]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/sparc/mm/srmmu.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / arch / sparc / mm / srmmu.c
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/gfp.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24
25 #include <asm/mmu_context.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/io-unit.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/bitext.h>
32 #include <asm/vaddrs.h>
33 #include <asm/cache.h>
34 #include <asm/traps.h>
35 #include <asm/oplib.h>
36 #include <asm/mbus.h>
37 #include <asm/page.h>
38 #include <asm/asi.h>
39 #include <asm/msi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51
52 #include "mm_32.h"
53
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 int vac_line_size;
58
59 extern struct resource sparc_iomap;
60
61 extern unsigned long last_valid_pfn;
62
63 static pgd_t *srmmu_swapper_pg_dir;
64
65 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
66 EXPORT_SYMBOL(sparc32_cachetlb_ops);
67
68 #ifdef CONFIG_SMP
69 const struct sparc32_cachetlb_ops *local_ops;
70
71 #define FLUSH_BEGIN(mm)
72 #define FLUSH_END
73 #else
74 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
75 #define FLUSH_END }
76 #endif
77
78 int flush_page_for_dma_global = 1;
79
80 char *srmmu_name;
81
82 ctxd_t *srmmu_ctx_table_phys;
83 static ctxd_t *srmmu_context_table;
84
85 int viking_mxcc_present;
86 static DEFINE_SPINLOCK(srmmu_context_spinlock);
87
88 static int is_hypersparc;
89
90 static int srmmu_cache_pagetables;
91
92 /* these will be initialized in srmmu_nocache_calcsize() */
93 static unsigned long srmmu_nocache_size;
94 static unsigned long srmmu_nocache_end;
95
96 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
97 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
98
99 /* The context table is a nocache user with the biggest alignment needs. */
100 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
101
102 void *srmmu_nocache_pool;
103 static struct bit_map srmmu_nocache_map;
104
105 static inline int srmmu_pmd_none(pmd_t pmd)
106 { return !(pmd_val(pmd) & 0xFFFFFFF); }
107
108 /* XXX should we hyper_flush_whole_icache here - Anton */
109 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
110 {
111 pte_t pte;
112
113 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
114 set_pte((pte_t *)ctxp, pte);
115 }
116
117 void pmd_set(pmd_t *pmdp, pte_t *ptep)
118 {
119 unsigned long ptp; /* Physical address, shifted right by 4 */
120 int i;
121
122 ptp = __nocache_pa(ptep) >> 4;
123 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
124 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
125 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
126 }
127 }
128
129 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
130 {
131 unsigned long ptp; /* Physical address, shifted right by 4 */
132 int i;
133
134 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
135 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
136 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
137 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
138 }
139 }
140
141 /* Find an entry in the third-level page table.. */
142 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
143 {
144 void *pte;
145
146 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
147 return (pte_t *) pte +
148 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
149 }
150
151 /*
152 * size: bytes to allocate in the nocache area.
153 * align: bytes, number to align at.
154 * Returns the virtual address of the allocated area.
155 */
156 static void *__srmmu_get_nocache(int size, int align)
157 {
158 int offset;
159 unsigned long addr;
160
161 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
162 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
163 size);
164 size = SRMMU_NOCACHE_BITMAP_SHIFT;
165 }
166 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
167 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
168 size);
169 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
170 }
171 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
172
173 offset = bit_map_string_get(&srmmu_nocache_map,
174 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
175 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
176 if (offset == -1) {
177 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
178 size, (int) srmmu_nocache_size,
179 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
180 return NULL;
181 }
182
183 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
184 return (void *)addr;
185 }
186
187 void *srmmu_get_nocache(int size, int align)
188 {
189 void *tmp;
190
191 tmp = __srmmu_get_nocache(size, align);
192
193 if (tmp)
194 memset(tmp, 0, size);
195
196 return tmp;
197 }
198
199 void srmmu_free_nocache(void *addr, int size)
200 {
201 unsigned long vaddr;
202 int offset;
203
204 vaddr = (unsigned long)addr;
205 if (vaddr < SRMMU_NOCACHE_VADDR) {
206 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
207 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
208 BUG();
209 }
210 if (vaddr + size > srmmu_nocache_end) {
211 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
212 vaddr, srmmu_nocache_end);
213 BUG();
214 }
215 if (!is_power_of_2(size)) {
216 printk("Size 0x%x is not a power of 2\n", size);
217 BUG();
218 }
219 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
220 printk("Size 0x%x is too small\n", size);
221 BUG();
222 }
223 if (vaddr & (size - 1)) {
224 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
225 BUG();
226 }
227
228 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
229 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
230
231 bit_map_clear(&srmmu_nocache_map, offset, size);
232 }
233
234 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
235 unsigned long end);
236
237 /* Return how much physical memory we have. */
238 static unsigned long __init probe_memory(void)
239 {
240 unsigned long total = 0;
241 int i;
242
243 for (i = 0; sp_banks[i].num_bytes; i++)
244 total += sp_banks[i].num_bytes;
245
246 return total;
247 }
248
249 /*
250 * Reserve nocache dynamically proportionally to the amount of
251 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
252 */
253 static void __init srmmu_nocache_calcsize(void)
254 {
255 unsigned long sysmemavail = probe_memory() / 1024;
256 int srmmu_nocache_npages;
257
258 srmmu_nocache_npages =
259 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
260
261 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
262 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
263 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
264 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
265
266 /* anything above 1280 blows up */
267 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
268 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
269
270 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
271 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
272 }
273
274 static void __init srmmu_nocache_init(void)
275 {
276 void *srmmu_nocache_bitmap;
277 unsigned int bitmap_bits;
278 pgd_t *pgd;
279 pmd_t *pmd;
280 pte_t *pte;
281 unsigned long paddr, vaddr;
282 unsigned long pteval;
283
284 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
285
286 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
287 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
288 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
289
290 srmmu_nocache_bitmap =
291 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
292 SMP_CACHE_BYTES, 0UL);
293 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
294
295 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
296 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
297 init_mm.pgd = srmmu_swapper_pg_dir;
298
299 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
300
301 paddr = __pa((unsigned long)srmmu_nocache_pool);
302 vaddr = SRMMU_NOCACHE_VADDR;
303
304 while (vaddr < srmmu_nocache_end) {
305 pgd = pgd_offset_k(vaddr);
306 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
307 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
308
309 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
310
311 if (srmmu_cache_pagetables)
312 pteval |= SRMMU_CACHE;
313
314 set_pte(__nocache_fix(pte), __pte(pteval));
315
316 vaddr += PAGE_SIZE;
317 paddr += PAGE_SIZE;
318 }
319
320 flush_cache_all();
321 flush_tlb_all();
322 }
323
324 pgd_t *get_pgd_fast(void)
325 {
326 pgd_t *pgd = NULL;
327
328 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
329 if (pgd) {
330 pgd_t *init = pgd_offset_k(0);
331 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
332 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
333 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
334 }
335
336 return pgd;
337 }
338
339 /*
340 * Hardware needs alignment to 256 only, but we align to whole page size
341 * to reduce fragmentation problems due to the buddy principle.
