]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/sparc64/kernel/irq.c
Merge branch 'linus'
[mirror_ubuntu-jammy-kernel.git] / arch / sparc64 / kernel / irq.c
1 /* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $
2 * irq.c: UltraSparc IRQ handling/init/registry.
3 *
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
7 */
8
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/errno.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/signal.h>
16 #include <linux/mm.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/random.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <asm/atomic.h>
29 #include <asm/system.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/sbus.h>
33 #include <asm/iommu.h>
34 #include <asm/upa.h>
35 #include <asm/oplib.h>
36 #include <asm/timer.h>
37 #include <asm/smp.h>
38 #include <asm/starfire.h>
39 #include <asm/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
43 #include <asm/head.h>
44
45 #ifdef CONFIG_SMP
46 static void distribute_irqs(void);
47 #endif
48
49 /* UPA nodes send interrupt packet to UltraSparc with first data reg
50 * value low 5 (7 on Starfire) bits holding the IRQ identifier being
51 * delivered. We must translate this into a non-vector IRQ so we can
52 * set the softint on this cpu.
53 *
54 * To make processing these packets efficient and race free we use
55 * an array of irq buckets below. The interrupt vector handler in
56 * entry.S feeds incoming packets into per-cpu pil-indexed lists.
57 * The IVEC handler does not need to act atomically, the PIL dispatch
58 * code uses CAS to get an atomic snapshot of the list and clear it
59 * at the same time.
60 */
61
62 struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
63
64 /* This has to be in the main kernel image, it cannot be
65 * turned into per-cpu data. The reason is that the main
66 * kernel image is locked into the TLB and this structure
67 * is accessed from the vectored interrupt trap handler. If
68 * access to this structure takes a TLB miss it could cause
69 * the 5-level sparc v9 trap stack to overflow.
70 */
71 struct irq_work_struct {
72 unsigned int irq_worklists[16];
73 };
74 struct irq_work_struct __irq_work[NR_CPUS];
75 #define irq_work(__cpu, __pil) &(__irq_work[(__cpu)].irq_worklists[(__pil)])
76
77 static struct irqaction *irq_action[NR_IRQS+1];
78
79 /* This only synchronizes entities which modify IRQ handler
80 * state and some selected user-level spots that want to
81 * read things in the table. IRQ handler processing orders
82 * its' accesses such that no locking is needed.
83 */
84 static DEFINE_SPINLOCK(irq_action_lock);
85
86 static void register_irq_proc (unsigned int irq);
87
88 /*
89 * Upper 2b of irqaction->flags holds the ino.
90 * irqaction->mask holds the smp affinity information.
91 */
92 #define put_ino_in_irqaction(action, irq) \
93 action->flags &= 0xffffffffffffUL; \
94 if (__bucket(irq) == &pil0_dummy_bucket) \
95 action->flags |= 0xdeadUL << 48; \
96 else \
97 action->flags |= __irq_ino(irq) << 48;
98 #define get_ino_in_irqaction(action) (action->flags >> 48)
99
100 #define put_smpaff_in_irqaction(action, smpaff) (action)->mask = (smpaff)
101 #define get_smpaff_in_irqaction(action) ((action)->mask)
102
103 int show_interrupts(struct seq_file *p, void *v)
104 {
105 unsigned long flags;
106 int i = *(loff_t *) v;
107 struct irqaction *action;
108 #ifdef CONFIG_SMP
109 int j;
110 #endif
111
112 spin_lock_irqsave(&irq_action_lock, flags);
113 if (i <= NR_IRQS) {
114 if (!(action = *(i + irq_action)))
115 goto out_unlock;
116 seq_printf(p, "%3d: ", i);
117 #ifndef CONFIG_SMP
118 seq_printf(p, "%10u ", kstat_irqs(i));
119 #else
120 for_each_online_cpu(j) {
121 seq_printf(p, "%10u ",
122 kstat_cpu(j).irqs[i]);
