]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/sparc/net/bpf_jit_comp_32.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / arch / sparc / net / bpf_jit_comp_32.c
1 #include <linux/moduleloader.h>
2 #include <linux/workqueue.h>
3 #include <linux/netdevice.h>
4 #include <linux/filter.h>
5 #include <linux/cache.h>
6 #include <linux/if_vlan.h>
7
8 #include <asm/cacheflush.h>
9 #include <asm/ptrace.h>
10
11 #include "bpf_jit_32.h"
12
13 int bpf_jit_enable __read_mostly;
14
15 static inline bool is_simm13(unsigned int value)
16 {
17 return value + 0x1000 < 0x2000;
18 }
19
20 #define SEEN_DATAREF 1 /* might call external helpers */
21 #define SEEN_XREG 2 /* ebx is used */
22 #define SEEN_MEM 4 /* use mem[] for temporary storage */
23
24 #define S13(X) ((X) & 0x1fff)
25 #define IMMED 0x00002000
26 #define RD(X) ((X) << 25)
27 #define RS1(X) ((X) << 14)
28 #define RS2(X) ((X))
29 #define OP(X) ((X) << 30)
30 #define OP2(X) ((X) << 22)
31 #define OP3(X) ((X) << 19)
32 #define COND(X) ((X) << 25)
33 #define F1(X) OP(X)
34 #define F2(X, Y) (OP(X) | OP2(Y))
35 #define F3(X, Y) (OP(X) | OP3(Y))
36
37 #define CONDN COND(0x0)
38 #define CONDE COND(0x1)
39 #define CONDLE COND(0x2)
40 #define CONDL COND(0x3)
41 #define CONDLEU COND(0x4)
42 #define CONDCS COND(0x5)
43 #define CONDNEG COND(0x6)
44 #define CONDVC COND(0x7)
45 #define CONDA COND(0x8)
46 #define CONDNE COND(0x9)
47 #define CONDG COND(0xa)
48 #define CONDGE COND(0xb)
49 #define CONDGU COND(0xc)
50 #define CONDCC COND(0xd)
51 #define CONDPOS COND(0xe)
52 #define CONDVS COND(0xf)
53
54 #define CONDGEU CONDCC
55 #define CONDLU CONDCS
56
57 #define WDISP22(X) (((X) >> 2) & 0x3fffff)
58
59 #define BA (F2(0, 2) | CONDA)
60 #define BGU (F2(0, 2) | CONDGU)
61 #define BLEU (F2(0, 2) | CONDLEU)
62 #define BGEU (F2(0, 2) | CONDGEU)
63 #define BLU (F2(0, 2) | CONDLU)
64 #define BE (F2(0, 2) | CONDE)
65 #define BNE (F2(0, 2) | CONDNE)
66
67 #define BE_PTR BE
68
69 #define SETHI(K, REG) \
70 (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
71 #define OR_LO(K, REG) \
72 (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
73
74 #define ADD F3(2, 0x00)
75 #define AND F3(2, 0x01)
76 #define ANDCC F3(2, 0x11)
77 #define OR F3(2, 0x02)
78 #define XOR F3(2, 0x03)
79 #define SUB F3(2, 0x04)
80 #define SUBCC F3(2, 0x14)
81 #define MUL F3(2, 0x0a) /* umul */
82 #define DIV F3(2, 0x0e) /* udiv */
83 #define SLL F3(2, 0x25)
84 #define SRL F3(2, 0x26)
85 #define JMPL F3(2, 0x38)
86 #define CALL F1(1)
87 #define BR F2(0, 0x01)
88 #define RD_Y F3(2, 0x28)
89 #define WR_Y F3(2, 0x30)
90
91 #define LD32 F3(3, 0x00)
92 #define LD8 F3(3, 0x01)
93 #define LD16 F3(3, 0x02)
94 #define LD64 F3(3, 0x0b)
95 #define ST32 F3(3, 0x04)
96
97 #define LDPTR LD32
98 #define BASE_STACKFRAME 96
99
100 #define LD32I (LD32 | IMMED)
101 #define LD8I (LD8 | IMMED)
102 #define LD16I (LD16 | IMMED)
103 #define LD64I (LD64 | IMMED)
104 #define LDPTRI (LDPTR | IMMED)
105 #define ST32I (ST32 | IMMED)
106
107 #define emit_nop() \
108 do { \
109 *prog++ = SETHI(0, G0); \
110 } while (0)
111
112 #define emit_neg() \
113 do { /* sub %g0, r_A, r_A */ \
114 *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
115 } while (0)
116
117 #define emit_reg_move(FROM, TO) \
118 do { /* or %g0, FROM, TO */ \
119 *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
120 } while (0)
121
122 #define emit_clear(REG) \
123 do { /* or %g0, %g0, REG */ \
124 *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
125 } while (0)
126
127 #define emit_set_const(K, REG) \
128 do { /* sethi %hi(K), REG */ \
129 *prog++ = SETHI(K, REG); \
130 /* or REG, %lo(K), REG */ \
131 *prog++ = OR_LO(K, REG); \
132 } while (0)
133
134 /* Emit
135 *
136 * OP r_A, r_X, r_A
137 */
138 #define emit_alu_X(OPCODE) \
139 do { \
140 seen |= SEEN_XREG; \
141 *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