342 * XXX Provide actual fragmentation statistics in /proc.
343 *
344 * Alignments up to the page size are the same for physical and virtual
345 * addresses of the nocache area.
346 */
347 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
348 {
349 unsigned long pte;
350 struct page *page;
351
352 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
353 return NULL;
354 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
355 if (!pgtable_page_ctor(page)) {
356 __free_page(page);
357 return NULL;
358 }
359 return page;
360 }
361
362 void pte_free(struct mm_struct *mm, pgtable_t pte)
363 {
364 unsigned long p;
365
366 pgtable_page_dtor(pte);
367 p = (unsigned long)page_address(pte); /* Cached address (for test) */
368 if (p == 0)
369 BUG();
370 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
371
372 /* free non cached virtual address*/
373 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
374 }
375
376 /* context handling - a dynamically sized pool is used */
377 #define NO_CONTEXT -1
378
379 struct ctx_list {
380 struct ctx_list *next;
381 struct ctx_list *prev;
382 unsigned int ctx_number;
383 struct mm_struct *ctx_mm;
384 };
385
386 static struct ctx_list *ctx_list_pool;
387 static struct ctx_list ctx_free;
388 static struct ctx_list ctx_used;
389
390 /* At boot time we determine the number of contexts */
391 static int num_contexts;
392
393 static inline void remove_from_ctx_list(struct ctx_list *entry)
394 {
395 entry->next->prev = entry->prev;
396 entry->prev->next = entry->next;
397 }
398
399 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
400 {
401 entry->next = head;
402 (entry->prev = head->prev)->next = entry;
403 head->prev = entry;
404 }
405 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
406 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
407
408
409 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
410 {
411 struct ctx_list *ctxp;
412
413 ctxp = ctx_free.next;
414 if (ctxp != &ctx_free) {
415 remove_from_ctx_list(ctxp);
416 add_to_used_ctxlist(ctxp);
417 mm->context = ctxp->ctx_number;
418 ctxp->ctx_mm = mm;
419 return;
420 }
421 ctxp = ctx_used.next;
422 if (ctxp->ctx_mm == old_mm)
423 ctxp = ctxp->next;
424 if (ctxp == &ctx_used)
425 panic("out of mmu contexts");
426 flush_cache_mm(ctxp->ctx_mm);
427 flush_tlb_mm(ctxp->ctx_mm);
428 remove_from_ctx_list(ctxp);
429 add_to_used_ctxlist(ctxp);
430 ctxp->ctx_mm->context = NO_CONTEXT;
431 ctxp->ctx_mm = mm;
432 mm->context = ctxp->ctx_number;
433 }
434
435 static inline void free_context(int context)
436 {
437 struct ctx_list *ctx_old;
438
439 ctx_old = ctx_list_pool + context;
440 remove_from_ctx_list(ctx_old);
441 add_to_free_ctxlist(ctx_old);
442 }
443
444 static void __init sparc_context_init(int numctx)
445 {
446 int ctx;
447 unsigned long size;
448
449 size = numctx * sizeof(struct ctx_list);
450 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
451
452 for (ctx = 0; ctx < numctx; ctx++) {
453 struct ctx_list *clist;
454
455 clist = (ctx_list_pool + ctx);
456 clist->ctx_number = ctx;
457 clist->ctx_mm = NULL;
458 }
459 ctx_free.next = ctx_free.prev = &ctx_free;
460 ctx_used.next = ctx_used.prev = &ctx_used;
461 for (ctx = 0; ctx < numctx; ctx++)
462 add_to_free_ctxlist(ctx_list_pool + ctx);
463 }
464
465 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
466 struct task_struct *tsk)
467 {
468 unsigned long flags;
469
470 if (mm->context == NO_CONTEXT) {
471 spin_lock_irqsave(&srmmu_context_spinlock, flags);
472 alloc_context(old_mm, mm);
473 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
474 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
475 }
476
477 if (sparc_cpu_model == sparc_leon)
478 leon_switch_mm();
479
480 if (is_hypersparc)
481 hyper_flush_whole_icache();
482
483 srmmu_set_context(mm->context);
484 }
485
486 /* Low level IO area allocation on the SRMMU. */
487 static inline void srmmu_mapioaddr(unsigned long physaddr,
488 unsigned long virt_addr, int bus_type)
489 {
490 pgd_t *pgdp;
491 pmd_t *pmdp;
492 pte_t *ptep;
493 unsigned long tmp;
494
495 physaddr &= PAGE_MASK;
496 pgdp = pgd_offset_k(virt_addr);
497 pmdp = pmd_offset(pgdp, virt_addr);
498 ptep = pte_offset_kernel(pmdp, virt_addr);
499 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
500
501 /* I need to test whether this is consistent over all
502 * sun4m's. The bus_type represents the upper 4 bits of
503 * 36-bit physical address on the I/O space lines...