123 }
124 #endif
125 seq_printf(p, " %s:%lx", action->name,
126 get_ino_in_irqaction(action));
127 for (action = action->next; action; action = action->next) {
128 seq_printf(p, ", %s:%lx", action->name,
129 get_ino_in_irqaction(action));
130 }
131 seq_putc(p, '\n');
132 }
133 out_unlock:
134 spin_unlock_irqrestore(&irq_action_lock, flags);
135
136 return 0;
137 }
138
139 extern unsigned long real_hard_smp_processor_id(void);
140
141 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
142 {
143 unsigned int tid;
144
145 if (this_is_starfire) {
146 tid = starfire_translate(imap, cpuid);
147 tid <<= IMAP_TID_SHIFT;
148 tid &= IMAP_TID_UPA;
149 } else {
150 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
151 unsigned long ver;
152
153 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
154 if ((ver >> 32UL) == __JALAPENO_ID ||
155 (ver >> 32UL) == __SERRANO_ID) {
156 tid = cpuid << IMAP_TID_SHIFT;
157 tid &= IMAP_TID_JBUS;
158 } else {
159 unsigned int a = cpuid & 0x1f;
160 unsigned int n = (cpuid >> 5) & 0x1f;
161
162 tid = ((a << IMAP_AID_SHIFT) |
163 (n << IMAP_NID_SHIFT));
164 tid &= (IMAP_AID_SAFARI |
165 IMAP_NID_SAFARI);;
166 }
167 } else {
168 tid = cpuid << IMAP_TID_SHIFT;
169 tid &= IMAP_TID_UPA;
170 }
171 }
172
173 return tid;
174 }
175
176 /* Now these are always passed a true fully specified sun4u INO. */
177 void enable_irq(unsigned int irq)
178 {
179 struct ino_bucket *bucket = __bucket(irq);
180 unsigned long imap, cpuid;
181
182 imap = bucket->imap;
183 if (imap == 0UL)
184 return;
185
186 preempt_disable();
187
188 /* This gets the physical processor ID, even on uniprocessor,
189 * so we can always program the interrupt target correctly.
190 */
191 cpuid = real_hard_smp_processor_id();
192
193 if (tlb_type == hypervisor) {
194 unsigned int ino = __irq_ino(irq);
195 int err;
196
197 err = sun4v_intr_settarget(ino, cpuid);
198 if (err != HV_EOK)
199 printk("sun4v_intr_settarget(%x,%lu): err(%d)\n",
200 ino, cpuid, err);
201 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
202 if (err != HV_EOK)
203 printk("sun4v_intr_setenabled(%x): err(%d)\n",
204 ino, err);
205 } else {
206 unsigned int tid = sun4u_compute_tid(imap, cpuid);
207
208 /* NOTE NOTE NOTE, IGN and INO are read-only, IGN is a product
209 * of this SYSIO's preconfigured IGN in the SYSIO Control
210 * Register, the hardware just mirrors that value here.
211 * However for Graphics and UPA Slave devices the full
212 * IMAP_INR field can be set by the programmer here.
213 *
214 * Things like FFB can now be handled via the new IRQ
215 * mechanism.
216 */
217 upa_writel(tid | IMAP_VALID, imap);
218 }
219
220 preempt_enable();
221 }
222
223 /* This now gets passed true ino's as well. */
224 void disable_irq(unsigned int irq)
225 {
226 struct ino_bucket *bucket = __bucket(irq);
227 unsigned long imap;
228
229 imap = bucket->imap;
230 if (imap != 0UL) {
231 if (tlb_type == hypervisor) {
232 unsigned int ino = __irq_ino(irq);
233 int err;
234
235 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
236 if (err != HV_EOK)
237 printk("sun4v_intr_setenabled(%x): "
238 "err(%d)\n", ino, err);
239 } else {
240 u32 tmp;
241
242 /* NOTE: We do not want to futz with the IRQ clear registers
243 * and move the state to IDLE, the SCSI code does call
244 * disable_irq() to assure atomicity in the queue cmd
245 * SCSI adapter driver code. Thus we'd lose interrupts.
246 */
247 tmp = upa_readl(imap);
248 tmp &= ~IMAP_VALID;
249 upa_writel(tmp, imap);
250 }
251 }
252 }
253
254 /* The timer is the one "weird" interrupt which is generated by
255 * the CPU %tick register and not by some normal vectored interrupt
256 * source. To handle this special case, we use this dummy INO bucket.
