]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sparc/mm/tsb.c
iio: imu: inv_mpu6050: test whoami first and against all known values
[mirror_ubuntu-artful-kernel.git] / arch / sparc / mm / tsb.c
1 /* arch/sparc64/mm/tsb.c
2 *
3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <linux/mm_types.h>
10
11 #include <asm/page.h>
12 #include <asm/pgtable.h>
13 #include <asm/mmu_context.h>
14 #include <asm/setup.h>
15 #include <asm/tsb.h>
16 #include <asm/tlb.h>
17 #include <asm/oplib.h>
18
19 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
20
21 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
22 {
23 vaddr >>= hash_shift;
24 return vaddr & (nentries - 1);
25 }
26
27 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
28 {
29 return (tag == (vaddr >> 22));
30 }
31
32 static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end)
33 {
34 unsigned long idx;
35
36 for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) {
37 struct tsb *ent = &swapper_tsb[idx];
38 unsigned long match = idx << 13;
39
40 match |= (ent->tag << 22);
41 if (match >= start && match < end)
42 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
43 }
44 }
45
46 /* TSB flushes need only occur on the processor initiating the address
47 * space modification, not on each cpu the address space has run on.
48 * Only the TLB flush needs that treatment.
49 */
50
51 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
52 {
53 unsigned long v;
54
55 if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES)
56 return flush_tsb_kernel_range_scan(start, end);
57
58 for (v = start; v < end; v += PAGE_SIZE) {
59 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
60 KERNEL_TSB_NENTRIES);
61 struct tsb *ent = &swapper_tsb[hash];
62
63 if (tag_compare(ent->tag, v))
64 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
65 }
66 }
67
68 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
69 unsigned long hash_shift,
70 unsigned long nentries)
71 {
72 unsigned long tag, ent, hash;
73
74 v &= ~0x1UL;
75 hash = tsb_hash(v, hash_shift, nentries);
76 ent = tsb + (hash * sizeof(struct tsb));
77 tag = (v >> 22UL);
78
79 tsb_flush(ent, tag);
80 }
81
82 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
83 unsigned long tsb, unsigned long nentries)
84 {
85 unsigned long i;
86
87 for (i = 0; i < tb->tlb_nr; i++)
88 __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
89 }
90
91 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
92 static void __flush_huge_tsb_one_entry(unsigned long tsb, unsigned long v,
93 unsigned long hash_shift,
94 unsigned long nentries,
95 unsigned int hugepage_shift)
96 {
97 unsigned int hpage_entries;
98 unsigned int i;
99
100 hpage_entries = 1 << (hugepage_shift - hash_shift);
101 for (i = 0; i < hpage_entries; i++)
102 __flush_tsb_one_entry(tsb, v + (i << hash_shift), hash_shift,
103 nentries);
104 }
105
106 static void __flush_huge_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
107 unsigned long tsb, unsigned long nentries,
108 unsigned int hugepage_shift)
109 {
110 unsigned long i;
111
112 for (i = 0; i < tb->tlb_nr; i++)
113 __flush_huge_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift,
114 nentries, hugepage_shift);
115 }
116 #endif
117
118 void flush_tsb_user(struct tlb_batch *tb)
119 {
120 struct mm_struct *mm = tb->mm;
121 unsigned long nentries, base, flags;
122
123 spin_lock_irqsave(&mm->context.lock, flags);
124
125 if (tb->hugepage_shift < REAL_HPAGE_SHIFT) {
126 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
127 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
128 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
129 base = __pa(base);
130 if (tb->hugepage_shift == PAGE_SHIFT)
131 __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
132 #if defined(CONFIG_HUGETLB_PAGE)
133 else
134 __flush_huge_tsb_one(tb, PAGE_SHIFT, base, nentries,
135 tb->hugepage_shift);
136 #endif
137 }
138 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
139 else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
140 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
141 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
142 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
143 base = __pa(base);
144 __flush_huge_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries,
145 tb->hugepage_shift);
146 }
147 #endif
148 spin_unlock_irqrestore(&mm->context.lock, flags);
149 }
150
151 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr,
152 unsigned int hugepage_shift)
153 {
154 unsigned long nentries, base, flags;
155
156 spin_lock_irqsave(&mm->context.lock, flags);
157
158 if (hugepage_shift < REAL_HPAGE_SHIFT) {
