]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/sparc/mm/srmmu.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / arch / sparc / mm / srmmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * srmmu.c: SRMMU specific routines for memory management.
4 *
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10 */
11
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/bootmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/msi.h>
41 #include <asm/smp.h>
42 #include <asm/io.h>
43
44 /* Now the cpu specific definitions. */
45 #include <asm/turbosparc.h>
46 #include <asm/tsunami.h>
47 #include <asm/viking.h>
48 #include <asm/swift.h>
49 #include <asm/leon.h>
50 #include <asm/mxcc.h>
51 #include <asm/ross.h>
52
53 #include "mm_32.h"
54
55 enum mbus_module srmmu_modtype;
56 static unsigned int hwbug_bitmask;
57 int vac_cache_size;
58 EXPORT_SYMBOL(vac_cache_size);
59 int vac_line_size;
60
61 extern struct resource sparc_iomap;
62
63 extern unsigned long last_valid_pfn;
64
65 static pgd_t *srmmu_swapper_pg_dir;
66
67 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
68 EXPORT_SYMBOL(sparc32_cachetlb_ops);
69
70 #ifdef CONFIG_SMP
71 const struct sparc32_cachetlb_ops *local_ops;
72
73 #define FLUSH_BEGIN(mm)
74 #define FLUSH_END
75 #else
76 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
77 #define FLUSH_END }
78 #endif
79
80 int flush_page_for_dma_global = 1;
81
82 char *srmmu_name;
83
84 ctxd_t *srmmu_ctx_table_phys;
85 static ctxd_t *srmmu_context_table;
86
87 int viking_mxcc_present;
88 static DEFINE_SPINLOCK(srmmu_context_spinlock);
89
90 static int is_hypersparc;
91
92 static int srmmu_cache_pagetables;
93
94 /* these will be initialized in srmmu_nocache_calcsize() */
95 static unsigned long srmmu_nocache_size;
96 static unsigned long srmmu_nocache_end;
97
98 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100
101 /* The context table is a nocache user with the biggest alignment needs. */
102 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103
104 void *srmmu_nocache_pool;
105 static struct bit_map srmmu_nocache_map;
106
107 static inline int srmmu_pmd_none(pmd_t pmd)
108 { return !(pmd_val(pmd) & 0xFFFFFFF); }
109
110 /* XXX should we hyper_flush_whole_icache here - Anton */
111 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
112 {
113 pte_t pte;
114
115 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
116 set_pte((pte_t *)ctxp, pte);
117 }
118
119 void pmd_set(pmd_t *pmdp, pte_t *ptep)
120 {
121 unsigned long ptp; /* Physical address, shifted right by 4 */
122 int i;
123
124 ptp = __nocache_pa(ptep) >> 4;
125 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
126 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
127 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
128 }
129 }
130
131 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
132 {
133 unsigned long ptp; /* Physical address, shifted right by 4 */
134 int i;
135
136 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
137 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
138 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
139 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
140 }
141 }
142
143 /* Find an entry in the third-level page table.. */
144 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
145 {
146 void *pte;
147
148 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
149 return (pte_t *) pte +
150 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
151 }
152
153 /*
154 * size: bytes to allocate in the nocache area.
155 * align: bytes, number to align at.
156 * Returns the virtual address of the allocated area.
157 */
158 static void *__srmmu_get_nocache(int size, int align)
159 {
160 int offset;
161 unsigned long addr;
162
163 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
164 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
165 size);
166 size = SRMMU_NOCACHE_BITMAP_SHIFT;
167 }
168 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
169 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
170 size);
171 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
172 }
173 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
174
175 offset = bit_map_string_get(&srmmu_nocache_map,
176 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
177 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
178 if (offset == -1) {
179 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
180 size, (int) srmmu_nocache_size,
181 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
182 return NULL;
183 }
184
185 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
186 return (void *)addr;
187 }
188
189 void *srmmu_get_nocache(int size, int align)
190 {
191 void *tmp;
192
193 tmp = __srmmu_get_nocache(size, align);
194
195 if (tmp)
196 memset(tmp, 0, size);
197
198 return tmp;
199 }
200
201 void srmmu_free_nocache(void *addr, int size)
202 {
203 unsigned long vaddr;
204 int offset;
205
206 vaddr = (unsigned long)addr;
207 if (vaddr < SRMMU_NOCACHE_VADDR) {
208 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
209 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
210 BUG();
211 }
212 if (vaddr + size > srmmu_nocache_end) {
213 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
214 vaddr, srmmu_nocache_end);
215 BUG();
216 }
217 if (!is_power_of_2(size)) {
218 printk("Size 0x%x is not a power of 2\n", size);
219 BUG();
220 }
221 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
222 printk("Size 0x%x is too small\n", size);
223 BUG();
224 }
225 if (vaddr & (size - 1)) {
226 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
227 BUG();
228 }
229
230 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
231 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
232
233 bit_map_clear(&srmmu_nocache_map, offset, size);
234 }
235
236 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
237 unsigned long end);
238
239 /* Return how much physical memory we have. */
240 static unsigned long __init probe_memory(void)
241 {
242 unsigned long total = 0;
243 int i;
244
245 for (i = 0; sp_banks[i].num_bytes; i++)
246 total += sp_banks[i].num_bytes;
247
248 return total;
249 }
250
251 /*
252 * Reserve nocache dynamically proportionally to the amount of
253 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
254 */
255 static void __init srmmu_nocache_calcsize(void)
256 {
257 unsigned long sysmemavail = probe_memory() / 1024;
258 int srmmu_nocache_npages;
259
260 srmmu_nocache_npages =
261 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
262
263 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
264 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
265 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
266 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
267
268 /* anything above 1280 blows up */
269 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
270 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
271
272 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
273 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
274 }
275
276 static void __init srmmu_nocache_init(void)
277 {
278 void *srmmu_nocache_bitmap;
279 unsigned int bitmap_bits;
280 pgd_t *pgd;
281 pmd_t *pmd;
282 pte_t *pte;
283 unsigned long paddr, vaddr;
284 unsigned long pteval;
285
286 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
287
288 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
289 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
290 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
291
292 srmmu_nocache_bitmap =
293 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
294 SMP_CACHE_BYTES, 0UL);
295 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
296
297 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
298 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
299 init_mm.pgd = srmmu_swapper_pg_dir;
300
301 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
302
303 paddr = __pa((unsigned long)srmmu_nocache_pool);
304 vaddr = SRMMU_NOCACHE_VADDR;
305
306 while (vaddr < srmmu_nocache_end) {
307 pgd = pgd_offset_k(vaddr);
308 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
309 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
310
311 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
312
313 if (srmmu_cache_pagetables)
314 pteval |= SRMMU_CACHE;
315
316 set_pte(__nocache_fix(pte), __pte(pteval));
317
318 vaddr += PAGE_SIZE;
319 paddr += PAGE_SIZE;
320 }
321
322 flush_cache_all();
323 flush_tlb_all();
324 }
325
326 pgd_t *get_pgd_fast(void)
327 {
328 pgd_t *pgd = NULL;
329
330 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
331 if (pgd) {
332 pgd_t *init = pgd_offset_k(0);
333 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
334 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
335 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
336 }
337
338 return pgd;
339 }
340
341 /*
342 * Hardware needs alignment to 256 only, but we align to whole page size
343 * to reduce fragmentation problems due to the buddy principle.
