]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/sparc/mm/srmmu.c
sparc: move MSI related definitions to where they are used
[mirror_ubuntu-hirsute-kernel.git] / arch / sparc / mm / srmmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * srmmu.c: SRMMU specific routines for memory management.
4 *
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10 */
11
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/bootmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51
52 #include "mm_32.h"
53
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 EXPORT_SYMBOL(vac_cache_size);
58 int vac_line_size;
59
60 extern struct resource sparc_iomap;
61
62 extern unsigned long last_valid_pfn;
63
64 static pgd_t *srmmu_swapper_pg_dir;
65
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
68
69 #ifdef CONFIG_SMP
70 const struct sparc32_cachetlb_ops *local_ops;
71
72 #define FLUSH_BEGIN(mm)
73 #define FLUSH_END
74 #else
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 #define FLUSH_END }
77 #endif
78
79 int flush_page_for_dma_global = 1;
80
81 char *srmmu_name;
82
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
85
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
88
89 static int is_hypersparc;
90
91 static int srmmu_cache_pagetables;
92
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
96
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
105
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
108
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111 {
112 pte_t pte;
113
114 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 set_pte((pte_t *)ctxp, pte);
116 }
117
118 /*
119 * Locations of MSI Registers.
120 */
121 #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
122
123 /*
124 * Useful bits in the MSI Registers.
125 */
126 #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
127
128 static void msi_set_sync(void)
129 {
130 __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 "andn %%g3, %2, %%g3\n\t"
132 "sta %%g3, [%0] %1\n\t" : :
133 "r" (MSI_MBUS_ARBEN),
134 "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135 }
136
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
138 {
139 unsigned long ptp; /* Physical address, shifted right by 4 */
140 int i;
141
142 ptp = __nocache_pa(ptep) >> 4;
143 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
144 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
145 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
146 }
147 }
148
149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
150 {
151 unsigned long ptp; /* Physical address, shifted right by 4 */
152 int i;
153
154 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
155 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
156 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
157 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
158 }
159 }
160
161 /* Find an entry in the third-level page table.. */
162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
163 {
164 void *pte;
165
166 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
167 return (pte_t *) pte +
168 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
169 }
170
171 /*
172 * size: bytes to allocate in the nocache area.
173 * align: bytes, number to align at.
174 * Returns the virtual address of the allocated area.
175 */
176 static void *__srmmu_get_nocache(int size, int align)
177 {
178 int offset;
179 unsigned long addr;
180
181 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
183 size);
184 size = SRMMU_NOCACHE_BITMAP_SHIFT;
185 }
186 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
187 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
188 size);
189 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
190 }
191 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
192
193 offset = bit_map_string_get(&srmmu_nocache_map,
194 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
195 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
196 if (offset == -1) {
197 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
198 size, (int) srmmu_nocache_size,
199 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
200 return NULL;
201 }
202
203 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
204 return (void *)addr;
205 }
206
207 void *srmmu_get_nocache(int size, int align)
208 {
209 void *tmp;
210
211 tmp = __srmmu_get_nocache(size, align);
212
213 if (tmp)
214 memset(tmp, 0, size);
215
216 return tmp;
217 }
218
219 void srmmu_free_nocache(void *addr, int size)
220 {
221 unsigned long vaddr;
222 int offset;
223
224 vaddr = (unsigned long)addr;
225 if (vaddr < SRMMU_NOCACHE_VADDR) {
226 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
228 BUG();
229 }
230 if (vaddr + size > srmmu_nocache_end) {
231 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 vaddr, srmmu_nocache_end);
233 BUG();
234 }
235 if (!is_power_of_2(size)) {
236 printk("Size 0x%x is not a power of 2\n", size);
237 BUG();
238 }
239 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
240 printk("Size 0x%x is too small\n", size);
241 BUG();
242 }
243 if (vaddr & (size - 1)) {
244 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
245 BUG();
246 }
247
248 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
249 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
250
251 bit_map_clear(&srmmu_nocache_map, offset, size);
252 }
253
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
255 unsigned long end);
256
257 /* Return how much physical memory we have. */
258 static unsigned long __init probe_memory(void)
259 {
260 unsigned long total = 0;
261 int i;
262
263 for (i = 0; sp_banks[i].num_bytes; i++)
264 total += sp_banks[i].num_bytes;
265
266 return total;
267 }
268
269 /*
270 * Reserve nocache dynamically proportionally to the amount of
271 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
272 */
273 static void __init srmmu_nocache_calcsize(void)
274 {
275 unsigned long sysmemavail = probe_memory() / 1024;
276 int srmmu_nocache_npages;
277
278 srmmu_nocache_npages =
279 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
280
281 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
284 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
285
286 /* anything above 1280 blows up */
287 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
288 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
289
290 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
291 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
292 }
293
294 static void __init srmmu_nocache_init(void)
295 {
296 void *srmmu_nocache_bitmap;
297 unsigned int bitmap_bits;
298 pgd_t *pgd;
299 pmd_t *pmd;
300 pte_t *pte;
301 unsigned long paddr, vaddr;
302 unsigned long pteval;
303
304 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
305
306 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
307 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
308 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
309
310 srmmu_nocache_bitmap =
311 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
312 SMP_CACHE_BYTES, 0UL);
313 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
314
315 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
316 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
317 init_mm.pgd = srmmu_swapper_pg_dir;
318
319 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
320
321 paddr = __pa((unsigned long)srmmu_nocache_pool);
322 vaddr = SRMMU_NOCACHE_VADDR;
323
324 while (vaddr < srmmu_nocache_end) {
325 pgd = pgd_offset_k(vaddr);
326 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
327 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
328
329 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
330
331 if (srmmu_cache_pagetables)
332 pteval |= SRMMU_CACHE;
333
334 set_pte(__nocache_fix(pte), __pte(pteval));
335
336 vaddr += PAGE_SIZE;
337 paddr += PAGE_SIZE;
338 }
339
340 flush_cache_all();
341 flush_tlb_all();
342 }
343
344 pgd_t *get_pgd_fast(void)
345 {
346 pgd_t *pgd = NULL;
347
348 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
349 if (pgd) {
350 pgd_t *init = pgd_offset_k(0);
351 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
352 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
353 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
354 }
355
356 return pgd;
357 }
358
359 /*
360 * Hardware needs alignment to 256 only, but we align to whole page size
361 * to reduce fragmentation problems due to the buddy principle.
362 * XXX Provide actual fragmentation statistics in /proc.
363 *
364 * Alignments up to the page size are the same for physical and virtual
365 * addresses of the nocache area.