159 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
160 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
161 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
162 base = __pa(base);
163 if (hugepage_shift == PAGE_SHIFT)
164 __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT,
165 nentries);
166 #if defined(CONFIG_HUGETLB_PAGE)
167 else
168 __flush_huge_tsb_one_entry(base, vaddr, PAGE_SHIFT,
169 nentries, hugepage_shift);
170 #endif
171 }
172 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
173 else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
174 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
175 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
176 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
177 base = __pa(base);
178 __flush_huge_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT,
179 nentries, hugepage_shift);
180 }
181 #endif
182 spin_unlock_irqrestore(&mm->context.lock, flags);
183 }
184
185 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
186 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
187
188 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
189 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
190 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
191 #endif
192
193 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
194 {
195 unsigned long tsb_reg, base, tsb_paddr;
196 unsigned long page_sz, tte;
197
198 mm->context.tsb_block[tsb_idx].tsb_nentries =
199 tsb_bytes / sizeof(struct tsb);
200
201 switch (tsb_idx) {
202 case MM_TSB_BASE:
203 base = TSBMAP_8K_BASE;
204 break;
205 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
206 case MM_TSB_HUGE:
207 base = TSBMAP_4M_BASE;
208 break;
209 #endif
210 default:
211 BUG();
212 }
213
214 tte = pgprot_val(PAGE_KERNEL_LOCKED);
215 tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
216 BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
217
218 /* Use the smallest page size that can map the whole TSB
219 * in one TLB entry.
220 */
221 switch (tsb_bytes) {
222 case 8192 << 0:
223 tsb_reg = 0x0UL;
224 #ifdef DCACHE_ALIASING_POSSIBLE
225 base += (tsb_paddr & 8192);
226 #endif
227 page_sz = 8192;
228 break;
229
230 case 8192 << 1:
231 tsb_reg = 0x1UL;
232 page_sz = 64 * 1024;
233 break;
234
235 case 8192 << 2:
236 tsb_reg = 0x2UL;
237 page_sz = 64 * 1024;
238 break;
239
240 case 8192 << 3:
241 tsb_reg = 0x3UL;
242 page_sz = 64 * 1024;
243 break;
244
245 case 8192 << 4:
246 tsb_reg = 0x4UL;
247 page_sz = 512 * 1024;
248 break;
249
250 case 8192 << 5:
251 tsb_reg = 0x5UL;
252 page_sz = 512 * 1024;
253 break;
254
255 case 8192 << 6:
256 tsb_reg = 0x6UL;
257 page_sz = 512 * 1024;
258 break;
259
260 case 8192 << 7:
261 tsb_reg = 0x7UL;
262 page_sz = 4 * 1024 * 1024;
263 break;
264
265 default:
266 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
267 current->comm, current->pid, tsb_bytes);
268 do_exit(SIGSEGV);
269 }
270 tte |= pte_sz_bits(page_sz);
271
272 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
273 /* Physical mapping, no locked TLB entry for TSB. */
274 tsb_reg |= tsb_paddr;
275
276 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
277 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
278 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
279 } else {
280 tsb_reg |= base;
281 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
282 tte |= (tsb_paddr & ~(page_sz - 1UL));
283
284 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
285 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
286 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
287 }
288
289 /* Setup the Hypervisor TSB descriptor. */
290 if (tlb_type == hypervisor) {
291 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
292
293 switch (tsb_idx) {
294 case MM_TSB_BASE:
295 hp->pgsz_idx = HV_PGSZ_IDX_BASE;
296 break;
297 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
298 case MM_TSB_HUGE:
299 hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
300 break;
301 #endif
302 default:
303 BUG();
304 }
305 hp->assoc = 1;
306 hp->num_ttes = tsb_bytes / 16;
307 hp->ctx_idx = 0;
308 switch (tsb_idx) {
309 case MM_TSB_BASE:
310 hp->pgsz_mask = HV_PGSZ_MASK_BASE;
311 break;
312 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
313 case MM_TSB_HUGE:
314 hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
315 break;
316 #endif
317 default:
318 BUG();
319 }
320 hp->tsb_base = tsb_paddr;
321 hp->resv = 0;
322 }
323 }
324
325 struct kmem_cache *pgtable_cache __read_mostly;
326
327 static struct kmem_cache *tsb_caches[8] __read_mostly;
328
329 static const char *tsb_cache_names[8] = {