344 * XXX Provide actual fragmentation statistics in /proc.
345 *
346 * Alignments up to the page size are the same for physical and virtual
347 * addresses of the nocache area.
348 */
349 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
350 {
351 unsigned long pte;
352 struct page *page;
353
354 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
355 return NULL;
356 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
357 if (!pgtable_page_ctor(page)) {
358 __free_page(page);
359 return NULL;
360 }
361 return page;
362 }
363
364 void pte_free(struct mm_struct *mm, pgtable_t pte)
365 {
366 unsigned long p;
367
368 pgtable_page_dtor(pte);
369 p = (unsigned long)page_address(pte); /* Cached address (for test) */
370 if (p == 0)
371 BUG();
372 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
373
374 /* free non cached virtual address*/
375 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
376 }
377
378 /* context handling - a dynamically sized pool is used */
379 #define NO_CONTEXT -1
380
381 struct ctx_list {
382 struct ctx_list *next;
383 struct ctx_list *prev;
384 unsigned int ctx_number;
385 struct mm_struct *ctx_mm;
386 };
387
388 static struct ctx_list *ctx_list_pool;
389 static struct ctx_list ctx_free;
390 static struct ctx_list ctx_used;
391
392 /* At boot time we determine the number of contexts */
393 static int num_contexts;
394
395 static inline void remove_from_ctx_list(struct ctx_list *entry)
396 {
397 entry->next->prev = entry->prev;
398 entry->prev->next = entry->next;
399 }
400
401 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
402 {
403 entry->next = head;
404 (entry->prev = head->prev)->next = entry;
405 head->prev = entry;
406 }
407 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
408 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
409
410
411 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
412 {
413 struct ctx_list *ctxp;
414
415 ctxp = ctx_free.next;
416 if (ctxp != &ctx_free) {
417 remove_from_ctx_list(ctxp);
418 add_to_used_ctxlist(ctxp);
419 mm->context = ctxp->ctx_number;
420 ctxp->ctx_mm = mm;
421 return;
422 }
423 ctxp = ctx_used.next;
424 if (ctxp->ctx_mm == old_mm)
425 ctxp = ctxp->next;
426 if (ctxp == &ctx_used)
427 panic("out of mmu contexts");
428 flush_cache_mm(ctxp->ctx_mm);
429 flush_tlb_mm(ctxp->ctx_mm);
430 remove_from_ctx_list(ctxp);
431 add_to_used_ctxlist(ctxp);
432 ctxp->ctx_mm->context = NO_CONTEXT;
433 ctxp->ctx_mm = mm;
434 mm->context = ctxp->ctx_number;
435 }
436
437 static inline void free_context(int context)
438 {
439 struct ctx_list *ctx_old;
440
441 ctx_old = ctx_list_pool + context;
442 remove_from_ctx_list(ctx_old);
443 add_to_free_ctxlist(ctx_old);
444 }
445
446 static void __init sparc_context_init(int numctx)
447 {
448 int ctx;
449 unsigned long size;
450
451 size = numctx * sizeof(struct ctx_list);
452 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
453
454 for (ctx = 0; ctx < numctx; ctx++) {
455 struct ctx_list *clist;
456
457 clist = (ctx_list_pool + ctx);
458 clist->ctx_number = ctx;
459 clist->ctx_mm = NULL;
460 }
461 ctx_free.next = ctx_free.prev = &ctx_free;
462 ctx_used.next = ctx_used.prev = &ctx_used;
463 for (ctx = 0; ctx < numctx; ctx++)
464 add_to_free_ctxlist(ctx_list_pool + ctx);
465 }
466
467 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
468 struct task_struct *tsk)
469 {
470 unsigned long flags;
471
472 if (mm->context == NO_CONTEXT) {
473 spin_lock_irqsave(&srmmu_context_spinlock, flags);
474 alloc_context(old_mm, mm);
475 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
476 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
477 }
478
479 if (sparc_cpu_model == sparc_leon)
480 leon_switch_mm();
481
482 if (is_hypersparc)
483 hyper_flush_whole_icache();
484
485 srmmu_set_context(mm->context);
486 }
487
488 /* Low level IO area allocation on the SRMMU. */
489 static inline void srmmu_mapioaddr(unsigned long physaddr,
490 unsigned long virt_addr, int bus_type)
491 {
492 pgd_t *pgdp;
493 pmd_t *pmdp;
494 pte_t *ptep;
495 unsigned long tmp;
496
497 physaddr &= PAGE_MASK;
498 pgdp = pgd_offset_k(virt_addr);
499 pmdp = pmd_offset(pgdp, virt_addr);
500 ptep = pte_offset_kernel(pmdp, virt_addr);
501 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
502
503 /* I need to test whether this is consistent over all
504 * sun4m's. The bus_type represents the upper 4 bits of
505 * 36-bit physical address on the I/O space lines...