366 */
367 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
368 {
369 unsigned long pte;
370 struct page *page;
371
372 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
373 return NULL;
374 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
375 if (!pgtable_page_ctor(page)) {
376 __free_page(page);
377 return NULL;
378 }
379 return page;
380 }
381
382 void pte_free(struct mm_struct *mm, pgtable_t pte)
383 {
384 unsigned long p;
385
386 pgtable_page_dtor(pte);
387 p = (unsigned long)page_address(pte); /* Cached address (for test) */
388 if (p == 0)
389 BUG();
390 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
391
392 /* free non cached virtual address*/
393 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
394 }
395
396 /* context handling - a dynamically sized pool is used */
397 #define NO_CONTEXT -1
398
399 struct ctx_list {
400 struct ctx_list *next;
401 struct ctx_list *prev;
402 unsigned int ctx_number;
403 struct mm_struct *ctx_mm;
404 };
405
406 static struct ctx_list *ctx_list_pool;
407 static struct ctx_list ctx_free;
408 static struct ctx_list ctx_used;
409
410 /* At boot time we determine the number of contexts */
411 static int num_contexts;
412
413 static inline void remove_from_ctx_list(struct ctx_list *entry)
414 {
415 entry->next->prev = entry->prev;
416 entry->prev->next = entry->next;
417 }
418
419 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
420 {
421 entry->next = head;
422 (entry->prev = head->prev)->next = entry;
423 head->prev = entry;
424 }
425 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
426 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
427
428
429 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
430 {
431 struct ctx_list *ctxp;
432
433 ctxp = ctx_free.next;
434 if (ctxp != &ctx_free) {
435 remove_from_ctx_list(ctxp);
436 add_to_used_ctxlist(ctxp);
437 mm->context = ctxp->ctx_number;
438 ctxp->ctx_mm = mm;
439 return;
440 }
441 ctxp = ctx_used.next;
442 if (ctxp->ctx_mm == old_mm)
443 ctxp = ctxp->next;
444 if (ctxp == &ctx_used)
445 panic("out of mmu contexts");
446 flush_cache_mm(ctxp->ctx_mm);
447 flush_tlb_mm(ctxp->ctx_mm);
448 remove_from_ctx_list(ctxp);
449 add_to_used_ctxlist(ctxp);
450 ctxp->ctx_mm->context = NO_CONTEXT;
451 ctxp->ctx_mm = mm;
452 mm->context = ctxp->ctx_number;
453 }
454
455 static inline void free_context(int context)
456 {
457 struct ctx_list *ctx_old;
458
459 ctx_old = ctx_list_pool + context;
460 remove_from_ctx_list(ctx_old);
461 add_to_free_ctxlist(ctx_old);
462 }
463
464 static void __init sparc_context_init(int numctx)
465 {
466 int ctx;
467 unsigned long size;
468
469 size = numctx * sizeof(struct ctx_list);
470 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
471
472 for (ctx = 0; ctx < numctx; ctx++) {
473 struct ctx_list *clist;
474
475 clist = (ctx_list_pool + ctx);
476 clist->ctx_number = ctx;
477 clist->ctx_mm = NULL;
478 }
479 ctx_free.next = ctx_free.prev = &ctx_free;
480 ctx_used.next = ctx_used.prev = &ctx_used;
481 for (ctx = 0; ctx < numctx; ctx++)
482 add_to_free_ctxlist(ctx_list_pool + ctx);
483 }
484
485 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
486 struct task_struct *tsk)
487 {
488 unsigned long flags;
489
490 if (mm->context == NO_CONTEXT) {
491 spin_lock_irqsave(&srmmu_context_spinlock, flags);
492 alloc_context(old_mm, mm);
493 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
494 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
495 }
496
497 if (sparc_cpu_model == sparc_leon)
498 leon_switch_mm();
499
500 if (is_hypersparc)
501 hyper_flush_whole_icache();
502
503 srmmu_set_context(mm->context);
504 }
505
506 /* Low level IO area allocation on the SRMMU. */
507 static inline void srmmu_mapioaddr(unsigned long physaddr,
508 unsigned long virt_addr, int bus_type)
509 {
510 pgd_t *pgdp;
511 pmd_t *pmdp;
512 pte_t *ptep;
513 unsigned long tmp;
514
515 physaddr &= PAGE_MASK;
516 pgdp = pgd_offset_k(virt_addr);
517 pmdp = pmd_offset(pgdp, virt_addr);
518 ptep = pte_offset_kernel(pmdp, virt_addr);
519 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
520
521 /* I need to test whether this is consistent over all
522 * sun4m's. The bus_type represents the upper 4 bits of
523 * 36-bit physical address on the I/O space lines...
524 */
525 tmp |= (bus_type << 28);
526 tmp |= SRMMU_PRIV;
527 __flush_page_to_ram(virt_addr);
528 set_pte(ptep, __pte(tmp));
529 }
530
531 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
532 unsigned long xva, unsigned int len)
533 {
534 while (len != 0) {
535 len -= PAGE_SIZE;
536 srmmu_mapioaddr(xpa, xva, bus);
537 xva += PAGE_SIZE;
538 xpa += PAGE_SIZE;
539 }
540 flush_tlb_all();
541 }
542
543 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
544 {
545 pgd_t *pgdp;
546 pmd_t *pmdp;
547 pte_t *ptep;
548
549 pgdp = pgd_offset_k(virt_addr);
550 pmdp = pmd_offset(pgdp, virt_addr);
551 ptep = pte_offset_kernel(pmdp, virt_addr);
552
553 /* No need to flush uncacheable page. */
554 __pte_clear(ptep);
555 }
556
557 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
558 {
559 while (len != 0) {
560 len -= PAGE_SIZE;
561 srmmu_unmapioaddr(virt_addr);
562 virt_addr += PAGE_SIZE;
563 }
564 flush_tlb_all();
565 }
566
567 /* tsunami.S */
568 extern void tsunami_flush_cache_all(void);
569 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
570 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
571 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
572 extern void tsunami_flush_page_to_ram(unsigned long page);
573 extern void tsunami_flush_page_for_dma(unsigned long page);
574 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
575 extern void tsunami_flush_tlb_all(void);
576 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
577 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
578 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
579 extern void tsunami_setup_blockops(void);
580
581 /* swift.S */
582 extern void swift_flush_cache_all(void);
583 extern void swift_flush_cache_mm(struct mm_struct *mm);
584 extern void swift_flush_cache_range(struct vm_area_struct *vma,
585 unsigned long start, unsigned long end);
586 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
587 extern void swift_flush_page_to_ram(unsigned long page);
588 extern void swift_flush_page_for_dma(unsigned long page);
589 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
590 extern void swift_flush_tlb_all(void);
591 extern void swift_flush_tlb_mm(struct mm_struct *mm);
592 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
593 unsigned long start, unsigned long end);
594 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
595
596 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
597 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
598 {
599 int cctx, ctx1;
600
601 page &= PAGE_MASK;
602 if ((ctx1 = vma->vm_mm->context) != -1) {
603 cctx = srmmu_get_context();
604 /* Is context # ever different from current context? P3 */
605 if (cctx != ctx1) {
606 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
607 srmmu_set_context(ctx1);
608 swift_flush_page(page);
609 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
610 "r" (page), "i" (ASI_M_FLUSH_PROBE));
611 srmmu_set_context(cctx);
612 } else {
613 /* Rm. prot. bits from virt. c. */
614 /* swift_flush_cache_all(); */
615 /* swift_flush_cache_page(vma, page); */
616 swift_flush_page(page);
617
618 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
619 "r" (page), "i" (ASI_M_FLUSH_PROBE));
620 /* same as above: srmmu_flush_tlb_page() */
621 }
622 }
623 }
624 #endif
625
626 /*
627 * The following are all MBUS based SRMMU modules, and therefore could
628 * be found in a multiprocessor configuration. On the whole, these
629 * chips seems to be much more touchy about DVMA and page tables
630 * with respect to cache coherency.