142 } while (0)
143
144 /* Emit either:
145 *
146 * OP r_A, K, r_A
147 *
148 * or
149 *
150 * sethi %hi(K), r_TMP
151 * or r_TMP, %lo(K), r_TMP
152 * OP r_A, r_TMP, r_A
153 *
154 * depending upon whether K fits in a signed 13-bit
155 * immediate instruction field. Emit nothing if K
156 * is zero.
157 */
158 #define emit_alu_K(OPCODE, K) \
159 do { \
160 if (K || OPCODE == AND || OPCODE == MUL) { \
161 unsigned int _insn = OPCODE; \
162 _insn |= RS1(r_A) | RD(r_A); \
163 if (is_simm13(K)) { \
164 *prog++ = _insn | IMMED | S13(K); \
165 } else { \
166 emit_set_const(K, r_TMP); \
167 *prog++ = _insn | RS2(r_TMP); \
168 } \
169 } \
170 } while (0)
171
172 #define emit_loadimm(K, DEST) \
173 do { \
174 if (is_simm13(K)) { \
175 /* or %g0, K, DEST */ \
176 *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
177 } else { \
178 emit_set_const(K, DEST); \
179 } \
180 } while (0)
181
182 #define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
183 do { unsigned int _off = offsetof(STRUCT, FIELD); \
184 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
185 *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
186 } while (0)
187
188 #define emit_load32(BASE, STRUCT, FIELD, DEST) \
189 do { unsigned int _off = offsetof(STRUCT, FIELD); \
190 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
191 *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
192 } while (0)
193
194 #define emit_load16(BASE, STRUCT, FIELD, DEST) \
195 do { unsigned int _off = offsetof(STRUCT, FIELD); \
196 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
197 *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
198 } while (0)
199
200 #define __emit_load8(BASE, STRUCT, FIELD, DEST) \
201 do { unsigned int _off = offsetof(STRUCT, FIELD); \
202 *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
203 } while (0)
204
205 #define emit_load8(BASE, STRUCT, FIELD, DEST) \
206 do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
207 __emit_load8(BASE, STRUCT, FIELD, DEST); \
208 } while (0)
209
210 #define BIAS (-4)
211
212 #define emit_ldmem(OFF, DEST) \
213 do { *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST); \
214 } while (0)
215
216 #define emit_stmem(OFF, SRC) \
217 do { *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC); \
218 } while (0)
219
220 #ifdef CONFIG_SMP
221 #define emit_load_cpu(REG) \
222 emit_load32(G6, struct thread_info, cpu, REG)
223 #else
224 #define emit_load_cpu(REG) emit_clear(REG)
225 #endif
226
227 #define emit_skb_loadptr(FIELD, DEST) \
228 emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
229 #define emit_skb_load32(FIELD, DEST) \
230 emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
231 #define emit_skb_load16(FIELD, DEST) \
232 emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
233 #define __emit_skb_load8(FIELD, DEST) \
234 __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
235 #define emit_skb_load8(FIELD, DEST) \
236 emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
237
238 #define emit_jmpl(BASE, IMM_OFF, LREG) \
239 *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
240
241 #define emit_call(FUNC) \
242 do { void *_here = image + addrs[i] - 8; \
243 unsigned int _off = (void *)(FUNC) - _here; \
244 *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
245 emit_nop(); \
246 } while (0)
247
248 #define emit_branch(BR_OPC, DEST) \
249 do { unsigned int _here = addrs[i] - 8; \
250 *prog++ = BR_OPC | WDISP22((DEST) - _here); \
251 } while (0)
252
253 #define emit_branch_off(BR_OPC, OFF) \
254 do { *prog++ = BR_OPC | WDISP22(OFF); \
255 } while (0)
256
257 #define emit_jump(DEST) emit_branch(BA, DEST)
258
259 #define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
260 #define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
261
262 #define emit_cmp(R1, R2) \