506 */
507 tmp |= (bus_type << 28);
508 tmp |= SRMMU_PRIV;
509 __flush_page_to_ram(virt_addr);
510 set_pte(ptep, __pte(tmp));
511 }
512
513 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
514 unsigned long xva, unsigned int len)
515 {
516 while (len != 0) {
517 len -= PAGE_SIZE;
518 srmmu_mapioaddr(xpa, xva, bus);
519 xva += PAGE_SIZE;
520 xpa += PAGE_SIZE;
521 }
522 flush_tlb_all();
523 }
524
525 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
526 {
527 pgd_t *pgdp;
528 pmd_t *pmdp;
529 pte_t *ptep;
530
531 pgdp = pgd_offset_k(virt_addr);
532 pmdp = pmd_offset(pgdp, virt_addr);
533 ptep = pte_offset_kernel(pmdp, virt_addr);
534
535 /* No need to flush uncacheable page. */
536 __pte_clear(ptep);
537 }
538
539 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
540 {
541 while (len != 0) {
542 len -= PAGE_SIZE;
543 srmmu_unmapioaddr(virt_addr);
544 virt_addr += PAGE_SIZE;
545 }
546 flush_tlb_all();
547 }
548
549 /* tsunami.S */
550 extern void tsunami_flush_cache_all(void);
551 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
552 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
553 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
554 extern void tsunami_flush_page_to_ram(unsigned long page);
555 extern void tsunami_flush_page_for_dma(unsigned long page);
556 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
557 extern void tsunami_flush_tlb_all(void);
558 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
559 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
560 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
561 extern void tsunami_setup_blockops(void);
562
563 /* swift.S */
564 extern void swift_flush_cache_all(void);
565 extern void swift_flush_cache_mm(struct mm_struct *mm);
566 extern void swift_flush_cache_range(struct vm_area_struct *vma,
567 unsigned long start, unsigned long end);
568 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
569 extern void swift_flush_page_to_ram(unsigned long page);
570 extern void swift_flush_page_for_dma(unsigned long page);
571 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
572 extern void swift_flush_tlb_all(void);
573 extern void swift_flush_tlb_mm(struct mm_struct *mm);
574 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
575 unsigned long start, unsigned long end);
576 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
577
578 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
579 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
580 {
581 int cctx, ctx1;
582
583 page &= PAGE_MASK;
584 if ((ctx1 = vma->vm_mm->context) != -1) {
585 cctx = srmmu_get_context();
586 /* Is context # ever different from current context? P3 */
587 if (cctx != ctx1) {
588 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
589 srmmu_set_context(ctx1);
590 swift_flush_page(page);
591 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
592 "r" (page), "i" (ASI_M_FLUSH_PROBE));
593 srmmu_set_context(cctx);
594 } else {
595 /* Rm. prot. bits from virt. c. */
596 /* swift_flush_cache_all(); */
597 /* swift_flush_cache_page(vma, page); */
598 swift_flush_page(page);
599
600 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
601 "r" (page), "i" (ASI_M_FLUSH_PROBE));
602 /* same as above: srmmu_flush_tlb_page() */
603 }
604 }
605 }
606 #endif
607
608 /*
609 * The following are all MBUS based SRMMU modules, and therefore could
610 * be found in a multiprocessor configuration. On the whole, these
611 * chips seems to be much more touchy about DVMA and page tables
612 * with respect to cache coherency.
613 */
614
615 /* viking.S */
616 extern void viking_flush_cache_all(void);
617 extern void viking_flush_cache_mm(struct mm_struct *mm);
618 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
619 unsigned long end);
620 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
621 extern void viking_flush_page_to_ram(unsigned long page);
622 extern void viking_flush_page_for_dma(unsigned long page);
623 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
624 extern void viking_flush_page(unsigned long page);
625 extern void viking_mxcc_flush_page(unsigned long page);
626 extern void viking_flush_tlb_all(void);
627 extern void viking_flush_tlb_mm(struct mm_struct *mm);
628 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
629 unsigned long end);
630 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
631 unsigned long page);
632 extern void sun4dsmp_flush_tlb_all(void);
633 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
634 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
635 unsigned long end);
636 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
637 unsigned long page);
638
639 /* hypersparc.S */
640 extern void hypersparc_flush_cache_all(void);
641 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
642 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
643 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
644 extern void hypersparc_flush_page_to_ram(unsigned long page);
645 extern void hypersparc_flush_page_for_dma(unsigned long page);
646 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
647 extern void hypersparc_flush_tlb_all(void);
648 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
649 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
650 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
651 extern void hypersparc_setup_blockops(void);
652
653 /*
654 * NOTE: All of this startup code assumes the low 16mb (approx.) of
655 * kernel mappings are done with one single contiguous chunk of
656 * ram. On small ram machines (classics mainly) we only get
657 * around 8mb mapped for us.
658 */
659
660 static void __init early_pgtable_allocfail(char *type)
661 {
662 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
663 prom_halt();
664 }
665
666 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
667 unsigned long end)
668 {
669 pgd_t *pgdp;
670 pmd_t *pmdp;
671 pte_t *ptep;
672
673 while (start < end) {
674 pgdp = pgd_offset_k(start);
675 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
676 pmdp = __srmmu_get_nocache(
677 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
678 if (pmdp == NULL)
679 early_pgtable_allocfail("pmd");
680 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
681 pgd_set(__nocache_fix(pgdp), pmdp);
682 }
683 pmdp = pmd_offset(__nocache_fix(pgdp), start);
684 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
685 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
686 if (ptep == NULL)
687 early_pgtable_allocfail("pte");
688 memset(__nocache_fix(ptep), 0, PTE_SIZE);
689 pmd_set(__nocache_fix(pmdp), ptep);
690 }
691 if (start > (0xffffffffUL - PMD_SIZE))
692 break;
693 start = (start + PMD_SIZE) & PMD_MASK;
694 }
695 }
696
697 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
698 unsigned long end)
699 {
700 pgd_t *pgdp;
701 pmd_t *pmdp;
702 pte_t *ptep;
703
704 while (start < end) {
705 pgdp = pgd_offset_k(start);
706 if (pgd_none(*pgdp)) {
707 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
708 if (pmdp == NULL)
709 early_pgtable_allocfail("pmd");
710 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
711 pgd_set(pgdp, pmdp);
712 }
713 pmdp = pmd_offset(pgdp, start);
714 if (srmmu_pmd_none(*pmdp)) {
715 ptep = __srmmu_get_nocache(PTE_SIZE,
716 PTE_SIZE);
717 if (ptep == NULL)
718 early_pgtable_allocfail("pte");
719 memset(ptep, 0, PTE_SIZE);
720 pmd_set(pmdp, ptep);
721 }
722 if (start > (0xffffffffUL - PMD_SIZE))
723 break;
724 start = (start + PMD_SIZE) & PMD_MASK;
725 }
726 }
727
728 /* These flush types are not available on all chips... */
729 static inline unsigned long srmmu_probe(unsigned long vaddr)
730 {
731 unsigned long retval;
732
733 if (sparc_cpu_model != sparc_leon) {
734
735 vaddr &= PAGE_MASK;
736 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
737 "=r" (retval) :
738 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
739 } else {
740 retval = leon_swprobe(vaddr, NULL);
741 }
742 return retval;
743 }
744
745 /*
746 * This is much cleaner than poking around physical address space
747 * looking at the prom's page table directly which is what most
748 * other OS's do. Yuck... this is much better.
