]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/sparc64/kernel/irq.c
[SPARC64]: Add PCI MSI support on Niagara.
[mirror_ubuntu-zesty-kernel.git] / arch / sparc64 / kernel / irq.c
1 /* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $
2 * irq.c: UltraSparc IRQ handling/init/registry.
3 *
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
7 */
8
9 #include <linux/module.h>
10 #include <linux/sched.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
25 #include <linux/msi.h>
26
27 #include <asm/ptrace.h>
28 #include <asm/processor.h>
29 #include <asm/atomic.h>
30 #include <asm/system.h>
31 #include <asm/irq.h>
32 #include <asm/io.h>
33 #include <asm/sbus.h>
34 #include <asm/iommu.h>
35 #include <asm/upa.h>
36 #include <asm/oplib.h>
37 #include <asm/prom.h>
38 #include <asm/timer.h>
39 #include <asm/smp.h>
40 #include <asm/starfire.h>
41 #include <asm/uaccess.h>
42 #include <asm/cache.h>
43 #include <asm/cpudata.h>
44 #include <asm/auxio.h>
45 #include <asm/head.h>
46
47 /* UPA nodes send interrupt packet to UltraSparc with first data reg
48 * value low 5 (7 on Starfire) bits holding the IRQ identifier being
49 * delivered. We must translate this into a non-vector IRQ so we can
50 * set the softint on this cpu.
51 *
52 * To make processing these packets efficient and race free we use
53 * an array of irq buckets below. The interrupt vector handler in
54 * entry.S feeds incoming packets into per-cpu pil-indexed lists.
55 * The IVEC handler does not need to act atomically, the PIL dispatch
56 * code uses CAS to get an atomic snapshot of the list and clear it
57 * at the same time.
58 *
59 * If you make changes to ino_bucket, please update hand coded assembler
60 * of the vectored interrupt trap handler(s) in entry.S and sun4v_ivec.S
61 */
62 struct ino_bucket {
63 /* Next handler in per-CPU IRQ worklist. We know that
64 * bucket pointers have the high 32-bits clear, so to
65 * save space we only store the bits we need.
66 */
67 /*0x00*/unsigned int irq_chain;
68
69 /* Virtual interrupt number assigned to this INO. */
70 /*0x04*/unsigned int virt_irq;
71 };
72
73 #define NUM_IVECS (IMAP_INR + 1)
74 struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
75
76 #define __irq_ino(irq) \
77 (((struct ino_bucket *)(unsigned long)(irq)) - &ivector_table[0])
78 #define __bucket(irq) ((struct ino_bucket *)(unsigned long)(irq))
79 #define __irq(bucket) ((unsigned int)(unsigned long)(bucket))
80
81 /* This has to be in the main kernel image, it cannot be
82 * turned into per-cpu data. The reason is that the main
83 * kernel image is locked into the TLB and this structure
84 * is accessed from the vectored interrupt trap handler. If
85 * access to this structure takes a TLB miss it could cause
86 * the 5-level sparc v9 trap stack to overflow.
87 */
88 #define irq_work(__cpu) &(trap_block[(__cpu)].irq_worklist)
89
90 static unsigned int virt_to_real_irq_table[NR_IRQS];
91
92 static unsigned char virt_irq_alloc(unsigned int real_irq)
93 {
94 unsigned char ent;
95
96 BUILD_BUG_ON(NR_IRQS >= 256);
97
98 for (ent = 1; ent < NR_IRQS; ent++) {
99 if (!virt_to_real_irq_table[ent])
100 break;
101 }
102 if (ent >= NR_IRQS) {
103 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
104 return 0;
105 }
106
107 virt_to_real_irq_table[ent] = real_irq;
108
109 return ent;
110 }
111
112 static void virt_irq_free(unsigned int virt_irq)
113 {
114 unsigned int real_irq;
115
116 if (virt_irq >= NR_IRQS)
117 return;
118
119 real_irq = virt_to_real_irq_table[virt_irq];
120 virt_to_real_irq_table[virt_irq] = 0;
121
122 __bucket(real_irq)->virt_irq = 0;
123 }
124
125 static unsigned int virt_to_real_irq(unsigned char virt_irq)
126 {
127 return virt_to_real_irq_table[virt_irq];
128 }
129
130 /*
131 * /proc/interrupts printing:
132 */
133
134 int show_interrupts(struct seq_file *p, void *v)
135 {