330 "tsb_8KB",
331 "tsb_16KB",
332 "tsb_32KB",
333 "tsb_64KB",
334 "tsb_128KB",
335 "tsb_256KB",
336 "tsb_512KB",
337 "tsb_1MB",
338 };
339
340 void __init pgtable_cache_init(void)
341 {
342 unsigned long i;
343
344 pgtable_cache = kmem_cache_create("pgtable_cache",
345 PAGE_SIZE, PAGE_SIZE,
346 0,
347 _clear_page);
348 if (!pgtable_cache) {
349 prom_printf("pgtable_cache_init(): Could not create!\n");
350 prom_halt();
351 }
352
353 for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
354 unsigned long size = 8192 << i;
355 const char *name = tsb_cache_names[i];
356
357 tsb_caches[i] = kmem_cache_create(name,
358 size, size,
359 0, NULL);
360 if (!tsb_caches[i]) {
361 prom_printf("Could not create %s cache\n", name);
362 prom_halt();
363 }
364 }
365 }
366
367 int sysctl_tsb_ratio = -2;
368
369 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
370 {
371 unsigned long num_ents = (new_size / sizeof(struct tsb));
372
373 if (sysctl_tsb_ratio < 0)
374 return num_ents - (num_ents >> -sysctl_tsb_ratio);
375 else
376 return num_ents + (num_ents >> sysctl_tsb_ratio);
377 }
378
379 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
380 * do_sparc64_fault() invokes this routine to try and grow it.
381 *
382 * When we reach the maximum TSB size supported, we stick ~0UL into
383 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
384 * will not trigger any longer.
385 *
386 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
387 * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
388 * must be 512K aligned. It also must be physically contiguous, so we
389 * cannot use vmalloc().
390 *
391 * The idea here is to grow the TSB when the RSS of the process approaches
392 * the number of entries that the current TSB can hold at once. Currently,
393 * we trigger when the RSS hits 3/4 of the TSB capacity.
394 */
395 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
396 {
397 unsigned long max_tsb_size = 1 * 1024 * 1024;
398 unsigned long new_size, old_size, flags;
399 struct tsb *old_tsb, *new_tsb;
400 unsigned long new_cache_index, old_cache_index;
401 unsigned long new_rss_limit;
402 gfp_t gfp_flags;
403
404 if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
405 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
406
407 new_cache_index = 0;
408 for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
409 new_rss_limit = tsb_size_to_rss_limit(new_size);
410 if (new_rss_limit > rss)
411 break;
412 new_cache_index++;
413 }
414
415 if (new_size == max_tsb_size)
416 new_rss_limit = ~0UL;
417
418 retry_tsb_alloc:
419 gfp_flags = GFP_KERNEL;
420 if (new_size > (PAGE_SIZE * 2))
421 gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
422
423 new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
424 gfp_flags, numa_node_id());
425 if (unlikely(!new_tsb)) {
426 /* Not being able to fork due to a high-order TSB
427 * allocation failure is very bad behavior. Just back
428 * down to a 0-order allocation and force no TSB
429 * growing for this address space.
430 */
431 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
432 new_cache_index > 0) {
433 new_cache_index = 0;
434 new_size = 8192;
435 new_rss_limit = ~0UL;
436 goto retry_tsb_alloc;
437 }
438
439 /* If we failed on a TSB grow, we are under serious
440 * memory pressure so don't try to grow any more.
441 */
442 if (mm->context.tsb_block[tsb_index].tsb != NULL)
443 mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
444 return;
445 }
446
447 /* Mark all tags as invalid. */
448 tsb_init(new_tsb, new_size);
449
450 /* Ok, we are about to commit the changes. If we are
451 * growing an existing TSB the locking is very tricky,
452 * so WATCH OUT!
453 *
454 * We have to hold mm->context.lock while committing to the
455 * new TSB, this synchronizes us with processors in
456 * flush_tsb_user() and switch_mm() for this address space.
457 *
458 * But even with that lock held, processors run asynchronously
459 * accessing the old TSB via TLB miss handling. This is OK
460 * because those actions are just propagating state from the
461 * Linux page tables into the TSB, page table mappings are not
462 * being changed. If a real fault occurs, the processor will
463 * synchronize with us when it hits flush_tsb_user(), this is
464 * also true for the case where vmscan is modifying the page
465 * tables. The only thing we need to be careful with is to
466 * skip any locked TSB entries during copy_tsb().
467 *
468 * When we finish committing to the new TSB, we have to drop
469 * the lock and ask all other cpus running this address space
470 * to run tsb_context_switch() to see the new TSB table.