749 */
750 static void __init srmmu_inherit_prom_mappings(unsigned long start,
751 unsigned long end)
752 {
753 unsigned long probed;
754 unsigned long addr;
755 pgd_t *pgdp;
756 pmd_t *pmdp;
757 pte_t *ptep;
758 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
759
760 while (start <= end) {
761 if (start == 0)
762 break; /* probably wrap around */
763 if (start == 0xfef00000)
764 start = KADB_DEBUGGER_BEGVM;
765 probed = srmmu_probe(start);
766 if (!probed) {
767 /* continue probing until we find an entry */
768 start += PAGE_SIZE;
769 continue;
770 }
771
772 /* A red snapper, see what it really is. */
773 what = 0;
774 addr = start - PAGE_SIZE;
775
776 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
777 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
778 what = 1;
779 }
780
781 if (!(start & ~(SRMMU_PGDIR_MASK))) {
782 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
783 what = 2;
784 }
785
786 pgdp = pgd_offset_k(start);
787 if (what == 2) {
788 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
789 start += SRMMU_PGDIR_SIZE;
790 continue;
791 }
792 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
793 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
794 SRMMU_PMD_TABLE_SIZE);
795 if (pmdp == NULL)
796 early_pgtable_allocfail("pmd");
797 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
798 pgd_set(__nocache_fix(pgdp), pmdp);
799 }
800 pmdp = pmd_offset(__nocache_fix(pgdp), start);
801 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
802 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
803 if (ptep == NULL)
804 early_pgtable_allocfail("pte");
805 memset(__nocache_fix(ptep), 0, PTE_SIZE);
806 pmd_set(__nocache_fix(pmdp), ptep);
807 }
808 if (what == 1) {
809 /* We bend the rule where all 16 PTPs in a pmd_t point
810 * inside the same PTE page, and we leak a perfectly
811 * good hardware PTE piece. Alternatives seem worse.
812 */
813 unsigned int x; /* Index of HW PMD in soft cluster */
814 unsigned long *val;
815 x = (start >> PMD_SHIFT) & 15;
816 val = &pmdp->pmdv[x];
817 *(unsigned long *)__nocache_fix(val) = probed;
818 start += SRMMU_REAL_PMD_SIZE;
819 continue;
820 }
821 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
822 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
823 start += PAGE_SIZE;
824 }
825 }
826
827 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
828
829 /* Create a third-level SRMMU 16MB page mapping. */
830 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
831 {
832 pgd_t *pgdp = pgd_offset_k(vaddr);
833 unsigned long big_pte;
834
835 big_pte = KERNEL_PTE(phys_base >> 4);
836 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
837 }
838
839 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
840 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
841 {
842 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
843 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
844 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
845 /* Map "low" memory only */
846 const unsigned long min_vaddr = PAGE_OFFSET;
847 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
848
849 if (vstart < min_vaddr || vstart >= max_vaddr)
850 return vstart;
851
852 if (vend > max_vaddr || vend < min_vaddr)
853 vend = max_vaddr;
854
855 while (vstart < vend) {
856 do_large_mapping(vstart, pstart);
857 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
858 }
859 return vstart;
860 }
861
862 static void __init map_kernel(void)
863 {
864 int i;
865
866 if (phys_base > 0) {
867 do_large_mapping(PAGE_OFFSET, phys_base);
868 }
869
870 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
871 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
872 }
873 }
874
875 void (*poke_srmmu)(void) = NULL;
876
877 void __init srmmu_paging_init(void)
878 {
879 int i;
880 phandle cpunode;
881 char node_str[128];
882 pgd_t *pgd;
883 pmd_t *pmd;
884 pte_t *pte;
885 unsigned long pages_avail;
886
887 init_mm.context = (unsigned long) NO_CONTEXT;
888 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
889
890 if (sparc_cpu_model == sun4d)
891 num_contexts = 65536; /* We know it is Viking */
892 else {
893 /* Find the number of contexts on the srmmu. */
894 cpunode = prom_getchild(prom_root_node);
895 num_contexts = 0;
896 while (cpunode != 0) {
897 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
898 if (!strcmp(node_str, "cpu")) {
899 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
900 break;
901 }
902 cpunode = prom_getsibling(cpunode);
903 }
904 }
905
906 if (!num_contexts) {
907 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
908 prom_halt();
909 }
910
911 pages_avail = 0;
912 last_valid_pfn = bootmem_init(&pages_avail);
913
914 srmmu_nocache_calcsize();
915 srmmu_nocache_init();
916 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
917 map_kernel();
918
919 /* ctx table has to be physically aligned to its size */
920 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
921 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
922
923 for (i = 0; i < num_contexts; i++)
924 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
925
926 flush_cache_all();
927 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
928 #ifdef CONFIG_SMP
929 /* Stop from hanging here... */
930 local_ops->tlb_all();
931 #else
932 flush_tlb_all();
933 #endif
934 poke_srmmu();
935
936 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
937 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
938
939 srmmu_allocate_ptable_skeleton(
940 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
941 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
942
943 pgd = pgd_offset_k(PKMAP_BASE);
944 pmd = pmd_offset(pgd, PKMAP_BASE);
945 pte = pte_offset_kernel(pmd, PKMAP_BASE);
946 pkmap_page_table = pte;
947
948 flush_cache_all();
949 flush_tlb_all();
950
951 sparc_context_init(num_contexts);
952
953 kmap_init();
954
955 {
956 unsigned long zones_size[MAX_NR_ZONES];
957 unsigned long zholes_size[MAX_NR_ZONES];
958 unsigned long npages;
959 int znum;
960
961 for (znum = 0; znum < MAX_NR_ZONES; znum++)
962 zones_size[znum] = zholes_size[znum] = 0;
963
964 npages = max_low_pfn - pfn_base;
965
966 zones_size[ZONE_DMA] = npages;
967 zholes_size[ZONE_DMA] = npages - pages_avail;
968
969 npages = highend_pfn - max_low_pfn;
970 zones_size[ZONE_HIGHMEM] = npages;
971 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
972
973 free_area_init_node(0, zones_size, pfn_base, zholes_size);
974 }
975 }
976
977 void mmu_info(struct seq_file *m)
978 {
979 seq_printf(m,
980 "MMU type\t: %s\n"
981 "contexts\t: %d\n"
982 "nocache total\t: %ld\n"
983 "nocache used\t: %d\n",
984 srmmu_name,
985 num_contexts,
986 srmmu_nocache_size,
987 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
988 }
989
990 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
991 {
992 mm->context = NO_CONTEXT;
993 return 0;
994 }
995
996 void destroy_context(struct mm_struct *mm)
997 {
998 unsigned long flags;
999
1000 if (mm->context != NO_CONTEXT) {
1001 flush_cache_mm(mm);
1002 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1003 flush_tlb_mm(mm);
1004 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1005 free_context(mm->context);
1006 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1007 mm->context = NO_CONTEXT;
1008 }
1009 }
1010
1011 /* Init various srmmu chip types. */
1012 static void __init srmmu_is_bad(void)
1013 {
1014 prom_printf("Could not determine SRMMU chip type.\n");
1015 prom_halt();
1016 }
1017
1018 static void __init init_vac_layout(void)
1019 {
1020 phandle nd;
1021 int cache_lines;
1022 char node_str[128];
1023 #ifdef CONFIG_SMP
1024 int cpu = 0;
1025 unsigned long max_size = 0;
1026 unsigned long min_line_size = 0x10000000;
1027 #endif
1028
1029 nd = prom_getchild(prom_root_node);
1030 while ((nd = prom_getsibling(nd)) != 0) {
1031 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1032 if (!strcmp(node_str, "cpu")) {
1033 vac_line_size = prom_getint(nd, "cache-line-size");
1034 if (vac_line_size == -1) {
1035 prom_printf("can't determine cache-line-size, halting.\n");
1036 prom_halt();
1037 }
1038 cache_lines = prom_getint(nd, "cache-nlines");
1039 if (cache_lines == -1) {
1040 prom_printf("can't determine cache-nlines, halting.\n");
1041 prom_halt();
1042 }
1043
1044 vac_cache_size = cache_lines * vac_line_size;
1045 #ifdef CONFIG_SMP
1046 if (vac_cache_size > max_size)
1047 max_size = vac_cache_size;
1048 if (vac_line_size < min_line_size)
1049 min_line_size = vac_line_size;
1050 //FIXME: cpus not contiguous!!