263 *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
264
265 #define emit_cmpi(R1, IMM) \
266 *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
267
268 #define emit_btst(R1, R2) \
269 *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
270
271 #define emit_btsti(R1, IMM) \
272 *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
273
274 #define emit_sub(R1, R2, R3) \
275 *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
276
277 #define emit_subi(R1, IMM, R3) \
278 *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
279
280 #define emit_add(R1, R2, R3) \
281 *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
282
283 #define emit_addi(R1, IMM, R3) \
284 *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
285
286 #define emit_and(R1, R2, R3) \
287 *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
288
289 #define emit_andi(R1, IMM, R3) \
290 *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
291
292 #define emit_alloc_stack(SZ) \
293 *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
294
295 #define emit_release_stack(SZ) \
296 *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
297
298 /* A note about branch offset calculations. The addrs[] array,
299 * indexed by BPF instruction, records the address after all the
300 * sparc instructions emitted for that BPF instruction.
301 *
302 * The most common case is to emit a branch at the end of such
303 * a code sequence. So this would be two instructions, the
304 * branch and it's delay slot.
305 *
306 * Therefore by default the branch emitters calculate the branch
307 * offset field as:
308 *
309 * destination - (addrs[i] - 8)
310 *
311 * This "addrs[i] - 8" is the address of the branch itself or
312 * what "." would be in assembler notation. The "8" part is
313 * how we take into consideration the branch and it's delay
314 * slot mentioned above.
315 *
316 * Sometimes we need to emit a branch earlier in the code
317 * sequence. And in these situations we adjust "destination"
318 * to accommodate this difference. For example, if we needed
319 * to emit a branch (and it's delay slot) right before the
320 * final instruction emitted for a BPF opcode, we'd use
321 * "destination + 4" instead of just plain "destination" above.
322 *
323 * This is why you see all of these funny emit_branch() and
324 * emit_jump() calls with adjusted offsets.
325 */
326
327 void bpf_jit_compile(struct bpf_prog *fp)
328 {
329 unsigned int cleanup_addr, proglen, oldproglen = 0;
330 u32 temp[8], *prog, *func, seen = 0, pass;
331 const struct sock_filter *filter = fp->insns;
332 int i, flen = fp->len, pc_ret0 = -1;
333 unsigned int *addrs;
334 void *image;
335
336 if (!bpf_jit_enable)
337 return;
338
339 addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
340 if (addrs == NULL)
341 return;
342
343 /* Before first pass, make a rough estimation of addrs[]
344 * each bpf instruction is translated to less than 64 bytes
345 */
346 for (proglen = 0, i = 0; i < flen; i++) {
347 proglen += 64;
348 addrs[i] = proglen;
349 }
350 cleanup_addr = proglen; /* epilogue address */
351 image = NULL;
352 for (pass = 0; pass < 10; pass++) {
353 u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
354
355 /* no prologue/epilogue for trivial filters (RET something) */
356 proglen = 0;
357 prog = temp;
358
359 /* Prologue */
360 if (seen_or_pass0) {
361 if (seen_or_pass0 & SEEN_MEM) {
362 unsigned int sz = BASE_STACKFRAME;
363 sz += BPF_MEMWORDS * sizeof(u32);
364 emit_alloc_stack(sz);
365 }
366
367 /* Make sure we dont leek kernel memory. */
368 if (seen_or_pass0 & SEEN_XREG)
369 emit_clear(r_X);
370
371 /* If this filter needs to access skb data,
372 * load %o4 and %o5 with:
373 * %o4 = skb->len - skb->data_len
374 * %o5 = skb->data
375 * And also back up %o7 into r_saved_O7 so we can
376 * invoke the stubs using 'call'.