631 */
632
633 /* viking.S */
634 extern void viking_flush_cache_all(void);
635 extern void viking_flush_cache_mm(struct mm_struct *mm);
636 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
637 unsigned long end);
638 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
639 extern void viking_flush_page_to_ram(unsigned long page);
640 extern void viking_flush_page_for_dma(unsigned long page);
641 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
642 extern void viking_flush_page(unsigned long page);
643 extern void viking_mxcc_flush_page(unsigned long page);
644 extern void viking_flush_tlb_all(void);
645 extern void viking_flush_tlb_mm(struct mm_struct *mm);
646 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
647 unsigned long end);
648 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
649 unsigned long page);
650 extern void sun4dsmp_flush_tlb_all(void);
651 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
652 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
653 unsigned long end);
654 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
655 unsigned long page);
656
657 /* hypersparc.S */
658 extern void hypersparc_flush_cache_all(void);
659 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
660 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
661 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
662 extern void hypersparc_flush_page_to_ram(unsigned long page);
663 extern void hypersparc_flush_page_for_dma(unsigned long page);
664 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
665 extern void hypersparc_flush_tlb_all(void);
666 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
667 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
668 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
669 extern void hypersparc_setup_blockops(void);
670
671 /*
672 * NOTE: All of this startup code assumes the low 16mb (approx.) of
673 * kernel mappings are done with one single contiguous chunk of
674 * ram. On small ram machines (classics mainly) we only get
675 * around 8mb mapped for us.
676 */
677
678 static void __init early_pgtable_allocfail(char *type)
679 {
680 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
681 prom_halt();
682 }
683
684 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
685 unsigned long end)
686 {
687 pgd_t *pgdp;
688 pmd_t *pmdp;
689 pte_t *ptep;
690
691 while (start < end) {
692 pgdp = pgd_offset_k(start);
693 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
694 pmdp = __srmmu_get_nocache(
695 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
696 if (pmdp == NULL)
697 early_pgtable_allocfail("pmd");
698 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
699 pgd_set(__nocache_fix(pgdp), pmdp);
700 }
701 pmdp = pmd_offset(__nocache_fix(pgdp), start);
702 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
703 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
704 if (ptep == NULL)
705 early_pgtable_allocfail("pte");
706 memset(__nocache_fix(ptep), 0, PTE_SIZE);
707 pmd_set(__nocache_fix(pmdp), ptep);
708 }
709 if (start > (0xffffffffUL - PMD_SIZE))
710 break;
711 start = (start + PMD_SIZE) & PMD_MASK;
712 }
713 }
714
715 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
716 unsigned long end)
717 {
718 pgd_t *pgdp;
719 pmd_t *pmdp;
720 pte_t *ptep;
721
722 while (start < end) {
723 pgdp = pgd_offset_k(start);
724 if (pgd_none(*pgdp)) {
725 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
726 if (pmdp == NULL)
727 early_pgtable_allocfail("pmd");
728 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
729 pgd_set(pgdp, pmdp);
730 }
731 pmdp = pmd_offset(pgdp, start);
732 if (srmmu_pmd_none(*pmdp)) {
733 ptep = __srmmu_get_nocache(PTE_SIZE,
734 PTE_SIZE);
735 if (ptep == NULL)
736 early_pgtable_allocfail("pte");
737 memset(ptep, 0, PTE_SIZE);
738 pmd_set(pmdp, ptep);
739 }
740 if (start > (0xffffffffUL - PMD_SIZE))
741 break;
742 start = (start + PMD_SIZE) & PMD_MASK;
743 }
744 }
745
746 /* These flush types are not available on all chips... */
747 static inline unsigned long srmmu_probe(unsigned long vaddr)
748 {
749 unsigned long retval;
750
751 if (sparc_cpu_model != sparc_leon) {
752
753 vaddr &= PAGE_MASK;
754 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
755 "=r" (retval) :
756 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
757 } else {
758 retval = leon_swprobe(vaddr, NULL);
759 }
760 return retval;
761 }
762
763 /*
764 * This is much cleaner than poking around physical address space
765 * looking at the prom's page table directly which is what most
766 * other OS's do. Yuck... this is much better.
767 */
768 static void __init srmmu_inherit_prom_mappings(unsigned long start,
769 unsigned long end)
770 {
771 unsigned long probed;
772 unsigned long addr;
773 pgd_t *pgdp;
774 pmd_t *pmdp;
775 pte_t *ptep;
776 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
777
778 while (start <= end) {
779 if (start == 0)
780 break; /* probably wrap around */
781 if (start == 0xfef00000)
782 start = KADB_DEBUGGER_BEGVM;
783 probed = srmmu_probe(start);
784 if (!probed) {
785 /* continue probing until we find an entry */
786 start += PAGE_SIZE;
787 continue;
788 }
789
790 /* A red snapper, see what it really is. */
791 what = 0;
792 addr = start - PAGE_SIZE;
793
794 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
795 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
796 what = 1;
797 }
798
799 if (!(start & ~(SRMMU_PGDIR_MASK))) {
800 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
801 what = 2;
802 }
803
804 pgdp = pgd_offset_k(start);
805 if (what == 2) {
806 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
807 start += SRMMU_PGDIR_SIZE;
808 continue;
809 }
810 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
811 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
812 SRMMU_PMD_TABLE_SIZE);
813 if (pmdp == NULL)
814 early_pgtable_allocfail("pmd");
815 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
816 pgd_set(__nocache_fix(pgdp), pmdp);
817 }
818 pmdp = pmd_offset(__nocache_fix(pgdp), start);
819 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
820 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
821 if (ptep == NULL)
822 early_pgtable_allocfail("pte");
823 memset(__nocache_fix(ptep), 0, PTE_SIZE);
824 pmd_set(__nocache_fix(pmdp), ptep);
825 }
826 if (what == 1) {
827 /* We bend the rule where all 16 PTPs in a pmd_t point
828 * inside the same PTE page, and we leak a perfectly
829 * good hardware PTE piece. Alternatives seem worse.