136 int i = *(loff_t *) v, j;
137 struct irqaction * action;
138 unsigned long flags;
139
140 if (i == 0) {
141 seq_printf(p, " ");
142 for_each_online_cpu(j)
143 seq_printf(p, "CPU%d ",j);
144 seq_putc(p, '\n');
145 }
146
147 if (i < NR_IRQS) {
148 spin_lock_irqsave(&irq_desc[i].lock, flags);
149 action = irq_desc[i].action;
150 if (!action)
151 goto skip;
152 seq_printf(p, "%3d: ",i);
153 #ifndef CONFIG_SMP
154 seq_printf(p, "%10u ", kstat_irqs(i));
155 #else
156 for_each_online_cpu(j)
157 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
158 #endif
159 seq_printf(p, " %9s", irq_desc[i].chip->typename);
160 seq_printf(p, " %s", action->name);
161
162 for (action=action->next; action; action = action->next)
163 seq_printf(p, ", %s", action->name);
164
165 seq_putc(p, '\n');
166 skip:
167 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
168 }
169 return 0;
170 }
171
172 extern unsigned long real_hard_smp_processor_id(void);
173
174 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
175 {
176 unsigned int tid;
177
178 if (this_is_starfire) {
179 tid = starfire_translate(imap, cpuid);
180 tid <<= IMAP_TID_SHIFT;
181 tid &= IMAP_TID_UPA;
182 } else {
183 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
184 unsigned long ver;
185
186 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
187 if ((ver >> 32UL) == __JALAPENO_ID ||
188 (ver >> 32UL) == __SERRANO_ID) {
189 tid = cpuid << IMAP_TID_SHIFT;
190 tid &= IMAP_TID_JBUS;
191 } else {
192 unsigned int a = cpuid & 0x1f;
193 unsigned int n = (cpuid >> 5) & 0x1f;
194
195 tid = ((a << IMAP_AID_SHIFT) |
196 (n << IMAP_NID_SHIFT));
197 tid &= (IMAP_AID_SAFARI |
198 IMAP_NID_SAFARI);;
199 }
200 } else {
201 tid = cpuid << IMAP_TID_SHIFT;
202 tid &= IMAP_TID_UPA;
203 }
204 }
205
206 return tid;
207 }
208
209 struct irq_handler_data {
210 unsigned long iclr;
211 unsigned long imap;
212
213 void (*pre_handler)(unsigned int, void *, void *);
214 void *pre_handler_arg1;
215 void *pre_handler_arg2;
216 };
217
218 static inline struct ino_bucket *virt_irq_to_bucket(unsigned int virt_irq)
219 {
220 unsigned int real_irq = virt_to_real_irq(virt_irq);
221 struct ino_bucket *bucket = NULL;
222
223 if (likely(real_irq))
224 bucket = __bucket(real_irq);
225
226 return bucket;
227 }
228
229 #ifdef CONFIG_SMP
230 static int irq_choose_cpu(unsigned int virt_irq)
231 {
232 cpumask_t mask = irq_desc[virt_irq].affinity;
233 int cpuid;
234
235 if (cpus_equal(mask, CPU_MASK_ALL)) {
236 static int irq_rover;
237 static DEFINE_SPINLOCK(irq_rover_lock);
238 unsigned long flags;
239
240 /* Round-robin distribution... */
241 do_round_robin:
242 spin_lock_irqsave(&irq_rover_lock, flags);
243
244 while (!cpu_online(irq_rover)) {
245 if (++irq_rover >= NR_CPUS)
246 irq_rover = 0;
247 }
248 cpuid = irq_rover;
249 do {
250 if (++irq_rover >= NR_CPUS)
251 irq_rover = 0;
252 } while (!cpu_online(irq_rover));
253
254 spin_unlock_irqrestore(&irq_rover_lock, flags);
255 } else {
256 cpumask_t tmp;
257
258 cpus_and(tmp, cpu_online_map, mask);
259
260 if (cpus_empty(tmp))
261 goto do_round_robin;
262
263 cpuid = first_cpu(tmp);
264 }
265
266 return cpuid;
267 }
268 #else
269 static int irq_choose_cpu(unsigned int virt_irq)
270 {
271 return real_hard_smp_processor_id();
272 }
273 #endif
274
275 static void sun4u_irq_enable(unsigned int virt_irq)
276 {
277 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
278
279 if (likely(data)) {
280 unsigned long cpuid, imap;
281 unsigned int tid;
282
283 cpuid = irq_choose_cpu(virt_irq);
284 imap = data->imap;
285
286 tid = sun4u_compute_tid(imap, cpuid);
287
288 upa_writel(tid | IMAP_VALID, imap);
289 }
290 }
291
292 static void sun4u_irq_disable(unsigned int virt_irq)
293 {
294 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
295
296 if (likely(data)) {
297 unsigned long imap = data->imap;
298 u32 tmp = upa_readl(imap);
299
