221 FLUSH_BEGIN(mm)
1222 flush_user_windows();
1223 turbosparc_idflash_clear();
1224 FLUSH_END
1225 }
1226
1227 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1228 {
1229 FLUSH_BEGIN(vma->vm_mm)
1230 flush_user_windows();
1231 turbosparc_idflash_clear();
1232 FLUSH_END
1233 }
1234
1235 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1236 {
1237 FLUSH_BEGIN(vma->vm_mm)
1238 flush_user_windows();
1239 if (vma->vm_flags & VM_EXEC)
1240 turbosparc_flush_icache();
1241 turbosparc_flush_dcache();
1242 FLUSH_END
1243 }
1244
1245 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1246 static void turbosparc_flush_page_to_ram(unsigned long page)
1247 {
1248 #ifdef TURBOSPARC_WRITEBACK
1249 volatile unsigned long clear;
1250
1251 if (srmmu_probe(page))
1252 turbosparc_flush_page_cache(page);
1253 clear = srmmu_get_fstatus();
1254 #endif
1255 }
1256
1257 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1258 {
1259 }
1260
1261 static void turbosparc_flush_page_for_dma(unsigned long page)
1262 {
1263 turbosparc_flush_dcache();
1264 }
1265
1266 static void turbosparc_flush_tlb_all(void)
1267 {
1268 srmmu_flush_whole_tlb();
1269 }
1270
1271 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1272 {
1273 FLUSH_BEGIN(mm)
1274 srmmu_flush_whole_tlb();
1275 FLUSH_END
1276 }
1277
1278 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1279 {
1280 FLUSH_BEGIN(vma->vm_mm)
1281 srmmu_flush_whole_tlb();
1282 FLUSH_END
1283 }
1284
1285 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1286 {
1287 FLUSH_BEGIN(vma->vm_mm)
1288 srmmu_flush_whole_tlb();
1289 FLUSH_END
1290 }
1291
1292
1293 static void poke_turbosparc(void)
1294 {
1295 unsigned long mreg = srmmu_get_mmureg();
1296 unsigned long ccreg;
1297
1298 /* Clear any crap from the cache or else... */
1299 turbosparc_flush_cache_all();
1300 /* Temporarily disable I & D caches */
1301 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1302 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1303 srmmu_set_mmureg(mreg);
1304
1305 ccreg = turbosparc_get_ccreg();
1306
1307 #ifdef TURBOSPARC_WRITEBACK
1308 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1309 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1310 /* Write-back D-cache, emulate VLSI
1311 * abortion number three, not number one */
1312 #else
1313 /* For now let's play safe, optimize later */
1314 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1315 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1316 ccreg &= ~(TURBOSPARC_uS2);
1317 /* Emulate VLSI abortion number three, not number one */
1318 #endif
1319
1320 switch (ccreg & 7) {
1321 case 0: /* No SE cache */
1322 case 7: /* Test mode */
1323 break;
1324 default:
1325 ccreg |= (TURBOSPARC_SCENABLE);
1326 }
1327 turbosparc_set_ccreg(ccreg);
1328
1329 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1330 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1331 srmmu_set_mmureg(mreg);
1332 }
1333
1334 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1335 .cache_all = turbosparc_flush_cache_all,
1336 .cache_mm = turbosparc_flush_cache_mm,
1337 .cache_page = turbosparc_flush_cache_page,
1338 .cache_range = turbosparc_flush_cache_range,
1339 .tlb_all = turbosparc_flush_tlb_all,
1340 .tlb_mm = turbosparc_flush_tlb_mm,
1341 .tlb_page = turbosparc_flush_tlb_page,
1342 .tlb_range = turbosparc_flush_tlb_range,
1343 .page_to_ram = turbosparc_flush_page_to_ram,