1051 cpu++;
1052 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1053 break;
1054 #else
1055 break;
1056 #endif
1057 }
1058 }
1059 if (nd == 0) {
1060 prom_printf("No CPU nodes found, halting.\n");
1061 prom_halt();
1062 }
1063 #ifdef CONFIG_SMP
1064 vac_cache_size = max_size;
1065 vac_line_size = min_line_size;
1066 #endif
1067 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1068 (int)vac_cache_size, (int)vac_line_size);
1069 }
1070
1071 static void poke_hypersparc(void)
1072 {
1073 volatile unsigned long clear;
1074 unsigned long mreg = srmmu_get_mmureg();
1075
1076 hyper_flush_unconditional_combined();
1077
1078 mreg &= ~(HYPERSPARC_CWENABLE);
1079 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1080 mreg |= (HYPERSPARC_CMODE);
1081
1082 srmmu_set_mmureg(mreg);
1083
1084 #if 0 /* XXX I think this is bad news... -DaveM */
1085 hyper_clear_all_tags();
1086 #endif
1087
1088 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1089 hyper_flush_whole_icache();
1090 clear = srmmu_get_faddr();
1091 clear = srmmu_get_fstatus();
1092 }
1093
1094 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1095 .cache_all = hypersparc_flush_cache_all,
1096 .cache_mm = hypersparc_flush_cache_mm,
1097 .cache_page = hypersparc_flush_cache_page,
1098 .cache_range = hypersparc_flush_cache_range,
1099 .tlb_all = hypersparc_flush_tlb_all,
1100 .tlb_mm = hypersparc_flush_tlb_mm,
1101 .tlb_page = hypersparc_flush_tlb_page,
1102 .tlb_range = hypersparc_flush_tlb_range,
1103 .page_to_ram = hypersparc_flush_page_to_ram,
1104 .sig_insns = hypersparc_flush_sig_insns,
1105 .page_for_dma = hypersparc_flush_page_for_dma,
1106 };
1107
1108 static void __init init_hypersparc(void)
1109 {
1110 srmmu_name = "ROSS HyperSparc";
1111 srmmu_modtype = HyperSparc;
1112
1113 init_vac_layout();
1114
1115 is_hypersparc = 1;
1116 sparc32_cachetlb_ops = &hypersparc_ops;
1117
1118 poke_srmmu = poke_hypersparc;
1119
1120 hypersparc_setup_blockops();
1121 }
1122
1123 static void poke_swift(void)
1124 {
1125 unsigned long mreg;
1126
1127 /* Clear any crap from the cache or else... */
1128 swift_flush_cache_all();
1129
1130 /* Enable I & D caches */
1131 mreg = srmmu_get_mmureg();
1132 mreg |= (SWIFT_IE | SWIFT_DE);
1133 /*
1134 * The Swift branch folding logic is completely broken. At
1135 * trap time, if things are just right, if can mistakenly
1136 * think that a trap is coming from kernel mode when in fact
1137 * it is coming from user mode (it mis-executes the branch in
1138 * the trap code). So you see things like crashme completely
1139 * hosing your machine which is completely unacceptable. Turn
1140 * this shit off... nice job Fujitsu.
1141 */
1142 mreg &= ~(SWIFT_BF);
1143 srmmu_set_mmureg(mreg);
1144 }
1145
1146 static const struct sparc32_cachetlb_ops swift_ops = {
1147 .cache_all = swift_flush_cache_all,
1148 .cache_mm = swift_flush_cache_mm,
1149 .cache_page = swift_flush_cache_page,
1150 .cache_range = swift_flush_cache_range,
1151 .tlb_all = swift_flush_tlb_all,
1152 .tlb_mm = swift_flush_tlb_mm,
1153 .tlb_page = swift_flush_tlb_page,
1154 .tlb_range = swift_flush_tlb_range,
1155 .page_to_ram = swift_flush_page_to_ram,
1156 .sig_insns = swift_flush_sig_insns,
1157 .page_for_dma = swift_flush_page_for_dma,
1158 };
1159
1160 #define SWIFT_MASKID_ADDR 0x10003018
1161 static void __init init_swift(void)
1162 {
1163 unsigned long swift_rev;
1164
1165 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1166 "srl %0, 0x18, %0\n\t" :
1167 "=r" (swift_rev) :
1168 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1169 srmmu_name = "Fujitsu Swift";
1170 switch (swift_rev) {
1171 case 0x11:
1172 case 0x20:
1173 case 0x23:
1174 case 0x30:
1175 srmmu_modtype = Swift_lots_o_bugs;
1176 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1177 /*
1178 * Gee george, I wonder why Sun is so hush hush about
1179 * this hardware bug... really braindamage stuff going
1180 * on here. However I think we can find a way to avoid
1181 * all of the workaround overhead under Linux. Basically,
1182 * any page fault can cause kernel pages to become user
1183 * accessible (the mmu gets confused and clears some of
1184 * the ACC bits in kernel ptes). Aha, sounds pretty
1185 * horrible eh? But wait, after extensive testing it appears
1186 * that if you use pgd_t level large kernel pte's (like the
1187 * 4MB pages on the Pentium) the bug does not get tripped
1188 * at all. This avoids almost all of the major overhead.
1189 * Welcome to a world where your vendor tells you to,
1190 * "apply this kernel patch" instead of "sorry for the
1191 * broken hardware, send it back and we'll give you
1192 * properly functioning parts"
1193 */
1194 break;
1195 case 0x25:
1196 case 0x31:
1197 srmmu_modtype = Swift_bad_c;
1198 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1199 /*
1200 * You see Sun allude to this hardware bug but never
1201 * admit things directly, they'll say things like,
1202 * "the Swift chip cache problems" or similar.