377 */
378 if (seen_or_pass0 & SEEN_DATAREF) {
379 emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
380 emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
381 emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
382 emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
383 }
384 }
385 emit_reg_move(O7, r_saved_O7);
386
387 /* Make sure we dont leak kernel information to the user. */
388 if (bpf_needs_clear_a(&filter[0]))
389 emit_clear(r_A); /* A = 0 */
390
391 for (i = 0; i < flen; i++) {
392 unsigned int K = filter[i].k;
393 unsigned int t_offset;
394 unsigned int f_offset;
395 u32 t_op, f_op;
396 u16 code = bpf_anc_helper(&filter[i]);
397 int ilen;
398
399 switch (code) {
400 case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
401 emit_alu_X(ADD);
402 break;
403 case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
404 emit_alu_K(ADD, K);
405 break;
406 case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
407 emit_alu_X(SUB);
408 break;
409 case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
410 emit_alu_K(SUB, K);
411 break;
412 case BPF_ALU | BPF_AND | BPF_X: /* A &= X */
413 emit_alu_X(AND);
414 break;
415 case BPF_ALU | BPF_AND | BPF_K: /* A &= K */
416 emit_alu_K(AND, K);
417 break;
418 case BPF_ALU | BPF_OR | BPF_X: /* A |= X */
419 emit_alu_X(OR);
420 break;
421 case BPF_ALU | BPF_OR | BPF_K: /* A |= K */
422 emit_alu_K(OR, K);
423 break;
424 case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
425 case BPF_ALU | BPF_XOR | BPF_X:
426 emit_alu_X(XOR);
427 break;
428 case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
429 emit_alu_K(XOR, K);
430 break;
431 case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */
432 emit_alu_X(SLL);
433 break;
434 case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */
435 emit_alu_K(SLL, K);
436 break;
437 case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */
438 emit_alu_X(SRL);
439 break;
440 case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */
441 emit_alu_K(SRL, K);
442 break;
443 case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
444 emit_alu_X(MUL);
445 break;
446 case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
447 emit_alu_K(MUL, K);
448 break;
449 case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/
450 if (K == 1)
451 break;
452 emit_write_y(G0);
453 /* The Sparc v8 architecture requires
454 * three instructions between a %y
455 * register write and the first use.
456 */
457 emit_nop();
458 emit_nop();
459 emit_nop();
460 emit_alu_K(DIV, K);
461 break;
462 case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
463 emit_cmpi(r_X, 0);
464 if (pc_ret0 > 0) {
465 t_offset = addrs[pc_ret0 - 1];
466 emit_branch(BE, t_offset + 20);
467 emit_nop(); /* delay slot */
468 } else {
469 emit_branch_off(BNE, 16);
470 emit_nop();
471 emit_jump(cleanup_addr + 20);
472 emit_clear(r_A);
473 }
474 emit_write_y(G0);
475 /* The Sparc v8 architecture requires
476 * three instructions between a %y
477 * register write and the first use.