504 */
505 tmp |= (bus_type << 28);
506 tmp |= SRMMU_PRIV;
507 __flush_page_to_ram(virt_addr);
508 set_pte(ptep, __pte(tmp));
509 }
510
511 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
512 unsigned long xva, unsigned int len)
513 {
514 while (len != 0) {
515 len -= PAGE_SIZE;
516 srmmu_mapioaddr(xpa, xva, bus);
517 xva += PAGE_SIZE;
518 xpa += PAGE_SIZE;
519 }
520 flush_tlb_all();
521 }
522
523 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
524 {
525 pgd_t *pgdp;
526 pmd_t *pmdp;
527 pte_t *ptep;
528
529 pgdp = pgd_offset_k(virt_addr);
530 pmdp = pmd_offset(pgdp, virt_addr);
531 ptep = pte_offset_kernel(pmdp, virt_addr);
532
533 /* No need to flush uncacheable page. */
534 __pte_clear(ptep);
535 }
536
537 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
538 {
539 while (len != 0) {
540 len -= PAGE_SIZE;
541 srmmu_unmapioaddr(virt_addr);
542 virt_addr += PAGE_SIZE;
543 }
544 flush_tlb_all();
545 }
546
547 /* tsunami.S */
548 extern void tsunami_flush_cache_all(void);
549 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
550 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
551 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
552 extern void tsunami_flush_page_to_ram(unsigned long page);
553 extern void tsunami_flush_page_for_dma(unsigned long page);
554 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
555 extern void tsunami_flush_tlb_all(void);
556 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
557 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
558 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
559 extern void tsunami_setup_blockops(void);
560
561 /* swift.S */
562 extern void swift_flush_cache_all(void);
563 extern void swift_flush_cache_mm(struct mm_struct *mm);
564 extern void swift_flush_cache_range(struct vm_area_struct *vma,
565 unsigned long start, unsigned long end);
566 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
567 extern void swift_flush_page_to_ram(unsigned long page);
568 extern void swift_flush_page_for_dma(unsigned long page);
569 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
570 extern void swift_flush_tlb_all(void);
571 extern void swift_flush_tlb_mm(struct mm_struct *mm);
572 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
573 unsigned long start, unsigned long end);
574 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
575
576 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
577 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
578 {
579 int cctx, ctx1;
580
581 page &= PAGE_MASK;
582 if ((ctx1 = vma->vm_mm->context) != -1) {
583 cctx = srmmu_get_context();
584 /* Is context # ever different from current context? P3 */
585 if (cctx != ctx1) {
586 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
587 srmmu_set_context(ctx1);
588 swift_flush_page(page);
589 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
590 "r" (page), "i" (ASI_M_FLUSH_PROBE));
591 srmmu_set_context(cctx);
592 } else {
593 /* Rm. prot. bits from virt. c. */
594 /* swift_flush_cache_all(); */
595 /* swift_flush_cache_page(vma, page); */
596 swift_flush_page(page);
597
598 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
599 "r" (page), "i" (ASI_M_FLUSH_PROBE));
600 /* same as above: srmmu_flush_tlb_page() */
601 }
602 }
603 }
604 #endif
605
606 /*
607 * The following are all MBUS based SRMMU modules, and therefore could
608 * be found in a multiprocessor configuration. On the whole, these
609 * chips seems to be much more touchy about DVMA and page tables
610 * with respect to cache coherency.
611 */
612
613 /* viking.S */
614 extern void viking_flush_cache_all(void);
615 extern void viking_flush_cache_mm(struct mm_struct *mm);
616 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
617 unsigned long end);
618 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
619 extern void viking_flush_page_to_ram(unsigned long page);
620 extern void viking_flush_page_for_dma(unsigned long page);
621 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
622 extern void viking_flush_page(unsigned long page);
623 extern void viking_mxcc_flush_page(unsigned long page);
624 extern void viking_flush_tlb_all(void);
625 extern void viking_flush_tlb_mm(struct mm_struct *mm);
626 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
627 unsigned long end);
628 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
629 unsigned long page);
630 extern void sun4dsmp_flush_tlb_all(void);
631 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
632 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
633 unsigned long end);
634 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
635 unsigned long page);
636
637 /* hypersparc.S */
638 extern void hypersparc_flush_cache_all(void);
639 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
640 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
641 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
642 extern void hypersparc_flush_page_to_ram(unsigned long page);
643 extern void hypersparc_flush_page_for_dma(unsigned long page);
644 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
645 extern void hypersparc_flush_tlb_all(void);
646 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
647 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
648 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
649 extern void hypersparc_setup_blockops(void);
650
651 /*
652 * NOTE: All of this startup code assumes the low 16mb (approx.) of
653 * kernel mappings are done with one single contiguous chunk of
654 * ram. On small ram machines (classics mainly) we only get
655 * around 8mb mapped for us.
656 */
657
658 static void __init early_pgtable_allocfail(char *type)
659 {
660 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
661 prom_halt();
662 }
663
664 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
665 unsigned long end)
666 {
667 pgd_t *pgdp;
668 pmd_t *pmdp;
669 pte_t *ptep;
670
671 while (start < end) {
672 pgdp = pgd_offset_k(start);
673 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
674 pmdp = __srmmu_get_nocache(
675 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
676 if (pmdp == NULL)
677 early_pgtable_allocfail("pmd");
678 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
679 pgd_set(__nocache_fix(pgdp), pmdp);
680 }
681 pmdp = pmd_offset(__nocache_fix(pgdp), start);
682 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
683 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
684 if (ptep == NULL)
685 early_pgtable_allocfail("pte");
686 memset(__nocache_fix(ptep), 0, PTE_SIZE);
687 pmd_set(__nocache_fix(pmdp), ptep);
688 }
689 if (start > (0xffffffffUL - PMD_SIZE))
690 break;
691 start = (start + PMD_SIZE) & PMD_MASK;
692 }
693 }
694
695 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
696 unsigned long end)
697 {
698 pgd_t *pgdp;
699 pmd_t *pmdp;
700 pte_t *ptep;
701
702 while (start < end) {
703 pgdp = pgd_offset_k(start);
704 if (pgd_none(*pgdp)) {
705 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
706 if (pmdp == NULL)
707 early_pgtable_allocfail("pmd");
708 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
709 pgd_set(pgdp, pmdp);
710 }
711 pmdp = pmd_offset(pgdp, start);
712 if (srmmu_pmd_none(*pmdp)) {
713 ptep = __srmmu_get_nocache(PTE_SIZE,
714 PTE_SIZE);
715 if (ptep == NULL)
716 early_pgtable_allocfail("pte");
717 memset(ptep, 0, PTE_SIZE);
718 pmd_set(pmdp, ptep);
719 }
720 if (start > (0xffffffffUL - PMD_SIZE))
721 break;
722 start = (start + PMD_SIZE) & PMD_MASK;
723 }
724 }
725
726 /* These flush types are not available on all chips... */
727 static inline unsigned long srmmu_probe(unsigned long vaddr)
728 {
729 unsigned long retval;
730
731 if (sparc_cpu_model != sparc_leon) {
732
733 vaddr &= PAGE_MASK;
734 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
735 "=r" (retval) :
736 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
737 } else {
738 retval = leon_swprobe(vaddr, NULL);
739 }
740 return retval;
741 }
742
743 /*
744 * This is much cleaner than poking around physical address space
745 * looking at the prom's page table directly which is what most
746 * other OS's do. Yuck... this is much better.