1344 .sig_insns = turbosparc_flush_sig_insns,
1345 .page_for_dma = turbosparc_flush_page_for_dma,
1346 };
1347
1348 static void __init init_turbosparc(void)
1349 {
1350 srmmu_name = "Fujitsu TurboSparc";
1351 srmmu_modtype = TurboSparc;
1352 sparc32_cachetlb_ops = &turbosparc_ops;
1353 poke_srmmu = poke_turbosparc;
1354 }
1355
1356 static void poke_tsunami(void)
1357 {
1358 unsigned long mreg = srmmu_get_mmureg();
1359
1360 tsunami_flush_icache();
1361 tsunami_flush_dcache();
1362 mreg &= ~TSUNAMI_ITD;
1363 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1364 srmmu_set_mmureg(mreg);
1365 }
1366
1367 static const struct sparc32_cachetlb_ops tsunami_ops = {
1368 .cache_all = tsunami_flush_cache_all,
1369 .cache_mm = tsunami_flush_cache_mm,
1370 .cache_page = tsunami_flush_cache_page,
1371 .cache_range = tsunami_flush_cache_range,
1372 .tlb_all = tsunami_flush_tlb_all,
1373 .tlb_mm = tsunami_flush_tlb_mm,
1374 .tlb_page = tsunami_flush_tlb_page,
1375 .tlb_range = tsunami_flush_tlb_range,
1376 .page_to_ram = tsunami_flush_page_to_ram,
1377 .sig_insns = tsunami_flush_sig_insns,
1378 .page_for_dma = tsunami_flush_page_for_dma,
1379 };
1380
1381 static void __init init_tsunami(void)
1382 {
1383 /*
1384 * Tsunami's pretty sane, Sun and TI actually got it
1385 * somewhat right this time. Fujitsu should have
1386 * taken some lessons from them.
1387 */
1388
1389 srmmu_name = "TI Tsunami";
1390 srmmu_modtype = Tsunami;
1391 sparc32_cachetlb_ops = &tsunami_ops;
1392 poke_srmmu = poke_tsunami;
1393
1394 tsunami_setup_blockops();
1395 }
1396
1397 static void poke_viking(void)
1398 {
1399 unsigned long mreg = srmmu_get_mmureg();
1400 static int smp_catch;
1401
1402 if (viking_mxcc_present) {
1403 unsigned long mxcc_control = mxcc_get_creg();
1404
1405 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1406 mxcc_control &= ~(MXCC_CTL_RRC);
1407 mxcc_set_creg(mxcc_control);
1408
1409 /*
1410 * We don't need memory parity checks.
1411 * XXX This is a mess, have to dig out later. ecd.
1412 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1413 */
1414
1415 /* We do cache ptables on MXCC. */
1416 mreg |= VIKING_TCENABLE;
1417 } else {
1418 unsigned long bpreg;
1419
1420 mreg &= ~(VIKING_TCENABLE);
1421 if (smp_catch++) {
1422 /* Must disable mixed-cmd mode here for other cpu's. */
1423 bpreg = viking_get_bpreg();
1424 bpreg &= ~(VIKING_ACTION_MIX);
1425 viking_set_bpreg(bpreg);
1426
1427 /* Just in case PROM does something funny. */
1428 msi_set_sync();
1429 }
1430 }
1431
1432 mreg |= VIKING_SPENABLE;
1433 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1434 mreg |= VIKING_SBENABLE;
1435 mreg &= ~(VIKING_ACENABLE);
1436 srmmu_set_mmureg(mreg);
1437 }
1438
1439 static struct sparc32_cachetlb_ops viking_ops = {
1440 .cache_all = viking_flush_cache_all,
1441 .cache_mm = viking_flush_cache_mm,
1442 .cache_page = viking_flush_cache_page,
1443 .cache_range = viking_flush_cache_range,
1444 .tlb_all = viking_flush_tlb_all,
1445 .tlb_mm = viking_flush_tlb_mm,
1446 .tlb_page = viking_flush_tlb_page,
1447 .tlb_range = viking_flush_tlb_range,
1448 .page_to_ram = viking_flush_page_to_ram,
1449 .sig_insns = viking_flush_sig_insns,
1450 .page_for_dma = viking_flush_page_for_dma,
1451 };
1452
1453 #ifdef CONFIG_SMP
1454 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1455 * perform the local TLB flush and all the other cpus will see it.