471 */
472 spin_lock_irqsave(&mm->context.lock, flags);
473
474 old_tsb = mm->context.tsb_block[tsb_index].tsb;
475 old_cache_index =
476 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
477 old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
478 sizeof(struct tsb));
479
480
481 /* Handle multiple threads trying to grow the TSB at the same time.
482 * One will get in here first, and bump the size and the RSS limit.
483 * The others will get in here next and hit this check.
484 */
485 if (unlikely(old_tsb &&
486 (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
487 spin_unlock_irqrestore(&mm->context.lock, flags);
488
489 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
490 return;
491 }
492
493 mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
494
495 if (old_tsb) {
496 extern void copy_tsb(unsigned long old_tsb_base,
497 unsigned long old_tsb_size,
498 unsigned long new_tsb_base,
499 unsigned long new_tsb_size);
500 unsigned long old_tsb_base = (unsigned long) old_tsb;
501 unsigned long new_tsb_base = (unsigned long) new_tsb;
502
503 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
504 old_tsb_base = __pa(old_tsb_base);
505 new_tsb_base = __pa(new_tsb_base);
506 }
507 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
508 }
509
510 mm->context.tsb_block[tsb_index].tsb = new_tsb;
511 setup_tsb_params(mm, tsb_index, new_size);
512
513 spin_unlock_irqrestore(&mm->context.lock, flags);
514
515 /* If old_tsb is NULL, we're being invoked for the first time
516 * from init_new_context().
517 */
518 if (old_tsb) {
519 /* Reload it on the local cpu. */
520 tsb_context_switch(mm);
521
522 /* Now force other processors to do the same. */
523 preempt_disable();
524 smp_tsb_sync(mm);
525 preempt_enable();
526
527 /* Now it is safe to free the old tsb. */
528 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
529 }
530 }
531
532 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
533 {
534 unsigned long mm_rss = get_mm_rss(mm);
535 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
536 unsigned long saved_hugetlb_pte_count;
537 unsigned long saved_thp_pte_count;
538 #endif
539 unsigned int i;
540
541 spin_lock_init(&mm->context.lock);
542
543 mm->context.sparc64_ctx_val = 0UL;
544
545 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
546 /* We reset them to zero because the fork() page copying
547 * will re-increment the counters as the parent PTEs are
548 * copied into the child address space.
549 */
550 saved_hugetlb_pte_count = mm->context.hugetlb_pte_count;
551 saved_thp_pte_count = mm->context.thp_pte_count;
552 mm->context.hugetlb_pte_count = 0;
553 mm->context.thp_pte_count = 0;
554
555 mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE);
556 #endif
557
558 /* copy_mm() copies over the parent's mm_struct before calling
559 * us, so we need to zero out the TSB pointer or else tsb_grow()
560 * will be confused and think there is an older TSB to free up.
561 */
562 for (i = 0; i < MM_NUM_TSBS; i++)
563 mm->context.tsb_block[i].tsb = NULL;
564
565 /* If this is fork, inherit the parent's TSB size. We would
566 * grow it to that size on the first page fault anyways.
567 */
568 tsb_grow(mm, MM_TSB_BASE, mm_rss);
569
570 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
571 if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count))
572 tsb_grow(mm, MM_TSB_HUGE,
573 (saved_hugetlb_pte_count + saved_thp_pte_count) *
574 REAL_HPAGE_PER_HPAGE);
575 #endif
576
577 if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
578 return -ENOMEM;
579
580 return 0;
581 }
582
583 static void tsb_destroy_one(struct tsb_config *tp)
584 {
585 unsigned long cache_index;
586
587 if (!tp->tsb)
588 return;
589 cache_index = tp->tsb_reg_val & 0x7UL;
590 kmem_cache_free(tsb_caches[cache_index], tp->tsb);
591 tp->tsb = NULL;
592 tp->tsb_reg_val = 0UL;
593 }
594
595 void destroy_context(struct mm_struct *mm)
596 {
597 unsigned long flags, i;
598
599 for (i = 0; i < MM_NUM_TSBS; i++)
600 tsb_destroy_one(&mm->context.tsb_block[i]);
601
602 spin_lock_irqsave(&ctx_alloc_lock, flags);
603
604 if (CTX_VALID(mm->context)) {
605 unsigned long nr = CTX_NRBITS(mm->context);
606 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
607 }
608
609 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
610 }