747 */
748 static void __init srmmu_inherit_prom_mappings(unsigned long start,
749 unsigned long end)
750 {
751 unsigned long probed;
752 unsigned long addr;
753 pgd_t *pgdp;
754 pmd_t *pmdp;
755 pte_t *ptep;
756 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
757
758 while (start <= end) {
759 if (start == 0)
760 break; /* probably wrap around */
761 if (start == 0xfef00000)
762 start = KADB_DEBUGGER_BEGVM;
763 probed = srmmu_probe(start);
764 if (!probed) {
765 /* continue probing until we find an entry */
766 start += PAGE_SIZE;
767 continue;
768 }
769
770 /* A red snapper, see what it really is. */
771 what = 0;
772 addr = start - PAGE_SIZE;
773
774 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
775 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
776 what = 1;
777 }
778
779 if (!(start & ~(SRMMU_PGDIR_MASK))) {
780 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
781 what = 2;
782 }
783
784 pgdp = pgd_offset_k(start);
785 if (what == 2) {
786 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
787 start += SRMMU_PGDIR_SIZE;
788 continue;
789 }
790 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
791 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
792 SRMMU_PMD_TABLE_SIZE);
793 if (pmdp == NULL)
794 early_pgtable_allocfail("pmd");
795 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
796 pgd_set(__nocache_fix(pgdp), pmdp);
797 }
798 pmdp = pmd_offset(__nocache_fix(pgdp), start);
799 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
800 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
801 if (ptep == NULL)
802 early_pgtable_allocfail("pte");
803 memset(__nocache_fix(ptep), 0, PTE_SIZE);
804 pmd_set(__nocache_fix(pmdp), ptep);
805 }
806 if (what == 1) {
807 /* We bend the rule where all 16 PTPs in a pmd_t point
808 * inside the same PTE page, and we leak a perfectly
809 * good hardware PTE piece. Alternatives seem worse.
810 */
811 unsigned int x; /* Index of HW PMD in soft cluster */
812 unsigned long *val;
813 x = (start >> PMD_SHIFT) & 15;
814 val = &pmdp->pmdv[x];
815 *(unsigned long *)__nocache_fix(val) = probed;
816 start += SRMMU_REAL_PMD_SIZE;
817 continue;
818 }
819 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
820 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
821 start += PAGE_SIZE;
822 }
823 }
824
825 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
826
827 /* Create a third-level SRMMU 16MB page mapping. */
828 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
829 {
830 pgd_t *pgdp = pgd_offset_k(vaddr);
831 unsigned long big_pte;
832
833 big_pte = KERNEL_PTE(phys_base >> 4);
834 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
835 }
836
837 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
838 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
839 {
840 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
841 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
842 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
843 /* Map "low" memory only */
844 const unsigned long min_vaddr = PAGE_OFFSET;
845 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
846
847 if (vstart < min_vaddr || vstart >= max_vaddr)
848 return vstart;
849
850 if (vend > max_vaddr || vend < min_vaddr)
851 vend = max_vaddr;
852
853 while (vstart < vend) {
854 do_large_mapping(vstart, pstart);
855 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
856 }
857 return vstart;
858 }
859
860 static void __init map_kernel(void)
861 {
862 int i;
863
864 if (phys_base > 0) {
865 do_large_mapping(PAGE_OFFSET, phys_base);
866 }
867
868 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
869 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
870 }
871 }
872
873 void (*poke_srmmu)(void) = NULL;
874
875 void __init srmmu_paging_init(void)
876 {
877 int i;
878 phandle cpunode;
879 char node_str[128];
880 pgd_t *pgd;
881 pmd_t *pmd;
882 pte_t *pte;
883 unsigned long pages_avail;
884
885 init_mm.context = (unsigned long) NO_CONTEXT;
886 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
887
888 if (sparc_cpu_model == sun4d)
889 num_contexts = 65536; /* We know it is Viking */
890 else {
891 /* Find the number of contexts on the srmmu. */
892 cpunode = prom_getchild(prom_root_node);
893 num_contexts = 0;
894 while (cpunode != 0) {
895 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
896 if (!strcmp(node_str, "cpu")) {
897 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
898 break;
899 }
900 cpunode = prom_getsibling(cpunode);
901 }
902 }
903
904 if (!num_contexts) {
905 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
906 prom_halt();
907 }
908
909 pages_avail = 0;
910 last_valid_pfn = bootmem_init(&pages_avail);
911
912 srmmu_nocache_calcsize();
913 srmmu_nocache_init();
914 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
915 map_kernel();
916
917 /* ctx table has to be physically aligned to its size */
918 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
919 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
920
921 for (i = 0; i < num_contexts; i++)
922 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
923
924 flush_cache_all();
925 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
926 #ifdef CONFIG_SMP
927 /* Stop from hanging here... */
928 local_ops->tlb_all();
929 #else
930 flush_tlb_all();
931 #endif
932 poke_srmmu();
933
934 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
935 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
936
937 srmmu_allocate_ptable_skeleton(
938 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
939 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
940
941 pgd = pgd_offset_k(PKMAP_BASE);
942 pmd = pmd_offset(pgd, PKMAP_BASE);
943 pte = pte_offset_kernel(pmd, PKMAP_BASE);
944 pkmap_page_table = pte;
945
946 flush_cache_all();
947 flush_tlb_all();
948
949 sparc_context_init(num_contexts);
950
951 kmap_init();
952
953 {
954 unsigned long zones_size[MAX_NR_ZONES];
955 unsigned long zholes_size[MAX_NR_ZONES];
956 unsigned long npages;
957 int znum;
958
959 for (znum = 0; znum < MAX_NR_ZONES; znum++)
960 zones_size[znum] = zholes_size[znum] = 0;
961
962 npages = max_low_pfn - pfn_base;
963
964 zones_size[ZONE_DMA] = npages;
965 zholes_size[ZONE_DMA] = npages - pages_avail;
966
967 npages = highend_pfn - max_low_pfn;
968 zones_size[ZONE_HIGHMEM] = npages;
969 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
970
971 free_area_init_node(0, zones_size, pfn_base, zholes_size);
972 }
973 }
974
975 void mmu_info(struct seq_file *m)
976 {
977 seq_printf(m,
978 "MMU type\t: %s\n"
979 "contexts\t: %d\n"
980 "nocache total\t: %ld\n"
981 "nocache used\t: %d\n",
982 srmmu_name,
983 num_contexts,
984 srmmu_nocache_size,
985 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
986 }
987
988 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
989 {
990 mm->context = NO_CONTEXT;
991 return 0;
992 }
993
994 void destroy_context(struct mm_struct *mm)
995 {
996 unsigned long flags;
997
998 if (mm->context != NO_CONTEXT) {
999 flush_cache_mm(mm);
1000 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1001 flush_tlb_mm(mm);
1002 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1003 free_context(mm->context);
1004 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1005 mm->context = NO_CONTEXT;
1006 }
1007 }
1008
1009 /* Init various srmmu chip types. */
1010 static void __init srmmu_is_bad(void)
1011 {
1012 prom_printf("Could not determine SRMMU chip type.\n");
1013 prom_halt();
1014 }
1015
1016 static void __init init_vac_layout(void)
1017 {
1018 phandle nd;
1019 int cache_lines;
1020 char node_str[128];
1021 #ifdef CONFIG_SMP
1022 int cpu = 0;
1023 unsigned long max_size = 0;
1024 unsigned long min_line_size = 0x10000000;
1025 #endif
1026
1027 nd = prom_getchild(prom_root_node);
1028 while ((nd = prom_getsibling(nd)) != 0) {
1029 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1030 if (!strcmp(node_str, "cpu")) {
1031 vac_line_size = prom_getint(nd, "cache-line-size");
1032 if (vac_line_size == -1) {
1033 prom_printf("can't determine cache-line-size, halting.\n");
1034 prom_halt();
1035 }
1036 cache_lines = prom_getint(nd, "cache-nlines");
1037 if (cache_lines == -1) {
1038 prom_printf("can't determine cache-nlines, halting.\n");
1039 prom_halt();
1040 }
1041
1042 vac_cache_size = cache_lines * vac_line_size;
1043 #ifdef CONFIG_SMP
1044 if (vac_cache_size > max_size)
1045 max_size = vac_cache_size;
1046 if (vac_line_size < min_line_size)
1047 min_line_size = vac_line_size;
1048 //FIXME: cpus not contiguous!!