478 */
479 emit_nop();
480 emit_nop();
481 emit_nop();
482 emit_alu_X(DIV);
483 break;
484 case BPF_ALU | BPF_NEG:
485 emit_neg();
486 break;
487 case BPF_RET | BPF_K:
488 if (!K) {
489 if (pc_ret0 == -1)
490 pc_ret0 = i;
491 emit_clear(r_A);
492 } else {
493 emit_loadimm(K, r_A);
494 }
495 /* Fallthrough */
496 case BPF_RET | BPF_A:
497 if (seen_or_pass0) {
498 if (i != flen - 1) {
499 emit_jump(cleanup_addr);
500 emit_nop();
501 break;
502 }
503 if (seen_or_pass0 & SEEN_MEM) {
504 unsigned int sz = BASE_STACKFRAME;
505 sz += BPF_MEMWORDS * sizeof(u32);
506 emit_release_stack(sz);
507 }
508 }
509 /* jmpl %r_saved_O7 + 8, %g0 */
510 emit_jmpl(r_saved_O7, 8, G0);
511 emit_reg_move(r_A, O0); /* delay slot */
512 break;
513 case BPF_MISC | BPF_TAX:
514 seen |= SEEN_XREG;
515 emit_reg_move(r_A, r_X);
516 break;
517 case BPF_MISC | BPF_TXA:
518 seen |= SEEN_XREG;
519 emit_reg_move(r_X, r_A);
520 break;
521 case BPF_ANC | SKF_AD_CPU:
522 emit_load_cpu(r_A);
523 break;
524 case BPF_ANC | SKF_AD_PROTOCOL:
525 emit_skb_load16(protocol, r_A);
526 break;
527 case BPF_ANC | SKF_AD_PKTTYPE:
528 __emit_skb_load8(__pkt_type_offset, r_A);
529 emit_andi(r_A, PKT_TYPE_MAX, r_A);
530 emit_alu_K(SRL, 5);
531 break;
532 case BPF_ANC | SKF_AD_IFINDEX:
533 emit_skb_loadptr(dev, r_A);
534 emit_cmpi(r_A, 0);
535 emit_branch(BE_PTR, cleanup_addr + 4);
536 emit_nop();
537 emit_load32(r_A, struct net_device, ifindex, r_A);
538 break;
539 case BPF_ANC | SKF_AD_MARK:
540 emit_skb_load32(mark, r_A);
541 break;
542 case BPF_ANC | SKF_AD_QUEUE:
543 emit_skb_load16(queue_mapping, r_A);
544 break;
545 case BPF_ANC | SKF_AD_HATYPE:
546 emit_skb_loadptr(dev, r_A);
547 emit_cmpi(r_A, 0);
548 emit_branch(BE_PTR, cleanup_addr + 4);
549 emit_nop();
550 emit_load16(r_A, struct net_device, type, r_A);
551 break;
552 case BPF_ANC | SKF_AD_RXHASH:
553 emit_skb_load32(hash, r_A);
554 break;
555 case BPF_ANC | SKF_AD_VLAN_TAG:
556 case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
557 emit_skb_load16(vlan_tci, r_A);
558 if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) {
559 emit_alu_K(SRL, 12);
560 emit_andi(r_A, 1, r_A);
561 } else {
562 emit_loadimm(~VLAN_TAG_PRESENT, r_TMP);
563 emit_and(r_A, r_TMP, r_A);
564 }
565 break;
566 case BPF_LD | BPF_W | BPF_LEN:
567 emit_skb_load32(len, r_A);
568 break;
569 case BPF_LDX | BPF_W | BPF_LEN:
570 emit_skb_load32(len, r_X);
571 break;
572 case BPF_LD | BPF_IMM:
573 emit_loadimm(K, r_A);
574 break;
575 case BPF_LDX | BPF_IMM:
576 emit_loadimm(K, r_X);
577 break;
578 case BPF_LD | BPF_MEM:
579 seen |= SEEN_MEM;
580 emit_ldmem(K * 4, r_A);
581 break;
582 case BPF_LDX | BPF_MEM:
583 seen |= SEEN_MEM | SEEN_XREG;
584 emit_ldmem(K * 4, r_X);
585 break;
586 case BPF_ST:
587 seen |= SEEN_MEM;
588 emit_stmem(K * 4, r_A);
589 break;
590 case BPF_STX:
591 seen |= SEEN_MEM | SEEN_XREG;
592 emit_stmem(K * 4, r_X);
593 break;
594
595 #define CHOOSE_LOAD_FUNC(K, func) \
596 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
597
598 case BPF_LD | BPF_W | BPF_ABS:
599 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
600 common_load: seen |= SEEN_DATAREF;
601 emit_loadimm(K, r_OFF);
602 emit_call(func);
603 break;
604 case BPF_LD | BPF_H | BPF_ABS:
605 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
606 goto common_load;
607 case BPF_LD | BPF_B | BPF_ABS:
608 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
609 goto common_load;
610 case BPF_LDX | BPF_B | BPF_MSH:
611 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
612 goto common_load;
613 case BPF_LD | BPF_W | BPF_IND:
614 func = bpf_jit_load_word;
615 common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
616 if (K) {