830 */
831 unsigned int x; /* Index of HW PMD in soft cluster */
832 unsigned long *val;
833 x = (start >> PMD_SHIFT) & 15;
834 val = &pmdp->pmdv[x];
835 *(unsigned long *)__nocache_fix(val) = probed;
836 start += SRMMU_REAL_PMD_SIZE;
837 continue;
838 }
839 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
840 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
841 start += PAGE_SIZE;
842 }
843 }
844
845 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
846
847 /* Create a third-level SRMMU 16MB page mapping. */
848 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
849 {
850 pgd_t *pgdp = pgd_offset_k(vaddr);
851 unsigned long big_pte;
852
853 big_pte = KERNEL_PTE(phys_base >> 4);
854 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
855 }
856
857 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
858 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
859 {
860 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
861 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
862 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
863 /* Map "low" memory only */
864 const unsigned long min_vaddr = PAGE_OFFSET;
865 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
866
867 if (vstart < min_vaddr || vstart >= max_vaddr)
868 return vstart;
869
870 if (vend > max_vaddr || vend < min_vaddr)
871 vend = max_vaddr;
872
873 while (vstart < vend) {
874 do_large_mapping(vstart, pstart);
875 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
876 }
877 return vstart;
878 }
879
880 static void __init map_kernel(void)
881 {
882 int i;
883
884 if (phys_base > 0) {
885 do_large_mapping(PAGE_OFFSET, phys_base);
886 }
887
888 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
889 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
890 }
891 }
892
893 void (*poke_srmmu)(void) = NULL;
894
895 void __init srmmu_paging_init(void)
896 {
897 int i;
898 phandle cpunode;
899 char node_str[128];
900 pgd_t *pgd;
901 pmd_t *pmd;
902 pte_t *pte;
903 unsigned long pages_avail;
904
905 init_mm.context = (unsigned long) NO_CONTEXT;
906 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
907
908 if (sparc_cpu_model == sun4d)
909 num_contexts = 65536; /* We know it is Viking */
910 else {
911 /* Find the number of contexts on the srmmu. */
912 cpunode = prom_getchild(prom_root_node);
913 num_contexts = 0;
914 while (cpunode != 0) {
915 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
916 if (!strcmp(node_str, "cpu")) {
917 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
918 break;
919 }
920 cpunode = prom_getsibling(cpunode);
921 }
922 }
923
924 if (!num_contexts) {
925 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
926 prom_halt();
927 }
928
929 pages_avail = 0;
930 last_valid_pfn = bootmem_init(&pages_avail);
931
932 srmmu_nocache_calcsize();
933 srmmu_nocache_init();
934 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
935 map_kernel();
936
937 /* ctx table has to be physically aligned to its size */
938 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
939 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
940
941 for (i = 0; i < num_contexts; i++)
942 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
943
944 flush_cache_all();
945 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
946 #ifdef CONFIG_SMP
947 /* Stop from hanging here... */
948 local_ops->tlb_all();
949 #else
950 flush_tlb_all();
951 #endif
952 poke_srmmu();
953
954 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
955 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
956
957 srmmu_allocate_ptable_skeleton(
958 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
959 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
960
961 pgd = pgd_offset_k(PKMAP_BASE);
962 pmd = pmd_offset(pgd, PKMAP_BASE);
963 pte = pte_offset_kernel(pmd, PKMAP_BASE);
964 pkmap_page_table = pte;
965
966 flush_cache_all();
967 flush_tlb_all();
968
969 sparc_context_init(num_contexts);
970
971 kmap_init();
972
973 {
974 unsigned long zones_size[MAX_NR_ZONES];
975 unsigned long zholes_size[MAX_NR_ZONES];
976 unsigned long npages;
977 int znum;
978
979 for (znum = 0; znum < MAX_NR_ZONES; znum++)
980 zones_size[znum] = zholes_size[znum] = 0;
981
982 npages = max_low_pfn - pfn_base;
983
984 zones_size[ZONE_DMA] = npages;
985 zholes_size[ZONE_DMA] = npages - pages_avail;
986
987 npages = highend_pfn - max_low_pfn;
988 zones_size[ZONE_HIGHMEM] = npages;
989 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
990
991 free_area_init_node(0, zones_size, pfn_base, zholes_size);
992 }
993 }
994
995 void mmu_info(struct seq_file *m)
996 {
997 seq_printf(m,
998 "MMU type\t: %s\n"
999 "contexts\t: %d\n"
1000 "nocache total\t: %ld\n"
1001 "nocache used\t: %d\n",
1002 srmmu_name,
1003 num_contexts,
1004 srmmu_nocache_size,
1005 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1006 }
1007
1008 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1009 {
1010 mm->context = NO_CONTEXT;
1011 return 0;
1012 }
1013
1014 void destroy_context(struct mm_struct *mm)
1015 {
1016 unsigned long flags;
1017
1018 if (mm->context != NO_CONTEXT) {
1019 flush_cache_mm(mm);
1020 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1021 flush_tlb_mm(mm);
1022 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1023 free_context(mm->context);
1024 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1025 mm->context = NO_CONTEXT;
1026 }
1027 }
1028
1029 /* Init various srmmu chip types. */
1030 static void __init srmmu_is_bad(void)
1031 {
1032 prom_printf("Could not determine SRMMU chip type.\n");
1033 prom_halt();
1034 }
1035
1036 static void __init init_vac_layout(void)
1037 {
1038 phandle nd;
1039 int cache_lines;
1040 char node_str[128];
1041 #ifdef CONFIG_SMP
1042 int cpu = 0;
1043 unsigned long max_size = 0;
1044 unsigned long min_line_size = 0x10000000;
1045 #endif
1046
1047 nd = prom_getchild(prom_root_node);
1048 while ((nd = prom_getsibling(nd)) != 0) {
1049 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1050 if (!strcmp(node_str, "cpu")) {
1051 vac_line_size = prom_getint(nd, "cache-line-size");
1052 if (vac_line_size == -1) {
1053 prom_printf("can't determine cache-line-size, halting.\n");
1054 prom_halt();
1055 }
1056 cache_lines = prom_getint(nd, "cache-nlines");
1057 if (cache_lines == -1) {
1058 prom_printf("can't determine cache-nlines, halting.\n");
1059 prom_halt();
1060 }
1061
1062 vac_cache_size = cache_lines * vac_line_size;
1063 #ifdef CONFIG_SMP
1064 if (vac_cache_size > max_size)
1065 max_size = vac_cache_size;
1066 if (vac_line_size < min_line_size)
1067 min_line_size = vac_line_size;
1068 //FIXME: cpus not contiguous!!