300 tmp &= ~IMAP_VALID;
301 upa_writel(tmp, imap);
302 }
303 }
304
305 static void sun4u_irq_end(unsigned int virt_irq)
306 {
307 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
308
309 if (likely(data))
310 upa_writel(ICLR_IDLE, data->iclr);
311 }
312
313 static void sun4v_irq_enable(unsigned int virt_irq)
314 {
315 struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
316 unsigned int ino = bucket - &ivector_table[0];
317
318 if (likely(bucket)) {
319 unsigned long cpuid;
320 int err;
321
322 cpuid = irq_choose_cpu(virt_irq);
323
324 err = sun4v_intr_settarget(ino, cpuid);
325 if (err != HV_EOK)
326 printk("sun4v_intr_settarget(%x,%lu): err(%d)\n",
327 ino, cpuid, err);
328 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
329 if (err != HV_EOK)
330 printk("sun4v_intr_setenabled(%x): err(%d)\n",
331 ino, err);
332 }
333 }
334
335 static void sun4v_irq_disable(unsigned int virt_irq)
336 {
337 struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
338 unsigned int ino = bucket - &ivector_table[0];
339
340 if (likely(bucket)) {
341 int err;
342
343 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
344 if (err != HV_EOK)
345 printk("sun4v_intr_setenabled(%x): "
346 "err(%d)\n", ino, err);
347 }
348 }
349
350 #ifdef CONFIG_PCI_MSI
351 static void sun4v_msi_enable(unsigned int virt_irq)
352 {
353 sun4v_irq_enable(virt_irq);
354 unmask_msi_irq(virt_irq);
355 }
356
357 static void sun4v_msi_disable(unsigned int virt_irq)
358 {
359 mask_msi_irq(virt_irq);
360 sun4v_irq_disable(virt_irq);
361 }
362 #endif
363
364 static void sun4v_irq_end(unsigned int virt_irq)
365 {
366 struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
367 unsigned int ino = bucket - &ivector_table[0];
368
369 if (likely(bucket)) {
370 int err;
371
372 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
373 if (err != HV_EOK)
374 printk("sun4v_intr_setstate(%x): "
375 "err(%d)\n", ino, err);
376 }
377 }
378
379 static void run_pre_handler(unsigned int virt_irq)
380 {
381 struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
382 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
383
384 if (likely(data->pre_handler)) {
385 data->pre_handler(__irq_ino(__irq(bucket)),
386 data->pre_handler_arg1,
387 data->pre_handler_arg2);
388 }
389 }
390
391 static struct irq_chip sun4u_irq = {
392 .typename = "sun4u",
393 .enable = sun4u_irq_enable,
394 .disable = sun4u_irq_disable,
395 .end = sun4u_irq_end,
396 };
397
398 static struct irq_chip sun4u_irq_ack = {
399 .typename = "sun4u+ack",
400 .enable = sun4u_irq_enable,
401 .disable = sun4u_irq_disable,
402 .ack = run_pre_handler,
403 .end = sun4u_irq_end,
404 };
405
406 static struct irq_chip sun4v_irq = {
407 .typename = "sun4v",
408 .enable = sun4v_irq_enable,
409 .disable = sun4v_irq_disable,
410 .end = sun4v_irq_end,
411 };
412
413 static struct irq_chip sun4v_irq_ack = {
414 .typename = "sun4v+ack",
415 .enable = sun4v_irq_enable,
416 .disable = sun4v_irq_disable,
417 .ack = run_pre_handler,
418 .end = sun4v_irq_end,
419 };
420
421 #ifdef CONFIG_PCI_MSI
422 static struct irq_chip sun4v_msi = {
423 .typename = "sun4v+msi",
424 .mask = mask_msi_irq,
425 .unmask = unmask_msi_irq,
426 .enable = sun4v_msi_enable,
427 .disable = sun4v_msi_disable,
428 .ack = run_pre_handler,
429 .end = sun4v_irq_end,
430 };
431 #endif
432
433 void irq_install_pre_handler(int virt_irq,
434 void (*func)(unsigned int, void *, void *),
435 void *arg1, void *arg2)
436 {
437 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
438 struct irq_chip *chip;
439
440 data->pre_handler = func;
441 data->pre_handler_arg1 = arg1;
442 data->pre_handler_arg2 = arg2;
443
444 chip = get_irq_chip(virt_irq);
445 if (chip == &sun4u_irq_ack ||
446 chip == &sun4v_irq_ack
447 #ifdef CONFIG_PCI_MSI
448 || chip == &sun4v_msi
449 #endif
450 )
451 return;
452
453 chip = (chip == &sun4u_irq ?