1203 */
1204 break;
1205 default:
1206 srmmu_modtype = Swift_ok;
1207 break;
1208 }
1209
1210 sparc32_cachetlb_ops = &swift_ops;
1211 flush_page_for_dma_global = 0;
1212
1213 /*
1214 * Are you now convinced that the Swift is one of the
1215 * biggest VLSI abortions of all time? Bravo Fujitsu!
1216 * Fujitsu, the !#?!%$'d up processor people. I bet if
1217 * you examined the microcode of the Swift you'd find
1218 * XXX's all over the place.
1219 */
1220 poke_srmmu = poke_swift;
1221 }
1222
1223 static void turbosparc_flush_cache_all(void)
1224 {
1225 flush_user_windows();
1226 turbosparc_idflash_clear();
1227 }
1228
1229 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1230 {
1231 FLUSH_BEGIN(mm)
1232 flush_user_windows();
1233 turbosparc_idflash_clear();
1234 FLUSH_END
1235 }
1236
1237 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1238 {
1239 FLUSH_BEGIN(vma->vm_mm)
1240 flush_user_windows();
1241 turbosparc_idflash_clear();
1242 FLUSH_END
1243 }
1244
1245 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1246 {
1247 FLUSH_BEGIN(vma->vm_mm)
1248 flush_user_windows();
1249 if (vma->vm_flags & VM_EXEC)
1250 turbosparc_flush_icache();
1251 turbosparc_flush_dcache();
1252 FLUSH_END
1253 }
1254
1255 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1256 static void turbosparc_flush_page_to_ram(unsigned long page)
1257 {
1258 #ifdef TURBOSPARC_WRITEBACK
1259 volatile unsigned long clear;
1260
1261 if (srmmu_probe(page))
1262 turbosparc_flush_page_cache(page);
1263 clear = srmmu_get_fstatus();
1264 #endif
1265 }
1266
1267 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1268 {
1269 }
1270
1271 static void turbosparc_flush_page_for_dma(unsigned long page)
1272 {
1273 turbosparc_flush_dcache();
1274 }
1275
1276 static void turbosparc_flush_tlb_all(void)
1277 {
1278 srmmu_flush_whole_tlb();
1279 }
1280
1281 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1282 {
1283 FLUSH_BEGIN(mm)
1284 srmmu_flush_whole_tlb();
1285 FLUSH_END
1286 }
1287
1288 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1289 {
1290 FLUSH_BEGIN(vma->vm_mm)
1291 srmmu_flush_whole_tlb();
1292 FLUSH_END
1293 }
1294
1295 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1296 {
1297 FLUSH_BEGIN(vma->vm_mm)
1298 srmmu_flush_whole_tlb();
1299 FLUSH_END
1300 }
1301
1302
1303 static void poke_turbosparc(void)
1304 {
1305 unsigned long mreg = srmmu_get_mmureg();
1306 unsigned long ccreg;
1307
1308 /* Clear any crap from the cache or else... */
1309 turbosparc_flush_cache_all();
1310 /* Temporarily disable I & D caches */
1311 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1312 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1313 srmmu_set_mmureg(mreg);
1314
1315 ccreg = turbosparc_get_ccreg();
1316
1317 #ifdef TURBOSPARC_WRITEBACK
1318 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1319 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1320 /* Write-back D-cache, emulate VLSI
1321 * abortion number three, not number one */
1322 #else
1323 /* For now let's play safe, optimize later */
1324 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1325 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1326 ccreg &= ~(TURBOSPARC_uS2);
1327 /* Emulate VLSI abortion number three, not number one */
1328 #endif
1329
1330 switch (ccreg & 7) {
1331 case 0: /* No SE cache */
1332 case 7: /* Test mode */
1333 break;
1334 default:
1335 ccreg |= (TURBOSPARC_SCENABLE);
1336 }
1337 turbosparc_set_ccreg(ccreg);
1338
1339 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1340 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1341 srmmu_set_mmureg(mreg);
1342 }
1343
1344 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1345 .cache_all = turbosparc_flush_cache_all,
1346 .cache_mm = turbosparc_flush_cache_mm,
1347 .cache_page = turbosparc_flush_cache_page,
1348 .cache_range = turbosparc_flush_cache_range,
1349 .tlb_all = turbosparc_flush_tlb_all,
1350 .tlb_mm = turbosparc_flush_tlb_mm,
1351 .tlb_page = turbosparc_flush_tlb_page,
1352 .tlb_range = turbosparc_flush_tlb_range,
1353 .page_to_ram = turbosparc_flush_page_to_ram,
1354 .sig_insns = turbosparc_flush_sig_insns,
1355 .page_for_dma = turbosparc_flush_page_for_dma,
1356 };
1357
1358 static void __init init_turbosparc(void)
1359 {
1360 srmmu_name = "Fujitsu TurboSparc";
1361 srmmu_modtype = TurboSparc;
1362 sparc32_cachetlb_ops = &turbosparc_ops;
1363 poke_srmmu = poke_turbosparc;
1364 }
1365
1366 static void poke_tsunami(void)
1367 {
1368 unsigned long mreg = srmmu_get_mmureg();
1369
1370 tsunami_flush_icache();
1371 tsunami_flush_dcache();
1372 mreg &= ~TSUNAMI_ITD;
1373 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1374 srmmu_set_mmureg(mreg);
1375 }
1376
1377 static const struct sparc32_cachetlb_ops tsunami_ops = {
1378 .cache_all = tsunami_flush_cache_all,
1379 .cache_mm = tsunami_flush_cache_mm,
1380 .cache_page = tsunami_flush_cache_page,
1381 .cache_range = tsunami_flush_cache_range,
1382 .tlb_all = tsunami_flush_tlb_all,
1383 .tlb_mm = tsunami_flush_tlb_mm,
1384 .tlb_page = tsunami_flush_tlb_page,
1385 .tlb_range = tsunami_flush_tlb_range,
1386 .page_to_ram = tsunami_flush_page_to_ram,
1387 .sig_insns = tsunami_flush_sig_insns,
1388 .page_for_dma = tsunami_flush_page_for_dma,
1389 };
1390
1391 static void __init init_tsunami(void)
1392 {
1393 /*
1394 * Tsunami's pretty sane, Sun and TI actually got it
1395 * somewhat right this time. Fujitsu should have
1396 * taken some lessons from them.