257 */
258 static struct irq_desc pil0_dummy_desc;
259 static struct ino_bucket pil0_dummy_bucket = {
260 .irq_info = &pil0_dummy_desc,
261 };
262
263 static void build_irq_error(const char *msg, unsigned int ino, int pil, int inofixup,
264 unsigned long iclr, unsigned long imap,
265 struct ino_bucket *bucket)
266 {
267 prom_printf("IRQ: INO %04x (%d:%016lx:%016lx) --> "
268 "(%d:%d:%016lx:%016lx), halting...\n",
269 ino, bucket->pil, bucket->iclr, bucket->imap,
270 pil, inofixup, iclr, imap);
271 prom_halt();
272 }
273
274 unsigned int build_irq(int pil, int inofixup, unsigned long iclr, unsigned long imap)
275 {
276 struct ino_bucket *bucket;
277 int ino;
278
279 if (pil == 0) {
280 if (iclr != 0UL || imap != 0UL) {
281 prom_printf("Invalid dummy bucket for PIL0 (%lx:%lx)\n",
282 iclr, imap);
283 prom_halt();
284 }
285 return __irq(&pil0_dummy_bucket);
286 }
287
288 BUG_ON(tlb_type == hypervisor);
289
290 /* RULE: Both must be specified in all other cases. */
291 if (iclr == 0UL || imap == 0UL) {
292 prom_printf("Invalid build_irq %d %d %016lx %016lx\n",
293 pil, inofixup, iclr, imap);
294 prom_halt();
295 }
296
297 ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
298 if (ino > NUM_IVECS) {
299 prom_printf("Invalid INO %04x (%d:%d:%016lx:%016lx)\n",
300 ino, pil, inofixup, iclr, imap);
301 prom_halt();
302 }
303
304 bucket = &ivector_table[ino];
305 if (bucket->flags & IBF_ACTIVE)
306 build_irq_error("IRQ: Trying to build active INO bucket.\n",
307 ino, pil, inofixup, iclr, imap, bucket);
308
309 if (bucket->irq_info) {
310 if (bucket->imap != imap || bucket->iclr != iclr)
311 build_irq_error("IRQ: Trying to reinit INO bucket.\n",
312 ino, pil, inofixup, iclr, imap, bucket);
313
314 goto out;
315 }
316
317 bucket->irq_info = kzalloc(sizeof(struct irq_desc), GFP_ATOMIC);
318 if (!bucket->irq_info) {
319 prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
320 prom_halt();
321 }
322
323 /* Ok, looks good, set it up. Don't touch the irq_chain or
324 * the pending flag.
325 */
326 bucket->imap = imap;
327 bucket->iclr = iclr;
328 bucket->pil = pil;
329 bucket->flags = 0;
330
331 out:
332 return __irq(bucket);
333 }
334
335 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino, int pil, unsigned char flags)
336 {
337 struct ino_bucket *bucket;
338 unsigned long sysino;
339
340 sysino = sun4v_devino_to_sysino(devhandle, devino);
341
342 bucket = &ivector_table[sysino];
343
344 /* Catch accidental accesses to these things. IMAP/ICLR handling
345 * is done by hypervisor calls on sun4v platforms, not by direct
346 * register accesses.
347 *
348 * But we need to make them look unique for the disable_irq() logic
349 * in free_irq().
350 */
351 bucket->imap = ~0UL - sysino;
352 bucket->iclr = ~0UL - sysino;
353
354 bucket->pil = pil;
355 bucket->flags = flags;
356
357 bucket->irq_info = kzalloc(sizeof(struct irq_desc), GFP_ATOMIC);
358 if (!bucket->irq_info) {
359 prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
360 prom_halt();
361 }
362
363 return __irq(bucket);
364 }
365
366 static void atomic_bucket_insert(struct ino_bucket *bucket)
367 {
368 unsigned long pstate;
369 unsigned int *ent;
370
371 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
372 __asm__ __volatile__("wrpr %0, %1, %%pstate"
373 : : "r" (pstate), "i" (PSTATE_IE));
374 ent = irq_work(smp_processor_id(), bucket->pil);
375 bucket->irq_chain = *ent;
376 *ent = __irq(bucket);
377 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
378 }
379
380 static int check_irq_sharing(int pil, unsigned long irqflags)
381 {
382 struct irqaction *action, *tmp;
383
384 action = *(irq_action + pil);
385 if (action) {
386 if ((action->flags & SA_SHIRQ) && (irqflags & SA_SHIRQ)) {
387 for (tmp = action; tmp->next; tmp = tmp->next)
388 ;
389 } else {
390 return -EBUSY;
391 }
392 }
393 return 0;
394 }
395
396 static void append_irq_action(int pil, struct irqaction *action)
397 {
398 struct irqaction **pp = irq_action + pil;
399
400 while (*pp)
401 pp = &((*pp)->next);
402 *pp = action;
403 }
404
405 static struct irqaction *get_action_slot(struct ino_bucket *bucket)
406 {
407 struct irq_desc *desc = bucket->irq_info;