454 &sun4u_irq_ack : &sun4v_irq_ack);
455 set_irq_chip(virt_irq, chip);
456 }
457
458 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
459 {
460 struct ino_bucket *bucket;
461 struct irq_handler_data *data;
462 int ino;
463
464 BUG_ON(tlb_type == hypervisor);
465
466 ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
467 bucket = &ivector_table[ino];
468 if (!bucket->virt_irq) {
469 bucket->virt_irq = virt_irq_alloc(__irq(bucket));
470 set_irq_chip(bucket->virt_irq, &sun4u_irq);
471 }
472
473 data = get_irq_chip_data(bucket->virt_irq);
474 if (unlikely(data))
475 goto out;
476
477 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
478 if (unlikely(!data)) {
479 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
480 prom_halt();
481 }
482 set_irq_chip_data(bucket->virt_irq, data);
483
484 data->imap = imap;
485 data->iclr = iclr;
486
487 out:
488 return bucket->virt_irq;
489 }
490
491 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
492 {
493 struct ino_bucket *bucket;
494 struct irq_handler_data *data;
495 unsigned long sysino;
496
497 BUG_ON(tlb_type != hypervisor);
498
499 sysino = sun4v_devino_to_sysino(devhandle, devino);
500 bucket = &ivector_table[sysino];
501 if (!bucket->virt_irq) {
502 bucket->virt_irq = virt_irq_alloc(__irq(bucket));
503 set_irq_chip(bucket->virt_irq, &sun4v_irq);
504 }
505
506 data = get_irq_chip_data(bucket->virt_irq);
507 if (unlikely(data))
508 goto out;
509
510 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
511 if (unlikely(!data)) {
512 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
513 prom_halt();
514 }
515 set_irq_chip_data(bucket->virt_irq, data);
516
517 /* Catch accidental accesses to these things. IMAP/ICLR handling
518 * is done by hypervisor calls on sun4v platforms, not by direct
519 * register accesses.
520 */
521 data->imap = ~0UL;
522 data->iclr = ~0UL;
523
524 out:
525 return bucket->virt_irq;
526 }
527
528 #ifdef CONFIG_PCI_MSI
529 unsigned int sun4v_build_msi(u32 devhandle, unsigned int *virt_irq_p,
530 unsigned int msi_start, unsigned int msi_end)
531 {
532 struct ino_bucket *bucket;
533 struct irq_handler_data *data;
534 unsigned long sysino;
535 unsigned int devino;
536
537 BUG_ON(tlb_type != hypervisor);
538
539 /* Find a free devino in the given range. */
540 for (devino = msi_start; devino < msi_end; devino++) {
541 sysino = sun4v_devino_to_sysino(devhandle, devino);
542 bucket = &ivector_table[sysino];
543 if (!bucket->virt_irq)
544 break;
545 }
546 if (devino >= msi_end)
547 return 0;
548
549 sysino = sun4v_devino_to_sysino(devhandle, devino);
550 bucket = &ivector_table[sysino];
551 bucket->virt_irq = virt_irq_alloc(__irq(bucket));
552 *virt_irq_p = bucket->virt_irq;
553 set_irq_chip(bucket->virt_irq, &sun4v_msi);
554
555 data = get_irq_chip_data(bucket->virt_irq);
556 if (unlikely(data))
557 return devino;
558
559 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
560 if (unlikely(!data)) {
561 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
562 prom_halt();