1049 cpu++;
1050 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1051 break;
1052 #else
1053 break;
1054 #endif
1055 }
1056 }
1057 if (nd == 0) {
1058 prom_printf("No CPU nodes found, halting.\n");
1059 prom_halt();
1060 }
1061 #ifdef CONFIG_SMP
1062 vac_cache_size = max_size;
1063 vac_line_size = min_line_size;
1064 #endif
1065 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1066 (int)vac_cache_size, (int)vac_line_size);
1067 }
1068
1069 static void poke_hypersparc(void)
1070 {
1071 volatile unsigned long clear;
1072 unsigned long mreg = srmmu_get_mmureg();
1073
1074 hyper_flush_unconditional_combined();
1075
1076 mreg &= ~(HYPERSPARC_CWENABLE);
1077 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1078 mreg |= (HYPERSPARC_CMODE);
1079
1080 srmmu_set_mmureg(mreg);
1081
1082 #if 0 /* XXX I think this is bad news... -DaveM */
1083 hyper_clear_all_tags();
1084 #endif
1085
1086 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1087 hyper_flush_whole_icache();
1088 clear = srmmu_get_faddr();
1089 clear = srmmu_get_fstatus();
1090 }
1091
1092 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1093 .cache_all = hypersparc_flush_cache_all,
1094 .cache_mm = hypersparc_flush_cache_mm,
1095 .cache_page = hypersparc_flush_cache_page,
1096 .cache_range = hypersparc_flush_cache_range,
1097 .tlb_all = hypersparc_flush_tlb_all,
1098 .tlb_mm = hypersparc_flush_tlb_mm,
1099 .tlb_page = hypersparc_flush_tlb_page,
1100 .tlb_range = hypersparc_flush_tlb_range,
1101 .page_to_ram = hypersparc_flush_page_to_ram,
1102 .sig_insns = hypersparc_flush_sig_insns,
1103 .page_for_dma = hypersparc_flush_page_for_dma,
1104 };
1105
1106 static void __init init_hypersparc(void)
1107 {
1108 srmmu_name = "ROSS HyperSparc";
1109 srmmu_modtype = HyperSparc;
1110
1111 init_vac_layout();
1112
1113 is_hypersparc = 1;
1114 sparc32_cachetlb_ops = &hypersparc_ops;
1115
1116 poke_srmmu = poke_hypersparc;
1117
1118 hypersparc_setup_blockops();
1119 }
1120
1121 static void poke_swift(void)
1122 {
1123 unsigned long mreg;
1124
1125 /* Clear any crap from the cache or else... */
1126 swift_flush_cache_all();
1127
1128 /* Enable I & D caches */
1129 mreg = srmmu_get_mmureg();
1130 mreg |= (SWIFT_IE | SWIFT_DE);
1131 /*
1132 * The Swift branch folding logic is completely broken. At
1133 * trap time, if things are just right, if can mistakenly
1134 * think that a trap is coming from kernel mode when in fact
1135 * it is coming from user mode (it mis-executes the branch in
1136 * the trap code). So you see things like crashme completely
1137 * hosing your machine which is completely unacceptable. Turn
1138 * this shit off... nice job Fujitsu.
1139 */
1140 mreg &= ~(SWIFT_BF);
1141 srmmu_set_mmureg(mreg);
1142 }
1143
1144 static const struct sparc32_cachetlb_ops swift_ops = {
1145 .cache_all = swift_flush_cache_all,
1146 .cache_mm = swift_flush_cache_mm,
1147 .cache_page = swift_flush_cache_page,
1148 .cache_range = swift_flush_cache_range,
1149 .tlb_all = swift_flush_tlb_all,
1150 .tlb_mm = swift_flush_tlb_mm,
1151 .tlb_page = swift_flush_tlb_page,
1152 .tlb_range = swift_flush_tlb_range,
1153 .page_to_ram = swift_flush_page_to_ram,
1154 .sig_insns = swift_flush_sig_insns,
1155 .page_for_dma = swift_flush_page_for_dma,
1156 };
1157
1158 #define SWIFT_MASKID_ADDR 0x10003018
1159 static void __init init_swift(void)
1160 {
1161 unsigned long swift_rev;
1162
1163 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1164 "srl %0, 0x18, %0\n\t" :
1165 "=r" (swift_rev) :
1166 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1167 srmmu_name = "Fujitsu Swift";
1168 switch (swift_rev) {
1169 case 0x11:
1170 case 0x20:
1171 case 0x23:
1172 case 0x30:
1173 srmmu_modtype = Swift_lots_o_bugs;
1174 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1175 /*
1176 * Gee george, I wonder why Sun is so hush hush about
1177 * this hardware bug... really braindamage stuff going
1178 * on here. However I think we can find a way to avoid
1179 * all of the workaround overhead under Linux. Basically,
1180 * any page fault can cause kernel pages to become user
1181 * accessible (the mmu gets confused and clears some of
1182 * the ACC bits in kernel ptes). Aha, sounds pretty
1183 * horrible eh? But wait, after extensive testing it appears
1184 * that if you use pgd_t level large kernel pte's (like the
1185 * 4MB pages on the Pentium) the bug does not get tripped
1186 * at all. This avoids almost all of the major overhead.
1187 * Welcome to a world where your vendor tells you to,
1188 * "apply this kernel patch" instead of "sorry for the
1189 * broken hardware, send it back and we'll give you
1190 * properly functioning parts"
1191 */
1192 break;
1193 case 0x25:
1194 case 0x31:
1195 srmmu_modtype = Swift_bad_c;
1196 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1197 /*
1198 * You see Sun allude to this hardware bug but never
1199 * admit things directly, they'll say things like,
1200 * "the Swift chip cache problems" or similar.