1069 cpu++;
1070 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1071 break;
1072 #else
1073 break;
1074 #endif
1075 }
1076 }
1077 if (nd == 0) {
1078 prom_printf("No CPU nodes found, halting.\n");
1079 prom_halt();
1080 }
1081 #ifdef CONFIG_SMP
1082 vac_cache_size = max_size;
1083 vac_line_size = min_line_size;
1084 #endif
1085 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1086 (int)vac_cache_size, (int)vac_line_size);
1087 }
1088
1089 static void poke_hypersparc(void)
1090 {
1091 volatile unsigned long clear;
1092 unsigned long mreg = srmmu_get_mmureg();
1093
1094 hyper_flush_unconditional_combined();
1095
1096 mreg &= ~(HYPERSPARC_CWENABLE);
1097 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1098 mreg |= (HYPERSPARC_CMODE);
1099
1100 srmmu_set_mmureg(mreg);
1101
1102 #if 0 /* XXX I think this is bad news... -DaveM */
1103 hyper_clear_all_tags();
1104 #endif
1105
1106 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1107 hyper_flush_whole_icache();
1108 clear = srmmu_get_faddr();
1109 clear = srmmu_get_fstatus();
1110 }
1111
1112 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1113 .cache_all = hypersparc_flush_cache_all,
1114 .cache_mm = hypersparc_flush_cache_mm,
1115 .cache_page = hypersparc_flush_cache_page,
1116 .cache_range = hypersparc_flush_cache_range,
1117 .tlb_all = hypersparc_flush_tlb_all,
1118 .tlb_mm = hypersparc_flush_tlb_mm,
1119 .tlb_page = hypersparc_flush_tlb_page,
1120 .tlb_range = hypersparc_flush_tlb_range,
1121 .page_to_ram = hypersparc_flush_page_to_ram,
1122 .sig_insns = hypersparc_flush_sig_insns,
1123 .page_for_dma = hypersparc_flush_page_for_dma,
1124 };
1125
1126 static void __init init_hypersparc(void)
1127 {
1128 srmmu_name = "ROSS HyperSparc";
1129 srmmu_modtype = HyperSparc;
1130
1131 init_vac_layout();
1132
1133 is_hypersparc = 1;
1134 sparc32_cachetlb_ops = &hypersparc_ops;
1135
1136 poke_srmmu = poke_hypersparc;
1137
1138 hypersparc_setup_blockops();
1139 }
1140
1141 static void poke_swift(void)
1142 {
1143 unsigned long mreg;
1144
1145 /* Clear any crap from the cache or else... */
1146 swift_flush_cache_all();
1147
1148 /* Enable I & D caches */
1149 mreg = srmmu_get_mmureg();
1150 mreg |= (SWIFT_IE | SWIFT_DE);
1151 /*
1152 * The Swift branch folding logic is completely broken. At
1153 * trap time, if things are just right, if can mistakenly
1154 * think that a trap is coming from kernel mode when in fact
1155 * it is coming from user mode (it mis-executes the branch in
1156 * the trap code). So you see things like crashme completely
1157 * hosing your machine which is completely unacceptable. Turn
1158 * this shit off... nice job Fujitsu.
1159 */
1160 mreg &= ~(SWIFT_BF);
1161 srmmu_set_mmureg(mreg);
1162 }
1163
1164 static const struct sparc32_cachetlb_ops swift_ops = {
1165 .cache_all = swift_flush_cache_all,
1166 .cache_mm = swift_flush_cache_mm,
1167 .cache_page = swift_flush_cache_page,
1168 .cache_range = swift_flush_cache_range,
1169 .tlb_all = swift_flush_tlb_all,
1170 .tlb_mm = swift_flush_tlb_mm,
1171 .tlb_page = swift_flush_tlb_page,
1172 .tlb_range = swift_flush_tlb_range,
1173 .page_to_ram = swift_flush_page_to_ram,
1174 .sig_insns = swift_flush_sig_insns,
1175 .page_for_dma = swift_flush_page_for_dma,
1176 };
1177
1178 #define SWIFT_MASKID_ADDR 0x10003018
1179 static void __init init_swift(void)
1180 {
1181 unsigned long swift_rev;
1182
1183 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1184 "srl %0, 0x18, %0\n\t" :
1185 "=r" (swift_rev) :
1186 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1187 srmmu_name = "Fujitsu Swift";
1188 switch (swift_rev) {
1189 case 0x11:
1190 case 0x20:
1191 case 0x23:
1192 case 0x30:
1193 srmmu_modtype = Swift_lots_o_bugs;
1194 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1195 /*
1196 * Gee george, I wonder why Sun is so hush hush about
1197 * this hardware bug... really braindamage stuff going
1198 * on here. However I think we can find a way to avoid
1199 * all of the workaround overhead under Linux. Basically,
1200 * any page fault can cause kernel pages to become user
1201 * accessible (the mmu gets confused and clears some of
1202 * the ACC bits in kernel ptes). Aha, sounds pretty
1203 * horrible eh? But wait, after extensive testing it appears
1204 * that if you use pgd_t level large kernel pte's (like the
1205 * 4MB pages on the Pentium) the bug does not get tripped
1206 * at all. This avoids almost all of the major overhead.
1207 * Welcome to a world where your vendor tells you to,
1208 * "apply this kernel patch" instead of "sorry for the
1209 * broken hardware, send it back and we'll give you
1210 * properly functioning parts"
1211 */
1212 break;
1213 case 0x25:
1214 case 0x31:
1215 srmmu_modtype = Swift_bad_c;
1216 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1217 /*
1218 * You see Sun allude to this hardware bug but never
1219 * admit things directly, they'll say things like,
1220 * "the Swift chip cache problems" or similar.
1221 */
1222 break;
1223 default:
1224 srmmu_modtype = Swift_ok;
1225 break;
1226 }
1227
1228 sparc32_cachetlb_ops = &swift_ops;
1229 flush_page_for_dma_global = 0;
1230
1231 /*
1232 * Are you now convinced that the Swift is one of the
1233 * biggest VLSI abortions of all time? Bravo Fujitsu!