617 if (is_simm13(K)) {
618 emit_addi(r_X, K, r_OFF);
619 } else {
620 emit_loadimm(K, r_TMP);
621 emit_add(r_X, r_TMP, r_OFF);
622 }
623 } else {
624 emit_reg_move(r_X, r_OFF);
625 }
626 emit_call(func);
627 break;
628 case BPF_LD | BPF_H | BPF_IND:
629 func = bpf_jit_load_half;
630 goto common_load_ind;
631 case BPF_LD | BPF_B | BPF_IND:
632 func = bpf_jit_load_byte;
633 goto common_load_ind;
634 case BPF_JMP | BPF_JA:
635 emit_jump(addrs[i + K]);
636 emit_nop();
637 break;
638
639 #define COND_SEL(CODE, TOP, FOP) \
640 case CODE: \
641 t_op = TOP; \
642 f_op = FOP; \
643 goto cond_branch
644
645 COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
646 COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
647 COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
648 COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
649 COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
650 COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
651 COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
652 COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
653
654 cond_branch: f_offset = addrs[i + filter[i].jf];
655 t_offset = addrs[i + filter[i].jt];
656
657 /* same targets, can avoid doing the test :) */
658 if (filter[i].jt == filter[i].jf) {
659 emit_jump(t_offset);
660 emit_nop();
661 break;
662 }
663
664 switch (code) {
665 case BPF_JMP | BPF_JGT | BPF_X:
666 case BPF_JMP | BPF_JGE | BPF_X:
667 case BPF_JMP | BPF_JEQ | BPF_X:
668 seen |= SEEN_XREG;
669 emit_cmp(r_A, r_X);
670 break;
671 case BPF_JMP | BPF_JSET | BPF_X:
672 seen |= SEEN_XREG;
673 emit_btst(r_A, r_X);
674 break;
675 case BPF_JMP | BPF_JEQ | BPF_K:
676 case BPF_JMP | BPF_JGT | BPF_K:
677 case BPF_JMP | BPF_JGE | BPF_K:
678 if (is_simm13(K)) {
679 emit_cmpi(r_A, K);
680 } else {
681 emit_loadimm(K, r_TMP);
682 emit_cmp(r_A, r_TMP);
683 }
684 break;
685 case BPF_JMP | BPF_JSET | BPF_K:
686 if (is_simm13(K)) {
687 emit_btsti(r_A, K);
688 } else {
689 emit_loadimm(K, r_TMP);
690 emit_btst(r_A, r_TMP);
691 }
692 break;
693 }
694 if (filter[i].jt != 0) {
695 if (filter[i].jf)
696 t_offset += 8;
697 emit_branch(t_op, t_offset);
698 emit_nop(); /* delay slot */
699 if (filter[i].jf) {
700 emit_jump(f_offset);
701 emit_nop();
702 }
703 break;
704 }
705 emit_branch(f_op, f_offset);
706 emit_nop(); /* delay slot */
707 break;
708
709 default:
710 /* hmm, too complex filter, give up with jit compiler */
711 goto out;
712 }
713 ilen = (void *) prog - (void *) temp;
714 if (image) {
715 if (unlikely(proglen + ilen > oldproglen)) {
716 pr_err("bpb_jit_compile fatal error\n");
717 kfree(addrs);
718 module_memfree(image);
719 return;
720 }
721 memcpy(image + proglen, temp, ilen);
722 }
723 proglen += ilen;
724 addrs[i] = proglen;
725 prog = temp;
726 }
727 /* last bpf instruction is always a RET :
728 * use it to give the cleanup instruction(s) addr
729 */
730 cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
731 if (seen_or_pass0 & SEEN_MEM)
732 cleanup_addr -= 4; /* add %sp, X, %sp; */
733
734 if (image) {
735 if (proglen != oldproglen)
736 pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
737 proglen, oldproglen);
738 break;
739 }
740 if (proglen == oldproglen) {
741 image = module_alloc(proglen);
742 if (!image)
743 goto out;
744 }
745 oldproglen = proglen;
746 }
747
748 if (bpf_jit_enable > 1)
749 bpf_jit_dump(flen, proglen, pass + 1, image);
750
751 if (image) {
752 fp->bpf_func = (void *)image;
753 fp->jited = 1;
754 }
755 out:
756 kfree(addrs);
757 return;
758 }
759
760 void bpf_jit_free(struct bpf_prog *fp)
761 {
762 if (fp->jited)
763 module_memfree(fp->bpf_func);
764
765 bpf_prog_unlock_free(fp);
766 }