1397 */
1398
1399 srmmu_name = "TI Tsunami";
1400 srmmu_modtype = Tsunami;
1401 sparc32_cachetlb_ops = &tsunami_ops;
1402 poke_srmmu = poke_tsunami;
1403
1404 tsunami_setup_blockops();
1405 }
1406
1407 static void poke_viking(void)
1408 {
1409 unsigned long mreg = srmmu_get_mmureg();
1410 static int smp_catch;
1411
1412 if (viking_mxcc_present) {
1413 unsigned long mxcc_control = mxcc_get_creg();
1414
1415 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1416 mxcc_control &= ~(MXCC_CTL_RRC);
1417 mxcc_set_creg(mxcc_control);
1418
1419 /*
1420 * We don't need memory parity checks.
1421 * XXX This is a mess, have to dig out later. ecd.
1422 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1423 */
1424
1425 /* We do cache ptables on MXCC. */
1426 mreg |= VIKING_TCENABLE;
1427 } else {
1428 unsigned long bpreg;
1429
1430 mreg &= ~(VIKING_TCENABLE);
1431 if (smp_catch++) {
1432 /* Must disable mixed-cmd mode here for other cpu's. */
1433 bpreg = viking_get_bpreg();
1434 bpreg &= ~(VIKING_ACTION_MIX);
1435 viking_set_bpreg(bpreg);
1436
1437 /* Just in case PROM does something funny. */
1438 msi_set_sync();
1439 }
1440 }
1441
1442 mreg |= VIKING_SPENABLE;
1443 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1444 mreg |= VIKING_SBENABLE;
1445 mreg &= ~(VIKING_ACENABLE);
1446 srmmu_set_mmureg(mreg);
1447 }
1448
1449 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1450 .cache_all = viking_flush_cache_all,
1451 .cache_mm = viking_flush_cache_mm,
1452 .cache_page = viking_flush_cache_page,
1453 .cache_range = viking_flush_cache_range,
1454 .tlb_all = viking_flush_tlb_all,
1455 .tlb_mm = viking_flush_tlb_mm,
1456 .tlb_page = viking_flush_tlb_page,
1457 .tlb_range = viking_flush_tlb_range,
1458 .page_to_ram = viking_flush_page_to_ram,
1459 .sig_insns = viking_flush_sig_insns,
1460 .page_for_dma = viking_flush_page_for_dma,
1461 };
1462
1463 #ifdef CONFIG_SMP
1464 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1465 * perform the local TLB flush and all the other cpus will see it.
1466 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1467 * that requires that we add some synchronization to these flushes.
1468 *
1469 * The bug is that the fifo which keeps track of all the pending TLB
1470 * broadcasts in the system is an entry or two too small, so if we
1471 * have too many going at once we'll overflow that fifo and lose a TLB
1472 * flush resulting in corruption.
1473 *
1474 * Our workaround is to take a global spinlock around the TLB flushes,
1475 * which guarentees we won't ever have too many pending. It's a big
1476 * hammer, but a semaphore like system to make sure we only have N TLB
1477 * flushes going at once will require SMP locking anyways so there's
1478 * no real value in trying any harder than this.
1479 */
1480 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1481 .cache_all = viking_flush_cache_all,
1482 .cache_mm = viking_flush_cache_mm,
1483 .cache_page = viking_flush_cache_page,
1484 .cache_range = viking_flush_cache_range,
1485 .tlb_all = sun4dsmp_flush_tlb_all,
1486 .tlb_mm = sun4dsmp_flush_tlb_mm,
1487 .tlb_page = sun4dsmp_flush_tlb_page,
1488 .tlb_range = sun4dsmp_flush_tlb_range,
1489 .page_to_ram = viking_flush_page_to_ram,
1490 .sig_insns = viking_flush_sig_insns,
1491 .page_for_dma = viking_flush_page_for_dma,
1492 };
1493 #endif
1494
1495 static void __init init_viking(void)
1496 {
1497 unsigned long mreg = srmmu_get_mmureg();
1498
1499 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1500 if (mreg & VIKING_MMODE) {
1501 srmmu_name = "TI Viking";
1502 viking_mxcc_present = 0;
1503 msi_set_sync();
1504
1505 /*
1506 * We need this to make sure old viking takes no hits
1507 * on it's cache for dma snoops to workaround the
1508 * "load from non-cacheable memory" interrupt bug.
1509 * This is only necessary because of the new way in
1510 * which we use the IOMMU.
1511 */
1512 viking_ops.page_for_dma = viking_flush_page;
1513 #ifdef CONFIG_SMP
1514 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1515 #endif
1516 flush_page_for_dma_global = 0;
1517 } else {
1518 srmmu_name = "TI Viking/MXCC";
1519 viking_mxcc_present = 1;
1520 srmmu_cache_pagetables = 1;
1521 }
1522
1523 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1524 &viking_ops;
1525 #ifdef CONFIG_SMP
1526 if (sparc_cpu_model == sun4d)
1527 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1528 &viking_sun4d_smp_ops;
1529 #endif
1530
1531 poke_srmmu = poke_viking;
1532 }
1533
1534 /* Probe for the srmmu chip version. */
1535 static void __init get_srmmu_type(void)
1536 {
1537 unsigned long mreg, psr;
1538 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1539
1540 srmmu_modtype = SRMMU_INVAL_MOD;
1541 hwbug_bitmask = 0;
1542
1543 mreg = srmmu_get_mmureg(); psr = get_psr();
1544 mod_typ = (mreg & 0xf0000000) >> 28;
1545 mod_rev = (mreg & 0x0f000000) >> 24;
1546 psr_typ = (psr >> 28) & 0xf;
1547 psr_vers = (psr >> 24) & 0xf;
1548
1549 /* First, check for sparc-leon. */
1550 if (sparc_cpu_model == sparc_leon) {
1551 init_leon();
1552 return;
1553 }
1554
1555 /* Second, check for HyperSparc or Cypress. */
1556 if (mod_typ == 1) {
1557 switch (mod_rev) {
1558 case 7:
1559 /* UP or MP Hypersparc */
1560 init_hypersparc();
1561 break;
1562 case 0:
1563 case 2:
1564 case 10:
1565 case 11:
1566 case 12:
1567 case 13:
1568 case 14:
1569 case 15:
1570 default:
1571 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1572 prom_halt();
1573 break;
1574 }
1575 return;
1576 }
1577
1578 /* Now Fujitsu TurboSparc. It might happen that it is
1579 * in Swift emulation mode, so we will check later...