408 int max_irq, i;
409
410 max_irq = 1;
411 if (bucket->flags & IBF_PCI)
412 max_irq = MAX_IRQ_DESC_ACTION;
413 for (i = 0; i < max_irq; i++) {
414 struct irqaction *p = &desc->action[i];
415 u32 mask = (1 << i);
416
417 if (desc->action_active_mask & mask)
418 continue;
419
420 desc->action_active_mask |= mask;
421 return p;
422 }
423 return NULL;
424 }
425
426 int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
427 unsigned long irqflags, const char *name, void *dev_id)
428 {
429 struct irqaction *action;
430 struct ino_bucket *bucket = __bucket(irq);
431 unsigned long flags;
432 int pending = 0;
433
434 if (unlikely(!handler))
435 return -EINVAL;
436
437 if (unlikely(!bucket->irq_info))
438 return -ENODEV;
439
440 if ((bucket != &pil0_dummy_bucket) && (irqflags & SA_SAMPLE_RANDOM)) {
441 /*
442 * This function might sleep, we want to call it first,
443 * outside of the atomic block. In SA_STATIC_ALLOC case,
444 * random driver's kmalloc will fail, but it is safe.
445 * If already initialized, random driver will not reinit.
446 * Yes, this might clear the entropy pool if the wrong
447 * driver is attempted to be loaded, without actually
448 * installing a new handler, but is this really a problem,
449 * only the sysadmin is able to do this.
450 */
451 rand_initialize_irq(irq);
452 }
453
454 spin_lock_irqsave(&irq_action_lock, flags);
455
456 if (check_irq_sharing(bucket->pil, irqflags)) {
457 spin_unlock_irqrestore(&irq_action_lock, flags);
458 return -EBUSY;
459 }
460
461 action = get_action_slot(bucket);
462 if (!action) {
463 spin_unlock_irqrestore(&irq_action_lock, flags);
464 return -ENOMEM;
465 }
466
467 bucket->flags |= IBF_ACTIVE;
468 pending = 0;
469 if (bucket != &pil0_dummy_bucket) {
470 pending = bucket->pending;
471 if (pending)
472 bucket->pending = 0;
473 }
474
475 action->handler = handler;
476 action->flags = irqflags;
477 action->name = name;
478 action->next = NULL;
479 action->dev_id = dev_id;
480 put_ino_in_irqaction(action, irq);
481 put_smpaff_in_irqaction(action, CPU_MASK_NONE);
482
483 append_irq_action(bucket->pil, action);
484
485 enable_irq(irq);
486
487 /* We ate the IVEC already, this makes sure it does not get lost. */
488 if (pending) {
489 atomic_bucket_insert(bucket);
490 set_softint(1 << bucket->pil);
491 }
492
493 spin_unlock_irqrestore(&irq_action_lock, flags);
494
495 if (bucket != &pil0_dummy_bucket)
496 register_irq_proc(__irq_ino(irq));
497
498 #ifdef CONFIG_SMP
499 distribute_irqs();
500 #endif
501 return 0;
502 }
503
504 EXPORT_SYMBOL(request_irq);
505
506 static struct irqaction *unlink_irq_action(unsigned int irq, void *dev_id)
507 {
508 struct ino_bucket *bucket = __bucket(irq);
509 struct irqaction *action, **pp;
510
511 pp = irq_action + bucket->pil;
512 action = *pp;
513 if (unlikely(!action))
514 return NULL;
515
516 if (unlikely(!action->handler)) {
517 printk("Freeing free IRQ %d\n", bucket->pil);
518 return NULL;
519 }
520
521 while (action && action->dev_id != dev_id) {
522 pp = &action->next;
523 action = *pp;
524 }
525
526 if (likely(action))
527 *pp = action->next;
528
529 return action;
530 }
531
532 void free_irq(unsigned int irq, void *dev_id)
533 {
534 struct irqaction *action;
535 struct ino_bucket *bucket;
536 unsigned long flags;
537
538 spin_lock_irqsave(&irq_action_lock, flags);
539
540 action = unlink_irq_action(irq, dev_id);
541
542 spin_unlock_irqrestore(&irq_action_lock, flags);
543
544 if (unlikely(!action))
545 return;
546
547 synchronize_irq(irq);
548
549 spin_lock_irqsave(&irq_action_lock, flags);
550
551 bucket = __bucket(irq);
552 if (bucket != &pil0_dummy_bucket) {
553 struct irq_desc *desc = bucket->irq_info;
554 int ent, i;
555
556 for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
557 struct irqaction *p = &desc->action[i];
558
559 if (p == action) {
560 desc->action_active_mask &= ~(1 << i);
561 break;
562 }
563 }
564
565 if (!desc->action_active_mask) {
566 unsigned long imap = bucket->imap;
567
568 /* This unique interrupt source is now inactive. */
569 bucket->flags &= ~IBF_ACTIVE;
570
571 /* See if any other buckets share this bucket's IMAP
572 * and are still active.