1201 */
1202 break;
1203 default:
1204 srmmu_modtype = Swift_ok;
1205 break;
1206 }
1207
1208 sparc32_cachetlb_ops = &swift_ops;
1209 flush_page_for_dma_global = 0;
1210
1211 /*
1212 * Are you now convinced that the Swift is one of the
1213 * biggest VLSI abortions of all time? Bravo Fujitsu!
1214 * Fujitsu, the !#?!%$'d up processor people. I bet if
1215 * you examined the microcode of the Swift you'd find
1216 * XXX's all over the place.
1217 */
1218 poke_srmmu = poke_swift;
1219 }
1220
1221 static void turbosparc_flush_cache_all(void)
1222 {
1223 flush_user_windows();
1224 turbosparc_idflash_clear();
1225 }
1226
1227 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1228 {
1229 FLUSH_BEGIN(mm)
1230 flush_user_windows();
1231 turbosparc_idflash_clear();
1232 FLUSH_END
1233 }
1234
1235 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1236 {
1237 FLUSH_BEGIN(vma->vm_mm)
1238 flush_user_windows();
1239 turbosparc_idflash_clear();
1240 FLUSH_END
1241 }
1242
1243 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1244 {
1245 FLUSH_BEGIN(vma->vm_mm)
1246 flush_user_windows();
1247 if (vma->vm_flags & VM_EXEC)
1248 turbosparc_flush_icache();
1249 turbosparc_flush_dcache();
1250 FLUSH_END
1251 }
1252
1253 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1254 static void turbosparc_flush_page_to_ram(unsigned long page)
1255 {
1256 #ifdef TURBOSPARC_WRITEBACK
1257 volatile unsigned long clear;
1258
1259 if (srmmu_probe(page))
1260 turbosparc_flush_page_cache(page);
1261 clear = srmmu_get_fstatus();
1262 #endif
1263 }
1264
1265 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1266 {
1267 }
1268
1269 static void turbosparc_flush_page_for_dma(unsigned long page)
1270 {
1271 turbosparc_flush_dcache();
1272 }
1273
1274 static void turbosparc_flush_tlb_all(void)
1275 {
1276 srmmu_flush_whole_tlb();
1277 }
1278
1279 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1280 {
1281 FLUSH_BEGIN(mm)
1282 srmmu_flush_whole_tlb();
1283 FLUSH_END
1284 }
1285
1286 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1287 {
1288 FLUSH_BEGIN(vma->vm_mm)
1289 srmmu_flush_whole_tlb();
1290 FLUSH_END
1291 }
1292
1293 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1294 {
1295 FLUSH_BEGIN(vma->vm_mm)
1296 srmmu_flush_whole_tlb();
1297 FLUSH_END
1298 }
1299
1300
1301 static void poke_turbosparc(void)
1302 {
1303 unsigned long mreg = srmmu_get_mmureg();
1304 unsigned long ccreg;
1305
1306 /* Clear any crap from the cache or else... */
1307 turbosparc_flush_cache_all();
1308 /* Temporarily disable I & D caches */
1309 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1310 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1311 srmmu_set_mmureg(mreg);
1312
1313 ccreg = turbosparc_get_ccreg();
1314
1315 #ifdef TURBOSPARC_WRITEBACK
1316 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1317 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1318 /* Write-back D-cache, emulate VLSI
1319 * abortion number three, not number one */
1320 #else
1321 /* For now let's play safe, optimize later */
1322 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1323 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1324 ccreg &= ~(TURBOSPARC_uS2);
1325 /* Emulate VLSI abortion number three, not number one */
1326 #endif
1327
1328 switch (ccreg & 7) {
1329 case 0: /* No SE cache */
1330 case 7: /* Test mode */
1331 break;
1332 default:
1333 ccreg |= (TURBOSPARC_SCENABLE);
1334 }
1335 turbosparc_set_ccreg(ccreg);
1336
1337 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1338 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1339 srmmu_set_mmureg(mreg);
1340 }
1341
1342 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1343 .cache_all = turbosparc_flush_cache_all,
1344 .cache_mm = turbosparc_flush_cache_mm,
1345 .cache_page = turbosparc_flush_cache_page,
1346 .cache_range = turbosparc_flush_cache_range,
1347 .tlb_all = turbosparc_flush_tlb_all,
1348 .tlb_mm = turbosparc_flush_tlb_mm,
1349 .tlb_page = turbosparc_flush_tlb_page,
1350 .tlb_range = turbosparc_flush_tlb_range,
1351 .page_to_ram = turbosparc_flush_page_to_ram,
1352 .sig_insns = turbosparc_flush_sig_insns,
1353 .page_for_dma = turbosparc_flush_page_for_dma,
1354 };
1355
1356 static void __init init_turbosparc(void)
1357 {
1358 srmmu_name = "Fujitsu TurboSparc";
1359 srmmu_modtype = TurboSparc;
1360 sparc32_cachetlb_ops = &turbosparc_ops;
1361 poke_srmmu = poke_turbosparc;
1362 }
1363
1364 static void poke_tsunami(void)
1365 {
1366 unsigned long mreg = srmmu_get_mmureg();
1367
1368 tsunami_flush_icache();
1369 tsunami_flush_dcache();
1370 mreg &= ~TSUNAMI_ITD;
1371 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1372 srmmu_set_mmureg(mreg);
1373 }
1374
1375 static const struct sparc32_cachetlb_ops tsunami_ops = {
1376 .cache_all = tsunami_flush_cache_all,
1377 .cache_mm = tsunami_flush_cache_mm,
1378 .cache_page = tsunami_flush_cache_page,
1379 .cache_range = tsunami_flush_cache_range,
1380 .tlb_all = tsunami_flush_tlb_all,
1381 .tlb_mm = tsunami_flush_tlb_mm,
1382 .tlb_page = tsunami_flush_tlb_page,
1383 .tlb_range = tsunami_flush_tlb_range,
1384 .page_to_ram = tsunami_flush_page_to_ram,
1385 .sig_insns = tsunami_flush_sig_insns,
1386 .page_for_dma = tsunami_flush_page_for_dma,
1387 };
1388
1389 static void __init init_tsunami(void)
1390 {
1391 /*
1392 * Tsunami's pretty sane, Sun and TI actually got it
1393 * somewhat right this time. Fujitsu should have
1394 * taken some lessons from them.