1234 * Fujitsu, the !#?!%$'d up processor people. I bet if
1235 * you examined the microcode of the Swift you'd find
1236 * XXX's all over the place.
1237 */
1238 poke_srmmu = poke_swift;
1239 }
1240
1241 static void turbosparc_flush_cache_all(void)
1242 {
1243 flush_user_windows();
1244 turbosparc_idflash_clear();
1245 }
1246
1247 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1248 {
1249 FLUSH_BEGIN(mm)
1250 flush_user_windows();
1251 turbosparc_idflash_clear();
1252 FLUSH_END
1253 }
1254
1255 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1256 {
1257 FLUSH_BEGIN(vma->vm_mm)
1258 flush_user_windows();
1259 turbosparc_idflash_clear();
1260 FLUSH_END
1261 }
1262
1263 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1264 {
1265 FLUSH_BEGIN(vma->vm_mm)
1266 flush_user_windows();
1267 if (vma->vm_flags & VM_EXEC)
1268 turbosparc_flush_icache();
1269 turbosparc_flush_dcache();
1270 FLUSH_END
1271 }
1272
1273 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1274 static void turbosparc_flush_page_to_ram(unsigned long page)
1275 {
1276 #ifdef TURBOSPARC_WRITEBACK
1277 volatile unsigned long clear;
1278
1279 if (srmmu_probe(page))
1280 turbosparc_flush_page_cache(page);
1281 clear = srmmu_get_fstatus();
1282 #endif
1283 }
1284
1285 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1286 {
1287 }
1288
1289 static void turbosparc_flush_page_for_dma(unsigned long page)
1290 {
1291 turbosparc_flush_dcache();
1292 }
1293
1294 static void turbosparc_flush_tlb_all(void)
1295 {
1296 srmmu_flush_whole_tlb();
1297 }
1298
1299 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1300 {
1301 FLUSH_BEGIN(mm)
1302 srmmu_flush_whole_tlb();
1303 FLUSH_END
1304 }
1305
1306 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1307 {
1308 FLUSH_BEGIN(vma->vm_mm)
1309 srmmu_flush_whole_tlb();
1310 FLUSH_END
1311 }
1312
1313 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1314 {
1315 FLUSH_BEGIN(vma->vm_mm)
1316 srmmu_flush_whole_tlb();
1317 FLUSH_END
1318 }
1319
1320
1321 static void poke_turbosparc(void)
1322 {
1323 unsigned long mreg = srmmu_get_mmureg();
1324 unsigned long ccreg;
1325
1326 /* Clear any crap from the cache or else... */
1327 turbosparc_flush_cache_all();
1328 /* Temporarily disable I & D caches */
1329 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1330 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1331 srmmu_set_mmureg(mreg);
1332
1333 ccreg = turbosparc_get_ccreg();
1334
1335 #ifdef TURBOSPARC_WRITEBACK
1336 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1337 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1338 /* Write-back D-cache, emulate VLSI
1339 * abortion number three, not number one */
1340 #else
1341 /* For now let's play safe, optimize later */
1342 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1343 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1344 ccreg &= ~(TURBOSPARC_uS2);
1345 /* Emulate VLSI abortion number three, not number one */
1346 #endif
1347
1348 switch (ccreg & 7) {
1349 case 0: /* No SE cache */
1350 case 7: /* Test mode */
1351 break;
1352 default:
1353 ccreg |= (TURBOSPARC_SCENABLE);
1354 }
1355 turbosparc_set_ccreg(ccreg);
1356
1357 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1358 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1359 srmmu_set_mmureg(mreg);
1360 }
1361
1362 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1363 .cache_all = turbosparc_flush_cache_all,
1364 .cache_mm = turbosparc_flush_cache_mm,
1365 .cache_page = turbosparc_flush_cache_page,
1366 .cache_range = turbosparc_flush_cache_range,
1367 .tlb_all = turbosparc_flush_tlb_all,
1368 .tlb_mm = turbosparc_flush_tlb_mm,
1369 .tlb_page = turbosparc_flush_tlb_page,
1370 .tlb_range = turbosparc_flush_tlb_range,
1371 .page_to_ram = turbosparc_flush_page_to_ram,
1372 .sig_insns = turbosparc_flush_sig_insns,
1373 .page_for_dma = turbosparc_flush_page_for_dma,
1374 };
1375
1376 static void __init init_turbosparc(void)
1377 {
1378 srmmu_name = "Fujitsu TurboSparc";
1379 srmmu_modtype = TurboSparc;
1380 sparc32_cachetlb_ops = &turbosparc_ops;
1381 poke_srmmu = poke_turbosparc;
1382 }
1383
1384 static void poke_tsunami(void)
1385 {
1386 unsigned long mreg = srmmu_get_mmureg();
1387
1388 tsunami_flush_icache();
1389 tsunami_flush_dcache();
1390 mreg &= ~TSUNAMI_ITD;
1391 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1392 srmmu_set_mmureg(mreg);
1393 }
1394
1395 static const struct sparc32_cachetlb_ops tsunami_ops = {
1396 .cache_all = tsunami_flush_cache_all,
1397 .cache_mm = tsunami_flush_cache_mm,
1398 .cache_page = tsunami_flush_cache_page,
1399 .cache_range = tsunami_flush_cache_range,
1400 .tlb_all = tsunami_flush_tlb_all,
1401 .tlb_mm = tsunami_flush_tlb_mm,
1402 .tlb_page = tsunami_flush_tlb_page,
1403 .tlb_range = tsunami_flush_tlb_range,
1404 .page_to_ram = tsunami_flush_page_to_ram,
1405 .sig_insns = tsunami_flush_sig_insns,
1406 .page_for_dma = tsunami_flush_page_for_dma,
1407 };
1408
1409 static void __init init_tsunami(void)
1410 {
1411 /*
1412 * Tsunami's pretty sane, Sun and TI actually got it
1413 * somewhat right this time. Fujitsu should have
1414 * taken some lessons from them.
1415 */
1416
1417 srmmu_name = "TI Tsunami";
1418 srmmu_modtype = Tsunami;
1419 sparc32_cachetlb_ops = &tsunami_ops;
1420 poke_srmmu = poke_tsunami;
1421
1422 tsunami_setup_blockops();
1423 }
1424
1425 static void poke_viking(void)
1426 {
1427 unsigned long mreg = srmmu_get_mmureg();
1428 static int smp_catch;
1429
1430 if (viking_mxcc_present) {
1431 unsigned long mxcc_control = mxcc_get_creg();
1432
1433 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1434 mxcc_control &= ~(MXCC_CTL_RRC);
1435 mxcc_set_creg(mxcc_control);
1436
1437 /*
1438 * We don't need memory parity checks.