563 }
564 set_irq_chip_data(bucket->virt_irq, data);
565
566 data->imap = ~0UL;
567 data->iclr = ~0UL;
568
569 return devino;
570 }
571
572 void sun4v_destroy_msi(unsigned int virt_irq)
573 {
574 virt_irq_free(virt_irq);
575 }
576 #endif
577
578 void ack_bad_irq(unsigned int virt_irq)
579 {
580 struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
581 unsigned int ino = 0xdeadbeef;
582
583 if (bucket)
584 ino = bucket - &ivector_table[0];
585
586 printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
587 ino, virt_irq);
588 }
589
590 #ifndef CONFIG_SMP
591 extern irqreturn_t timer_interrupt(int, void *);
592
593 void timer_irq(int irq, struct pt_regs *regs)
594 {
595 unsigned long clr_mask = 1 << irq;
596 unsigned long tick_mask = tick_ops->softint_mask;
597 struct pt_regs *old_regs;
598
599 if (get_softint() & tick_mask) {
600 irq = 0;
601 clr_mask = tick_mask;
602 }
603 clear_softint(clr_mask);
604
605 old_regs = set_irq_regs(regs);
606 irq_enter();
607
608 kstat_this_cpu.irqs[0]++;
609 timer_interrupt(irq, NULL);
610
611 irq_exit();
612 set_irq_regs(old_regs);
613 }
614 #endif
615
616 void handler_irq(int irq, struct pt_regs *regs)
617 {
618 struct ino_bucket *bucket;
619 struct pt_regs *old_regs;
620
621 clear_softint(1 << irq);
622
623 old_regs = set_irq_regs(regs);
624 irq_enter();
625
626 /* Sliiiick... */
627 bucket = __bucket(xchg32(irq_work(smp_processor_id()), 0));
628 while (bucket) {
629 struct ino_bucket *next = __bucket(bucket->irq_chain);
630
631 bucket->irq_chain = 0;
632 __do_IRQ(bucket->virt_irq);
633
634 bucket = next;
635 }
636
637 irq_exit();
638 set_irq_regs(old_regs);
639 }
640
641 struct sun5_timer {
642 u64 count0;
643 u64 limit0;
644 u64 count1;
645 u64 limit1;
646 };
647
648 static struct sun5_timer *prom_timers;
649 static u64 prom_limit0, prom_limit1;
650
651 static void map_prom_timers(void)
652 {
653 struct device_node *dp;
654 unsigned int *addr;
655
656 /* PROM timer node hangs out in the top level of device siblings... */
657 dp = of_find_node_by_path("/");
658 dp = dp->child;
659 while (dp) {
660 if (!strcmp(dp->name, "counter-timer"))
661 break;
662 dp = dp->sibling;
663 }
664
665 /* Assume if node is not present, PROM uses different tick mechanism
666 * which we should not care about.
667 */
668 if (!dp) {
669 prom_timers = (struct sun5_timer *) 0;
670 return;
671 }
672
673 /* If PROM is really using this, it must be mapped by him. */
674 addr = of_get_property(dp, "address", NULL);
675 if (!addr) {
676 prom_printf("PROM does not have timer mapped, trying to continue.\n");
677 prom_timers = (struct sun5_timer *) 0;
678 return;
679 }
680 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
681 }
682
683 static void kill_prom_timer(void)
684 {
685 if (!prom_timers)
686 return;
687
688 /* Save them away for later. */
689 prom_limit0 = prom_timers->limit0;
690 prom_limit1 = prom_timers->limit1;
691
692 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
693 * We turn both off here just to be paranoid.