1395 */
1396
1397 srmmu_name = "TI Tsunami";
1398 srmmu_modtype = Tsunami;
1399 sparc32_cachetlb_ops = &tsunami_ops;
1400 poke_srmmu = poke_tsunami;
1401
1402 tsunami_setup_blockops();
1403 }
1404
1405 static void poke_viking(void)
1406 {
1407 unsigned long mreg = srmmu_get_mmureg();
1408 static int smp_catch;
1409
1410 if (viking_mxcc_present) {
1411 unsigned long mxcc_control = mxcc_get_creg();
1412
1413 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1414 mxcc_control &= ~(MXCC_CTL_RRC);
1415 mxcc_set_creg(mxcc_control);
1416
1417 /*
1418 * We don't need memory parity checks.
1419 * XXX This is a mess, have to dig out later. ecd.
1420 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1421 */
1422
1423 /* We do cache ptables on MXCC. */
1424 mreg |= VIKING_TCENABLE;
1425 } else {
1426 unsigned long bpreg;
1427
1428 mreg &= ~(VIKING_TCENABLE);
1429 if (smp_catch++) {
1430 /* Must disable mixed-cmd mode here for other cpu's. */
1431 bpreg = viking_get_bpreg();
1432 bpreg &= ~(VIKING_ACTION_MIX);
1433 viking_set_bpreg(bpreg);
1434
1435 /* Just in case PROM does something funny. */
1436 msi_set_sync();
1437 }
1438 }
1439
1440 mreg |= VIKING_SPENABLE;
1441 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1442 mreg |= VIKING_SBENABLE;
1443 mreg &= ~(VIKING_ACENABLE);
1444 srmmu_set_mmureg(mreg);
1445 }
1446
1447 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1448 .cache_all = viking_flush_cache_all,
1449 .cache_mm = viking_flush_cache_mm,
1450 .cache_page = viking_flush_cache_page,
1451 .cache_range = viking_flush_cache_range,
1452 .tlb_all = viking_flush_tlb_all,
1453 .tlb_mm = viking_flush_tlb_mm,
1454 .tlb_page = viking_flush_tlb_page,
1455 .tlb_range = viking_flush_tlb_range,
1456 .page_to_ram = viking_flush_page_to_ram,
1457 .sig_insns = viking_flush_sig_insns,
1458 .page_for_dma = viking_flush_page_for_dma,
1459 };
1460
1461 #ifdef CONFIG_SMP
1462 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1463 * perform the local TLB flush and all the other cpus will see it.
1464 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1465 * that requires that we add some synchronization to these flushes.
1466 *
1467 * The bug is that the fifo which keeps track of all the pending TLB
1468 * broadcasts in the system is an entry or two too small, so if we
1469 * have too many going at once we'll overflow that fifo and lose a TLB
1470 * flush resulting in corruption.
1471 *
1472 * Our workaround is to take a global spinlock around the TLB flushes,
1473 * which guarentees we won't ever have too many pending. It's a big
1474 * hammer, but a semaphore like system to make sure we only have N TLB
1475 * flushes going at once will require SMP locking anyways so there's
1476 * no real value in trying any harder than this.
1477 */
1478 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1479 .cache_all = viking_flush_cache_all,
1480 .cache_mm = viking_flush_cache_mm,
1481 .cache_page = viking_flush_cache_page,
1482 .cache_range = viking_flush_cache_range,
1483 .tlb_all = sun4dsmp_flush_tlb_all,
1484 .tlb_mm = sun4dsmp_flush_tlb_mm,
1485 .tlb_page = sun4dsmp_flush_tlb_page,
1486 .tlb_range = sun4dsmp_flush_tlb_range,
1487 .page_to_ram = viking_flush_page_to_ram,
1488 .sig_insns = viking_flush_sig_insns,
1489 .page_for_dma = viking_flush_page_for_dma,
1490 };
1491 #endif
1492
1493 static void __init init_viking(void)
1494 {
1495 unsigned long mreg = srmmu_get_mmureg();
1496
1497 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1498 if (mreg & VIKING_MMODE) {
1499 srmmu_name = "TI Viking";
1500 viking_mxcc_present = 0;
1501 msi_set_sync();
1502
1503 /*
1504 * We need this to make sure old viking takes no hits
1505 * on it's cache for dma snoops to workaround the
1506 * "load from non-cacheable memory" interrupt bug.
1507 * This is only necessary because of the new way in
1508 * which we use the IOMMU.
1509 */
1510 viking_ops.page_for_dma = viking_flush_page;
1511 #ifdef CONFIG_SMP
1512 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1513 #endif
1514 flush_page_for_dma_global = 0;
1515 } else {
1516 srmmu_name = "TI Viking/MXCC";
1517 viking_mxcc_present = 1;
1518 srmmu_cache_pagetables = 1;
1519 }
1520
1521 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1522 &viking_ops;
1523 #ifdef CONFIG_SMP
1524 if (sparc_cpu_model == sun4d)
1525 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1526 &viking_sun4d_smp_ops;
1527 #endif
1528
1529 poke_srmmu = poke_viking;
1530 }
1531
1532 /* Probe for the srmmu chip version. */
1533 static void __init get_srmmu_type(void)
1534 {
1535 unsigned long mreg, psr;
1536 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1537
1538 srmmu_modtype = SRMMU_INVAL_MOD;
1539 hwbug_bitmask = 0;
1540
1541 mreg = srmmu_get_mmureg(); psr = get_psr();
1542 mod_typ = (mreg & 0xf0000000) >> 28;
1543 mod_rev = (mreg & 0x0f000000) >> 24;
1544 psr_typ = (psr >> 28) & 0xf;
1545 psr_vers = (psr >> 24) & 0xf;
1546
1547 /* First, check for sparc-leon. */
1548 if (sparc_cpu_model == sparc_leon) {
1549 init_leon();
1550 return;
1551 }
1552
1553 /* Second, check for HyperSparc or Cypress. */
1554 if (mod_typ == 1) {
1555 switch (mod_rev) {
1556 case 7:
1557 /* UP or MP Hypersparc */
1558 init_hypersparc();
1559 break;
1560 case 0:
1561 case 2:
1562 case 10:
1563 case 11:
1564 case 12:
1565 case 13:
1566 case 14:
1567 case 15:
1568 default:
1569 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1570 prom_halt();
1571 break;
1572 }
1573 return;
1574 }
1575
1576 /* Now Fujitsu TurboSparc. It might happen that it is
1577 * in Swift emulation mode, so we will check later...