1439 * XXX This is a mess, have to dig out later. ecd.
1440 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1441 */
1442
1443 /* We do cache ptables on MXCC. */
1444 mreg |= VIKING_TCENABLE;
1445 } else {
1446 unsigned long bpreg;
1447
1448 mreg &= ~(VIKING_TCENABLE);
1449 if (smp_catch++) {
1450 /* Must disable mixed-cmd mode here for other cpu's. */
1451 bpreg = viking_get_bpreg();
1452 bpreg &= ~(VIKING_ACTION_MIX);
1453 viking_set_bpreg(bpreg);
1454
1455 /* Just in case PROM does something funny. */
1456 msi_set_sync();
1457 }
1458 }
1459
1460 mreg |= VIKING_SPENABLE;
1461 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1462 mreg |= VIKING_SBENABLE;
1463 mreg &= ~(VIKING_ACENABLE);
1464 srmmu_set_mmureg(mreg);
1465 }
1466
1467 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1468 .cache_all = viking_flush_cache_all,
1469 .cache_mm = viking_flush_cache_mm,
1470 .cache_page = viking_flush_cache_page,
1471 .cache_range = viking_flush_cache_range,
1472 .tlb_all = viking_flush_tlb_all,
1473 .tlb_mm = viking_flush_tlb_mm,
1474 .tlb_page = viking_flush_tlb_page,
1475 .tlb_range = viking_flush_tlb_range,
1476 .page_to_ram = viking_flush_page_to_ram,
1477 .sig_insns = viking_flush_sig_insns,
1478 .page_for_dma = viking_flush_page_for_dma,
1479 };
1480
1481 #ifdef CONFIG_SMP
1482 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1483 * perform the local TLB flush and all the other cpus will see it.
1484 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1485 * that requires that we add some synchronization to these flushes.
1486 *
1487 * The bug is that the fifo which keeps track of all the pending TLB
1488 * broadcasts in the system is an entry or two too small, so if we
1489 * have too many going at once we'll overflow that fifo and lose a TLB
1490 * flush resulting in corruption.
1491 *
1492 * Our workaround is to take a global spinlock around the TLB flushes,
1493 * which guarentees we won't ever have too many pending. It's a big
1494 * hammer, but a semaphore like system to make sure we only have N TLB
1495 * flushes going at once will require SMP locking anyways so there's
1496 * no real value in trying any harder than this.
1497 */
1498 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1499 .cache_all = viking_flush_cache_all,
1500 .cache_mm = viking_flush_cache_mm,
1501 .cache_page = viking_flush_cache_page,
1502 .cache_range = viking_flush_cache_range,
1503 .tlb_all = sun4dsmp_flush_tlb_all,
1504 .tlb_mm = sun4dsmp_flush_tlb_mm,
1505 .tlb_page = sun4dsmp_flush_tlb_page,
1506 .tlb_range = sun4dsmp_flush_tlb_range,
1507 .page_to_ram = viking_flush_page_to_ram,
1508 .sig_insns = viking_flush_sig_insns,
1509 .page_for_dma = viking_flush_page_for_dma,
1510 };
1511 #endif
1512
1513 static void __init init_viking(void)
1514 {
1515 unsigned long mreg = srmmu_get_mmureg();
1516
1517 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1518 if (mreg & VIKING_MMODE) {
1519 srmmu_name = "TI Viking";
1520 viking_mxcc_present = 0;
1521 msi_set_sync();
1522
1523 /*
1524 * We need this to make sure old viking takes no hits
1525 * on it's cache for dma snoops to workaround the
1526 * "load from non-cacheable memory" interrupt bug.
1527 * This is only necessary because of the new way in
1528 * which we use the IOMMU.
1529 */
1530 viking_ops.page_for_dma = viking_flush_page;
1531 #ifdef CONFIG_SMP
1532 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1533 #endif
1534 flush_page_for_dma_global = 0;
1535 } else {
1536 srmmu_name = "TI Viking/MXCC";
1537 viking_mxcc_present = 1;
1538 srmmu_cache_pagetables = 1;
1539 }
1540
1541 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1542 &viking_ops;
1543 #ifdef CONFIG_SMP
1544 if (sparc_cpu_model == sun4d)
1545 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1546 &viking_sun4d_smp_ops;
1547 #endif
1548
1549 poke_srmmu = poke_viking;
1550 }
1551
1552 /* Probe for the srmmu chip version. */
1553 static void __init get_srmmu_type(void)
1554 {
1555 unsigned long mreg, psr;
1556 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1557
1558 srmmu_modtype = SRMMU_INVAL_MOD;
1559 hwbug_bitmask = 0;
1560
1561 mreg = srmmu_get_mmureg(); psr = get_psr();
1562 mod_typ = (mreg & 0xf0000000) >> 28;
1563 mod_rev = (mreg & 0x0f000000) >> 24;
1564 psr_typ = (psr >> 28) & 0xf;
1565 psr_vers = (psr >> 24) & 0xf;
1566
1567 /* First, check for sparc-leon. */
1568 if (sparc_cpu_model == sparc_leon) {
1569 init_leon();
1570 return;
1571 }
1572
1573 /* Second, check for HyperSparc or Cypress. */
1574 if (mod_typ == 1) {
1575 switch (mod_rev) {
1576 case 7:
1577 /* UP or MP Hypersparc */
1578 init_hypersparc();
1579 break;
1580 case 0:
1581 case 2:
1582 case 10:
1583 case 11:
1584 case 12:
1585 case 13:
1586 case 14:
1587 case 15:
1588 default:
1589 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1590 prom_halt();
1591 break;
1592 }
1593 return;
1594 }
1595
1596 /* Now Fujitsu TurboSparc. It might happen that it is
1597 * in Swift emulation mode, so we will check later...