1456 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1457 * that requires that we add some synchronization to these flushes.
1458 *
1459 * The bug is that the fifo which keeps track of all the pending TLB
1460 * broadcasts in the system is an entry or two too small, so if we
1461 * have too many going at once we'll overflow that fifo and lose a TLB
1462 * flush resulting in corruption.
1463 *
1464 * Our workaround is to take a global spinlock around the TLB flushes,
1465 * which guarentees we won't ever have too many pending. It's a big
1466 * hammer, but a semaphore like system to make sure we only have N TLB
1467 * flushes going at once will require SMP locking anyways so there's
1468 * no real value in trying any harder than this.
1469 */
1470 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1471 .cache_all = viking_flush_cache_all,
1472 .cache_mm = viking_flush_cache_mm,
1473 .cache_page = viking_flush_cache_page,
1474 .cache_range = viking_flush_cache_range,
1475 .tlb_all = sun4dsmp_flush_tlb_all,
1476 .tlb_mm = sun4dsmp_flush_tlb_mm,
1477 .tlb_page = sun4dsmp_flush_tlb_page,
1478 .tlb_range = sun4dsmp_flush_tlb_range,
1479 .page_to_ram = viking_flush_page_to_ram,
1480 .sig_insns = viking_flush_sig_insns,
1481 .page_for_dma = viking_flush_page_for_dma,
1482 };
1483 #endif
1484
1485 static void __init init_viking(void)
1486 {
1487 unsigned long mreg = srmmu_get_mmureg();
1488
1489 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1490 if (mreg & VIKING_MMODE) {
1491 srmmu_name = "TI Viking";
1492 viking_mxcc_present = 0;
1493 msi_set_sync();
1494
1495 /*
1496 * We need this to make sure old viking takes no hits
1497 * on it's cache for dma snoops to workaround the
1498 * "load from non-cacheable memory" interrupt bug.
1499 * This is only necessary because of the new way in
1500 * which we use the IOMMU.
1501 */
1502 viking_ops.page_for_dma = viking_flush_page;
1503 #ifdef CONFIG_SMP
1504 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1505 #endif
1506 flush_page_for_dma_global = 0;
1507 } else {
1508 srmmu_name = "TI Viking/MXCC";
1509 viking_mxcc_present = 1;
1510 srmmu_cache_pagetables = 1;
1511 }
1512
1513 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1514 &viking_ops;
1515 #ifdef CONFIG_SMP
1516 if (sparc_cpu_model == sun4d)
1517 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1518 &viking_sun4d_smp_ops;
1519 #endif
1520
1521 poke_srmmu = poke_viking;
1522 }
1523
1524 /* Probe for the srmmu chip version. */
1525 static void __init get_srmmu_type(void)
1526 {
1527 unsigned long mreg, psr;
1528 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1529
1530 srmmu_modtype = SRMMU_INVAL_MOD;
1531 hwbug_bitmask = 0;
1532
1533 mreg = srmmu_get_mmureg(); psr = get_psr();
1534 mod_typ = (mreg & 0xf0000000) >> 28;
1535 mod_rev = (mreg & 0x0f000000) >> 24;
1536 psr_typ = (psr >> 28) & 0xf;
1537 psr_vers = (psr >> 24) & 0xf;
1538
1539 /* First, check for sparc-leon. */
1540 if (sparc_cpu_model == sparc_leon) {
1541 init_leon();
1542 return;
1543 }
1544
1545 /* Second, check for HyperSparc or Cypress. */
1546 if (mod_typ == 1) {
1547 switch (mod_rev) {
1548 case 7:
1549 /* UP or MP Hypersparc */
1550 init_hypersparc();
1551 break;
1552 case 0:
1553 case 2:
1554 case 10:
1555 case 11:
1556 case 12:
1557 case 13:
1558 case 14:
1559 case 15:
1560 default:
1561 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1562 prom_halt();
1563 break;
1564 }
1565 return;
1566 }
1567
1568 /* Now Fujitsu TurboSparc. It might happen that it is
1569 * in Swift emulation mode, so we will check later...