694 */
695 prom_timers->limit0 = 0;
696 prom_timers->limit1 = 0;
697
698 /* Wheee, eat the interrupt packet too... */
699 __asm__ __volatile__(
700 " mov 0x40, %%g2\n"
701 " ldxa [%%g0] %0, %%g1\n"
702 " ldxa [%%g2] %1, %%g1\n"
703 " stxa %%g0, [%%g0] %0\n"
704 " membar #Sync\n"
705 : /* no outputs */
706 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
707 : "g1", "g2");
708 }
709
710 void init_irqwork_curcpu(void)
711 {
712 int cpu = hard_smp_processor_id();
713
714 trap_block[cpu].irq_worklist = 0;
715 }
716
717 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type)
718 {
719 unsigned long num_entries = 128;
720 unsigned long status;
721
722 status = sun4v_cpu_qconf(type, paddr, num_entries);
723 if (status != HV_EOK) {
724 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
725 "err %lu\n", type, paddr, num_entries, status);
726 prom_halt();
727 }
728 }
729
730 static void __cpuinit sun4v_register_mondo_queues(int this_cpu)
731 {
732 struct trap_per_cpu *tb = &trap_block[this_cpu];
733
734 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO);
735 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO);
736 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR);
737 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR);
738 }
739
740 static void __cpuinit alloc_one_mondo(unsigned long *pa_ptr, int use_bootmem)
741 {
742 void *page;
743
744 if (use_bootmem)
745 page = alloc_bootmem_low_pages(PAGE_SIZE);
746 else
747 page = (void *) get_zeroed_page(GFP_ATOMIC);
748
749 if (!page) {
750 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
751 prom_halt();
752 }
753
754 *pa_ptr = __pa(page);
755 }
756
757 static void __cpuinit alloc_one_kbuf(unsigned long *pa_ptr, int use_bootmem)
758 {
759 void *page;
760
761 if (use_bootmem)
762 page = alloc_bootmem_low_pages(PAGE_SIZE);
763 else
764 page = (void *) get_zeroed_page(GFP_ATOMIC);
765
766 if (!page) {
767 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
768 prom_halt();
769 }
770
771 *pa_ptr = __pa(page);
772 }
773
774 static void __cpuinit init_cpu_send_mondo_info(struct trap_per_cpu *tb, int use_bootmem)
775 {
776 #ifdef CONFIG_SMP
777 void *page;
778
779 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
780
781 if (use_bootmem)
782 page = alloc_bootmem_low_pages(PAGE_SIZE);
783 else
784 page = (void *) get_zeroed_page(GFP_ATOMIC);
785
786 if (!page) {
787 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
788 prom_halt();
789 }
790
791 tb->cpu_mondo_block_pa = __pa(page);
792 tb->cpu_list_pa = __pa(page + 64);
793 #endif
794 }
795
796 /* Allocate and register the mondo and error queues for this cpu. */
797 void __cpuinit sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load)
798 {
799 struct trap_per_cpu *tb = &trap_block[cpu];
800
801 if (alloc) {
802 alloc_one_mondo(&tb->cpu_mondo_pa, use_bootmem);
803 alloc_one_mondo(&tb->dev_mondo_pa, use_bootmem);
804 alloc_one_mondo(&tb->resum_mondo_pa, use_bootmem);
805 alloc_one_kbuf(&tb->resum_kernel_buf_pa, use_bootmem);
806 alloc_one_mondo(&tb->nonresum_mondo_pa, use_bootmem);
807 alloc_one_kbuf(&tb->nonresum_kernel_buf_pa, use_bootmem);
808
809 init_cpu_send_mondo_info(tb, use_bootmem);
810 }
811
812 if (load) {
813 if (cpu != hard_smp_processor_id()) {
814 prom_printf("SUN4V: init mondo on cpu %d not %d\n",
815 cpu, hard_smp_processor_id());
816 prom_halt();
817 }
818 sun4v_register_mondo_queues(cpu);
819 }
820 }
821
822 static struct irqaction timer_irq_action = {
823 .name = "timer",
824 };
825
826 /* Only invoked on boot processor. */
827 void __init init_IRQ(void)
828 {
829 map_prom_timers();
830 kill_prom_timer();
831 memset(&ivector_table[0], 0, sizeof(ivector_table));
832
833 if (tlb_type == hypervisor)
834 sun4v_init_mondo_queues(1, hard_smp_processor_id(), 1, 1);
835
836 /* We need to clear any IRQ's pending in the soft interrupt
837 * registers, a spurious one could be left around from the
838 * PROM timer which we just disabled.
839 */
840 clear_softint(get_softint());
841
842 /* Now that ivector table is initialized, it is safe
843 * to receive IRQ vector traps. We will normally take
844 * one or two right now, in case some device PROM used
845 * to boot us wants to speak to us. We just ignore them.
846 */
847 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
848 "or %%g1, %0, %%g1\n\t"
849 "wrpr %%g1, 0x0, %%pstate"
850 : /* No outputs */
851 : "i" (PSTATE_IE)
852 : "g1");
853
854 irq_desc[0].action = &timer_irq_action;
855 }