1598 */
1599 if (psr_typ == 0 && psr_vers == 5) {
1600 init_turbosparc();
1601 return;
1602 }
1603
1604 /* Next check for Fujitsu Swift. */
1605 if (psr_typ == 0 && psr_vers == 4) {
1606 phandle cpunode;
1607 char node_str[128];
1608
1609 /* Look if it is not a TurboSparc emulating Swift... */
1610 cpunode = prom_getchild(prom_root_node);
1611 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1612 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1613 if (!strcmp(node_str, "cpu")) {
1614 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1615 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1616 init_turbosparc();
1617 return;
1618 }
1619 break;
1620 }
1621 }
1622
1623 init_swift();
1624 return;
1625 }
1626
1627 /* Now the Viking family of srmmu. */
1628 if (psr_typ == 4 &&
1629 ((psr_vers == 0) ||
1630 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1631 init_viking();
1632 return;
1633 }
1634
1635 /* Finally the Tsunami. */
1636 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1637 init_tsunami();
1638 return;
1639 }
1640
1641 /* Oh well */
1642 srmmu_is_bad();
1643 }
1644
1645 #ifdef CONFIG_SMP
1646 /* Local cross-calls. */
1647 static void smp_flush_page_for_dma(unsigned long page)
1648 {
1649 xc1((smpfunc_t) local_ops->page_for_dma, page);
1650 local_ops->page_for_dma(page);
1651 }
1652
1653 static void smp_flush_cache_all(void)
1654 {
1655 xc0((smpfunc_t) local_ops->cache_all);
1656 local_ops->cache_all();
1657 }
1658
1659 static void smp_flush_tlb_all(void)
1660 {
1661 xc0((smpfunc_t) local_ops->tlb_all);
1662 local_ops->tlb_all();
1663 }
1664
1665 static void smp_flush_cache_mm(struct mm_struct *mm)
1666 {
1667 if (mm->context != NO_CONTEXT) {
1668 cpumask_t cpu_mask;
1669 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1670 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1671 if (!cpumask_empty(&cpu_mask))
1672 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1673 local_ops->cache_mm(mm);
1674 }
1675 }
1676
1677 static void smp_flush_tlb_mm(struct mm_struct *mm)
1678 {
1679 if (mm->context != NO_CONTEXT) {
1680 cpumask_t cpu_mask;
1681 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1682 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1683 if (!cpumask_empty(&cpu_mask)) {
1684 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1685 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1686 cpumask_copy(mm_cpumask(mm),
1687 cpumask_of(smp_processor_id()));
1688 }
1689 local_ops->tlb_mm(mm);
1690 }
1691 }
1692
1693 static void smp_flush_cache_range(struct vm_area_struct *vma,
1694 unsigned long start,
1695 unsigned long end)
1696 {
1697 struct mm_struct *mm = vma->vm_mm;
1698
1699 if (mm->context != NO_CONTEXT) {
1700 cpumask_t cpu_mask;
1701 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1702 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1703 if (!cpumask_empty(&cpu_mask))
1704 xc3((smpfunc_t) local_ops->cache_range,
1705 (unsigned long) vma, start, end);
1706 local_ops->cache_range(vma, start, end);
1707 }
1708 }
1709
1710 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1711 unsigned long start,
1712 unsigned long end)
1713 {
1714 struct mm_struct *mm = vma->vm_mm;
1715
1716 if (mm->context != NO_CONTEXT) {
1717 cpumask_t cpu_mask;
1718 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1719 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1720 if (!cpumask_empty(&cpu_mask))
1721 xc3((smpfunc_t) local_ops->tlb_range,
1722 (unsigned long) vma, start, end);
1723 local_ops->tlb_range(vma, start, end);
1724 }
1725 }
1726
1727 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1728 {
1729 struct mm_struct *mm = vma->vm_mm;
1730
1731 if (mm->context != NO_CONTEXT) {
1732 cpumask_t cpu_mask;
1733 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1734 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1735 if (!cpumask_empty(&cpu_mask))
1736 xc2((smpfunc_t) local_ops->cache_page,
1737 (unsigned long) vma, page);
1738 local_ops->cache_page(vma, page);
1739 }
1740 }
1741
1742 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1743 {
1744 struct mm_struct *mm = vma->vm_mm;
1745
1746 if (mm->context != NO_CONTEXT) {
1747 cpumask_t cpu_mask;
1748 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1749 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1750 if (!cpumask_empty(&cpu_mask))
1751 xc2((smpfunc_t) local_ops->tlb_page,
1752 (unsigned long) vma, page);
1753 local_ops->tlb_page(vma, page);
1754 }
1755 }
1756
1757 static void smp_flush_page_to_ram(unsigned long page)
1758 {
1759 /* Current theory is that those who call this are the one's
1760 * who have just dirtied their cache with the pages contents
1761 * in kernel space, therefore we only run this on local cpu.
1762 *
1763 * XXX This experiment failed, research further... -DaveM
1764 */
1765 #if 1
1766 xc1((smpfunc_t) local_ops->page_to_ram, page);
1767 #endif
1768 local_ops->page_to_ram(page);
1769 }
1770
1771 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1772 {
1773 cpumask_t cpu_mask;
1774 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1775 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1776 if (!cpumask_empty(&cpu_mask))
1777 xc2((smpfunc_t) local_ops->sig_insns,
1778 (unsigned long) mm, insn_addr);
1779 local_ops->sig_insns(mm, insn_addr);
1780 }
1781
1782 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1783 .cache_all = smp_flush_cache_all,
1784 .cache_mm = smp_flush_cache_mm,
1785 .cache_page = smp_flush_cache_page,
1786 .cache_range = smp_flush_cache_range,
1787 .tlb_all = smp_flush_tlb_all,
1788 .tlb_mm = smp_flush_tlb_mm,
1789 .tlb_page = smp_flush_tlb_page,
1790 .tlb_range = smp_flush_tlb_range,
1791 .page_to_ram = smp_flush_page_to_ram,
1792 .sig_insns = smp_flush_sig_insns,
1793 .page_for_dma = smp_flush_page_for_dma,
1794 };
1795 #endif
1796
1797 /* Load up routines and constants for sun4m and sun4d mmu */
1798 void __init load_mmu(void)
1799 {
1800 /* Functions */
1801 get_srmmu_type();
1802
1803 #ifdef CONFIG_SMP
1804 /* El switcheroo... */
1805 local_ops = sparc32_cachetlb_ops;
1806
1807 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1808 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1809 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1810 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1811 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1812 }
1813
1814 if (poke_srmmu == poke_viking) {
1815 /* Avoid unnecessary cross calls. */
1816 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1817 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1818 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1819 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1820
1821 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1822 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1823 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1824 }
1825
1826 /* It really is const after this point. */
1827 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1828 &smp_cachetlb_ops;
1829 #endif
1830
1831 if (sparc_cpu_model == sun4d)
1832 ld_mmu_iounit();
1833 else
1834 ld_mmu_iommu();
1835 #ifdef CONFIG_SMP
1836 if (sparc_cpu_model == sun4d)
1837 sun4d_init_smp();
1838 else if (sparc_cpu_model == sparc_leon)
1839 leon_init_smp();
1840 else
1841 sun4m_init_smp();
1842 #endif
1843 }