1578 */
1579 if (psr_typ == 0 && psr_vers == 5) {
1580 init_turbosparc();
1581 return;
1582 }
1583
1584 /* Next check for Fujitsu Swift. */
1585 if (psr_typ == 0 && psr_vers == 4) {
1586 phandle cpunode;
1587 char node_str[128];
1588
1589 /* Look if it is not a TurboSparc emulating Swift... */
1590 cpunode = prom_getchild(prom_root_node);
1591 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1592 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1593 if (!strcmp(node_str, "cpu")) {
1594 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1595 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1596 init_turbosparc();
1597 return;
1598 }
1599 break;
1600 }
1601 }
1602
1603 init_swift();
1604 return;
1605 }
1606
1607 /* Now the Viking family of srmmu. */
1608 if (psr_typ == 4 &&
1609 ((psr_vers == 0) ||
1610 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1611 init_viking();
1612 return;
1613 }
1614
1615 /* Finally the Tsunami. */
1616 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1617 init_tsunami();
1618 return;
1619 }
1620
1621 /* Oh well */
1622 srmmu_is_bad();
1623 }
1624
1625 #ifdef CONFIG_SMP
1626 /* Local cross-calls. */
1627 static void smp_flush_page_for_dma(unsigned long page)
1628 {
1629 xc1((smpfunc_t) local_ops->page_for_dma, page);
1630 local_ops->page_for_dma(page);
1631 }
1632
1633 static void smp_flush_cache_all(void)
1634 {
1635 xc0((smpfunc_t) local_ops->cache_all);
1636 local_ops->cache_all();
1637 }
1638
1639 static void smp_flush_tlb_all(void)
1640 {
1641 xc0((smpfunc_t) local_ops->tlb_all);
1642 local_ops->tlb_all();
1643 }
1644
1645 static void smp_flush_cache_mm(struct mm_struct *mm)
1646 {
1647 if (mm->context != NO_CONTEXT) {
1648 cpumask_t cpu_mask;
1649 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1650 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1651 if (!cpumask_empty(&cpu_mask))
1652 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1653 local_ops->cache_mm(mm);
1654 }
1655 }
1656
1657 static void smp_flush_tlb_mm(struct mm_struct *mm)
1658 {
1659 if (mm->context != NO_CONTEXT) {
1660 cpumask_t cpu_mask;
1661 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1662 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1663 if (!cpumask_empty(&cpu_mask)) {
1664 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1665 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1666 cpumask_copy(mm_cpumask(mm),
1667 cpumask_of(smp_processor_id()));
1668 }
1669 local_ops->tlb_mm(mm);
1670 }
1671 }
1672
1673 static void smp_flush_cache_range(struct vm_area_struct *vma,
1674 unsigned long start,
1675 unsigned long end)
1676 {
1677 struct mm_struct *mm = vma->vm_mm;
1678
1679 if (mm->context != NO_CONTEXT) {
1680 cpumask_t cpu_mask;
1681 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1682 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1683 if (!cpumask_empty(&cpu_mask))
1684 xc3((smpfunc_t) local_ops->cache_range,
1685 (unsigned long) vma, start, end);
1686 local_ops->cache_range(vma, start, end);
1687 }
1688 }
1689
1690 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1691 unsigned long start,
1692 unsigned long end)
1693 {
1694 struct mm_struct *mm = vma->vm_mm;
1695
1696 if (mm->context != NO_CONTEXT) {
1697 cpumask_t cpu_mask;
1698 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1699 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1700 if (!cpumask_empty(&cpu_mask))
1701 xc3((smpfunc_t) local_ops->tlb_range,
1702 (unsigned long) vma, start, end);
1703 local_ops->tlb_range(vma, start, end);
1704 }
1705 }
1706
1707 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1708 {
1709 struct mm_struct *mm = vma->vm_mm;
1710
1711 if (mm->context != NO_CONTEXT) {
1712 cpumask_t cpu_mask;
1713 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1714 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1715 if (!cpumask_empty(&cpu_mask))
1716 xc2((smpfunc_t) local_ops->cache_page,
1717 (unsigned long) vma, page);
1718 local_ops->cache_page(vma, page);
1719 }
1720 }
1721
1722 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1723 {
1724 struct mm_struct *mm = vma->vm_mm;
1725
1726 if (mm->context != NO_CONTEXT) {
1727 cpumask_t cpu_mask;
1728 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1729 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1730 if (!cpumask_empty(&cpu_mask))
1731 xc2((smpfunc_t) local_ops->tlb_page,
1732 (unsigned long) vma, page);
1733 local_ops->tlb_page(vma, page);
1734 }
1735 }
1736
1737 static void smp_flush_page_to_ram(unsigned long page)
1738 {
1739 /* Current theory is that those who call this are the one's
1740 * who have just dirtied their cache with the pages contents
1741 * in kernel space, therefore we only run this on local cpu.
1742 *
1743 * XXX This experiment failed, research further... -DaveM
1744 */
1745 #if 1
1746 xc1((smpfunc_t) local_ops->page_to_ram, page);
1747 #endif
1748 local_ops->page_to_ram(page);
1749 }
1750
1751 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1752 {
1753 cpumask_t cpu_mask;
1754 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1755 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1756 if (!cpumask_empty(&cpu_mask))
1757 xc2((smpfunc_t) local_ops->sig_insns,
1758 (unsigned long) mm, insn_addr);
1759 local_ops->sig_insns(mm, insn_addr);
1760 }
1761
1762 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1763 .cache_all = smp_flush_cache_all,
1764 .cache_mm = smp_flush_cache_mm,
1765 .cache_page = smp_flush_cache_page,
1766 .cache_range = smp_flush_cache_range,
1767 .tlb_all = smp_flush_tlb_all,
1768 .tlb_mm = smp_flush_tlb_mm,
1769 .tlb_page = smp_flush_tlb_page,
1770 .tlb_range = smp_flush_tlb_range,
1771 .page_to_ram = smp_flush_page_to_ram,
1772 .sig_insns = smp_flush_sig_insns,
1773 .page_for_dma = smp_flush_page_for_dma,
1774 };
1775 #endif
1776
1777 /* Load up routines and constants for sun4m and sun4d mmu */
1778 void __init load_mmu(void)
1779 {
1780 /* Functions */
1781 get_srmmu_type();
1782
1783 #ifdef CONFIG_SMP
1784 /* El switcheroo... */
1785 local_ops = sparc32_cachetlb_ops;
1786
1787 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1788 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1789 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1790 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1791 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1792 }
1793
1794 if (poke_srmmu == poke_viking) {
1795 /* Avoid unnecessary cross calls. */
1796 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1797 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1798 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1799 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1800
1801 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1802 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1803 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1804 }
1805
1806 /* It really is const after this point. */
1807 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1808 &smp_cachetlb_ops;
1809 #endif
1810
1811 if (sparc_cpu_model == sun4d)
1812 ld_mmu_iounit();
1813 else
1814 ld_mmu_iommu();
1815 #ifdef CONFIG_SMP
1816 if (sparc_cpu_model == sun4d)
1817 sun4d_init_smp();
1818 else if (sparc_cpu_model == sparc_leon)
1819 leon_init_smp();
1820 else
1821 sun4m_init_smp();
1822 #endif
1823 }