1570 */
1571 if (psr_typ == 0 && psr_vers == 5) {
1572 init_turbosparc();
1573 return;
1574 }
1575
1576 /* Next check for Fujitsu Swift. */
1577 if (psr_typ == 0 && psr_vers == 4) {
1578 phandle cpunode;
1579 char node_str[128];
1580
1581 /* Look if it is not a TurboSparc emulating Swift... */
1582 cpunode = prom_getchild(prom_root_node);
1583 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1584 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1585 if (!strcmp(node_str, "cpu")) {
1586 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1587 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1588 init_turbosparc();
1589 return;
1590 }
1591 break;
1592 }
1593 }
1594
1595 init_swift();
1596 return;
1597 }
1598
1599 /* Now the Viking family of srmmu. */
1600 if (psr_typ == 4 &&
1601 ((psr_vers == 0) ||
1602 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1603 init_viking();
1604 return;
1605 }
1606
1607 /* Finally the Tsunami. */
1608 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1609 init_tsunami();
1610 return;
1611 }
1612
1613 /* Oh well */
1614 srmmu_is_bad();
1615 }
1616
1617 #ifdef CONFIG_SMP
1618 /* Local cross-calls. */
1619 static void smp_flush_page_for_dma(unsigned long page)
1620 {
1621 xc1((smpfunc_t) local_ops->page_for_dma, page);
1622 local_ops->page_for_dma(page);
1623 }
1624
1625 static void smp_flush_cache_all(void)
1626 {
1627 xc0((smpfunc_t) local_ops->cache_all);
1628 local_ops->cache_all();
1629 }
1630
1631 static void smp_flush_tlb_all(void)
1632 {
1633 xc0((smpfunc_t) local_ops->tlb_all);
1634 local_ops->tlb_all();
1635 }
1636
1637 static void smp_flush_cache_mm(struct mm_struct *mm)
1638 {
1639 if (mm->context != NO_CONTEXT) {
1640 cpumask_t cpu_mask;
1641 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1642 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1643 if (!cpumask_empty(&cpu_mask))
1644 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1645 local_ops->cache_mm(mm);
1646 }
1647 }
1648
1649 static void smp_flush_tlb_mm(struct mm_struct *mm)
1650 {
1651 if (mm->context != NO_CONTEXT) {
1652 cpumask_t cpu_mask;
1653 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1654 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1655 if (!cpumask_empty(&cpu_mask)) {
1656 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1657 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1658 cpumask_copy(mm_cpumask(mm),
1659 cpumask_of(smp_processor_id()));
1660 }
1661 local_ops->tlb_mm(mm);
1662 }
1663 }
1664
1665 static void smp_flush_cache_range(struct vm_area_struct *vma,
1666 unsigned long start,
1667 unsigned long end)
1668 {
1669 struct mm_struct *mm = vma->vm_mm;
1670
1671 if (mm->context != NO_CONTEXT) {
1672 cpumask_t cpu_mask;
1673 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1674 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1675 if (!cpumask_empty(&cpu_mask))
1676 xc3((smpfunc_t) local_ops->cache_range,
1677 (unsigned long) vma, start, end);
1678 local_ops->cache_range(vma, start, end);
1679 }
1680 }
1681
1682 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1683 unsigned long start,
1684 unsigned long end)
1685 {
1686 struct mm_struct *mm = vma->vm_mm;
1687
1688 if (mm->context != NO_CONTEXT) {
1689 cpumask_t cpu_mask;
1690 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1691 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1692 if (!cpumask_empty(&cpu_mask))
1693 xc3((smpfunc_t) local_ops->tlb_range,
1694 (unsigned long) vma, start, end);
1695 local_ops->tlb_range(vma, start, end);
1696 }
1697 }
1698
1699 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1700 {
1701 struct mm_struct *mm = vma->vm_mm;