1580 */
1581 if (psr_typ == 0 && psr_vers == 5) {
1582 init_turbosparc();
1583 return;
1584 }
1585
1586 /* Next check for Fujitsu Swift. */
1587 if (psr_typ == 0 && psr_vers == 4) {
1588 phandle cpunode;
1589 char node_str[128];
1590
1591 /* Look if it is not a TurboSparc emulating Swift... */
1592 cpunode = prom_getchild(prom_root_node);
1593 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1594 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1595 if (!strcmp(node_str, "cpu")) {
1596 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1597 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1598 init_turbosparc();
1599 return;
1600 }
1601 break;
1602 }
1603 }
1604
1605 init_swift();
1606 return;
1607 }
1608
1609 /* Now the Viking family of srmmu. */
1610 if (psr_typ == 4 &&
1611 ((psr_vers == 0) ||
1612 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1613 init_viking();
1614 return;
1615 }
1616
1617 /* Finally the Tsunami. */
1618 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1619 init_tsunami();
1620 return;
1621 }
1622
1623 /* Oh well */
1624 srmmu_is_bad();
1625 }
1626
1627 #ifdef CONFIG_SMP
1628 /* Local cross-calls. */
1629 static void smp_flush_page_for_dma(unsigned long page)
1630 {
1631 xc1((smpfunc_t) local_ops->page_for_dma, page);
1632 local_ops->page_for_dma(page);
1633 }
1634
1635 static void smp_flush_cache_all(void)
1636 {
1637 xc0((smpfunc_t) local_ops->cache_all);
1638 local_ops->cache_all();
1639 }
1640
1641 static void smp_flush_tlb_all(void)
1642 {
1643 xc0((smpfunc_t) local_ops->tlb_all);
1644 local_ops->tlb_all();
1645 }
1646
1647 static void smp_flush_cache_mm(struct mm_struct *mm)
1648 {
1649 if (mm->context != NO_CONTEXT) {
1650 cpumask_t cpu_mask;
1651 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1652 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1653 if (!cpumask_empty(&cpu_mask))
1654 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1655 local_ops->cache_mm(mm);
1656 }
1657 }
1658
1659 static void smp_flush_tlb_mm(struct mm_struct *mm)
1660 {
1661 if (mm->context != NO_CONTEXT) {
1662 cpumask_t cpu_mask;
1663 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1664 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1665 if (!cpumask_empty(&cpu_mask)) {
1666 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1667 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1668 cpumask_copy(mm_cpumask(mm),
1669 cpumask_of(smp_processor_id()));
1670 }
1671 local_ops->tlb_mm(mm);
1672 }
1673 }
1674
1675 static void smp_flush_cache_range(struct vm_area_struct *vma,
1676 unsigned long start,
1677 unsigned long end)
1678 {
1679 struct mm_struct *mm = vma->vm_mm;
1680
1681 if (mm->context != NO_CONTEXT) {
1682 cpumask_t cpu_mask;
1683 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1684 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1685 if (!cpumask_empty(&cpu_mask))
1686 xc3((smpfunc_t) local_ops->cache_range,
1687 (unsigned long) vma, start, end);
1688 local_ops->cache_range(vma, start, end);
1689 }
1690 }
1691
1692 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1693 unsigned long start,
1694 unsigned long end)
1695 {
1696 struct mm_struct *mm = vma->vm_mm;
1697
1698 if (mm->context != NO_CONTEXT) {
1699 cpumask_t cpu_mask;
1700 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1701 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1702 if (!cpumask_empty(&cpu_mask))
1703 xc3((smpfunc_t) local_ops->tlb_range,
1704 (unsigned long) vma, start, end);
1705 local_ops->tlb_range(vma, start, end);
1706 }
1707 }
1708
1709 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1710 {
1711 struct mm_struct *mm = vma->vm_mm;
1712
1713 if (mm->context != NO_CONTEXT) {
1714 cpumask_t cpu_mask;
1715 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1716 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1717 if (!cpumask_empty(&cpu_mask))
1718 xc2((smpfunc_t) local_ops->cache_page,
1719 (unsigned long) vma, page);
1720 local_ops->cache_page(vma, page);
1721 }
1722 }
1723
1724 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1725 {
1726 struct mm_struct *mm = vma->vm_mm;
1727
1728 if (mm->context != NO_CONTEXT) {
1729 cpumask_t cpu_mask;
1730 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1731 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1732 if (!cpumask_empty(&cpu_mask))
1733 xc2((smpfunc_t) local_ops->tlb_page,
1734 (unsigned long) vma, page);
1735 local_ops->tlb_page(vma, page);
1736 }
1737 }
1738
1739 static void smp_flush_page_to_ram(unsigned long page)
1740 {
1741 /* Current theory is that those who call this are the one's
1742 * who have just dirtied their cache with the pages contents
1743 * in kernel space, therefore we only run this on local cpu.
1744 *
1745 * XXX This experiment failed, research further... -DaveM
1746 */
1747 #if 1
1748 xc1((smpfunc_t) local_ops->page_to_ram, page);
1749 #endif
1750 local_ops->page_to_ram(page);
1751 }
1752
1753 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1754 {
1755 cpumask_t cpu_mask;
1756 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758 if (!cpumask_empty(&cpu_mask))
1759 xc2((smpfunc_t) local_ops->sig_insns,
1760 (unsigned long) mm, insn_addr);
1761 local_ops->sig_insns(mm, insn_addr);
1762 }
1763
1764 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1765 .cache_all = smp_flush_cache_all,
1766 .cache_mm = smp_flush_cache_mm,
1767 .cache_page = smp_flush_cache_page,
1768 .cache_range = smp_flush_cache_range,
1769 .tlb_all = smp_flush_tlb_all,
1770 .tlb_mm = smp_flush_tlb_mm,
1771 .tlb_page = smp_flush_tlb_page,
1772 .tlb_range = smp_flush_tlb_range,
1773 .page_to_ram = smp_flush_page_to_ram,
1774 .sig_insns = smp_flush_sig_insns,
1775 .page_for_dma = smp_flush_page_for_dma,
1776 };
1777 #endif
1778
1779 /* Load up routines and constants for sun4m and sun4d mmu */
1780 void __init load_mmu(void)
1781 {
1782 /* Functions */
1783 get_srmmu_type();
1784
1785 #ifdef CONFIG_SMP
1786 /* El switcheroo... */
1787 local_ops = sparc32_cachetlb_ops;
1788
1789 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1790 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1791 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1792 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1793 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1794 }
1795
1796 if (poke_srmmu == poke_viking) {
1797 /* Avoid unnecessary cross calls. */
1798 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1799 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1800 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1801 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1802
1803 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1804 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1805 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1806 }
1807
1808 /* It really is const after this point. */
1809 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1810 &smp_cachetlb_ops;
1811 #endif
1812
1813 if (sparc_cpu_model == sun4d)
1814 ld_mmu_iounit();
1815 else
1816 ld_mmu_iommu();
1817 #ifdef CONFIG_SMP
1818 if (sparc_cpu_model == sun4d)
1819 sun4d_init_smp();
1820 else if (sparc_cpu_model == sparc_leon)
1821 leon_init_smp();
1822 else
1823 sun4m_init_smp();
1824 #endif
1825 }