1702
1703 if (mm->context != NO_CONTEXT) {
1704 cpumask_t cpu_mask;
1705 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1706 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1707 if (!cpumask_empty(&cpu_mask))
1708 xc2((smpfunc_t) local_ops->cache_page,
1709 (unsigned long) vma, page);
1710 local_ops->cache_page(vma, page);
1711 }
1712 }
1713
1714 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1715 {
1716 struct mm_struct *mm = vma->vm_mm;
1717
1718 if (mm->context != NO_CONTEXT) {
1719 cpumask_t cpu_mask;
1720 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1721 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1722 if (!cpumask_empty(&cpu_mask))
1723 xc2((smpfunc_t) local_ops->tlb_page,
1724 (unsigned long) vma, page);
1725 local_ops->tlb_page(vma, page);
1726 }
1727 }
1728
1729 static void smp_flush_page_to_ram(unsigned long page)
1730 {
1731 /* Current theory is that those who call this are the one's
1732 * who have just dirtied their cache with the pages contents
1733 * in kernel space, therefore we only run this on local cpu.
1734 *
1735 * XXX This experiment failed, research further... -DaveM
1736 */
1737 #if 1
1738 xc1((smpfunc_t) local_ops->page_to_ram, page);
1739 #endif
1740 local_ops->page_to_ram(page);
1741 }
1742
1743 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1744 {
1745 cpumask_t cpu_mask;
1746 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1747 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1748 if (!cpumask_empty(&cpu_mask))
1749 xc2((smpfunc_t) local_ops->sig_insns,
1750 (unsigned long) mm, insn_addr);
1751 local_ops->sig_insns(mm, insn_addr);
1752 }
1753
1754 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1755 .cache_all = smp_flush_cache_all,
1756 .cache_mm = smp_flush_cache_mm,
1757 .cache_page = smp_flush_cache_page,
1758 .cache_range = smp_flush_cache_range,
1759 .tlb_all = smp_flush_tlb_all,
1760 .tlb_mm = smp_flush_tlb_mm,
1761 .tlb_page = smp_flush_tlb_page,
1762 .tlb_range = smp_flush_tlb_range,
1763 .page_to_ram = smp_flush_page_to_ram,
1764 .sig_insns = smp_flush_sig_insns,
1765 .page_for_dma = smp_flush_page_for_dma,
1766 };
1767 #endif
1768
1769 /* Load up routines and constants for sun4m and sun4d mmu */
1770 void __init load_mmu(void)
1771 {
1772 /* Functions */
1773 get_srmmu_type();
1774
1775 #ifdef CONFIG_SMP
1776 /* El switcheroo... */
1777 local_ops = sparc32_cachetlb_ops;
1778
1779 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1780 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1781 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1782 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1783 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1784 }
1785
1786 if (poke_srmmu == poke_viking) {
1787 /* Avoid unnecessary cross calls. */
1788 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1789 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1790 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1791 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1792
1793 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1794 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1795 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1796 }
1797
1798 /* It really is const after this point. */
1799 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1800 &smp_cachetlb_ops;
1801 #endif
1802
1803 if (sparc_cpu_model == sun4d)
1804 ld_mmu_iounit();
1805 else
1806 ld_mmu_iommu();
1807 #ifdef CONFIG_SMP
1808 if (sparc_cpu_model == sun4d)
1809 sun4d_init_smp();
1810 else if (sparc_cpu_model == sparc_leon)
1811 leon_init_smp();
1812 else
1813 sun4m_init_smp();
1814 #endif
1815 }