573 */
574 for (ent = 0; ent < NUM_IVECS; ent++) {
575 struct ino_bucket *bp = &ivector_table[ent];
576 if (bp != bucket &&
577 bp->imap == imap &&
578 (bp->flags & IBF_ACTIVE) != 0)
579 break;
580 }
581
582 /* Only disable when no other sub-irq levels of
583 * the same IMAP are active.
584 */
585 if (ent == NUM_IVECS)
586 disable_irq(irq);
587 }
588 }
589
590 spin_unlock_irqrestore(&irq_action_lock, flags);
591 }
592
593 EXPORT_SYMBOL(free_irq);
594
595 #ifdef CONFIG_SMP
596 void synchronize_irq(unsigned int irq)
597 {
598 struct ino_bucket *bucket = __bucket(irq);
599
600 #if 0
601 /* The following is how I wish I could implement this.
602 * Unfortunately the ICLR registers are read-only, you can
603 * only write ICLR_foo values to them. To get the current
604 * IRQ status you would need to get at the IRQ diag registers
605 * in the PCI/SBUS controller and the layout of those vary
606 * from one controller to the next, sigh... -DaveM
607 */
608 unsigned long iclr = bucket->iclr;
609
610 while (1) {
611 u32 tmp = upa_readl(iclr);
612
613 if (tmp == ICLR_TRANSMIT ||
614 tmp == ICLR_PENDING) {
615 cpu_relax();
616 continue;
617 }
618 break;
619 }
620 #else
621 /* So we have to do this with a INPROGRESS bit just like x86. */
622 while (bucket->flags & IBF_INPROGRESS)
623 cpu_relax();
624 #endif
625 }
626 #endif /* CONFIG_SMP */
627
628 static void process_bucket(int irq, struct ino_bucket *bp, struct pt_regs *regs)
629 {
630 struct irq_desc *desc = bp->irq_info;
631 unsigned char flags = bp->flags;
632 u32 action_mask, i;
633 int random;
634
635 bp->flags |= IBF_INPROGRESS;
636
637 if (unlikely(!(flags & IBF_ACTIVE))) {
638 bp->pending = 1;
639 goto out;
640 }
641
642 if (desc->pre_handler)
643 desc->pre_handler(bp,
644 desc->pre_handler_arg1,
645 desc->pre_handler_arg2);
646
647 action_mask = desc->action_active_mask;
648 random = 0;
649 for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
650 struct irqaction *p = &desc->action[i];
651 u32 mask = (1 << i);
652
653 if (!(action_mask & mask))
654 continue;
655
656 action_mask &= ~mask;
657
658 if (p->handler(__irq(bp), p->dev_id, regs) == IRQ_HANDLED)
659 random |= p->flags;
660
661 if (!action_mask)
662 break;
663 }
664 if (bp->pil != 0) {
665 if (tlb_type == hypervisor) {
666 unsigned int ino = __irq_ino(bp);
667 int err;
668
669 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
670 if (err != HV_EOK)
671 printk("sun4v_intr_setstate(%x): "
672 "err(%d)\n", ino, err);
673 } else {
674 upa_writel(ICLR_IDLE, bp->iclr);
675 }
676
677 /* Test and add entropy */
678 if (random & SA_SAMPLE_RANDOM)
679 add_interrupt_randomness(irq);
680 }
681 out:
682 bp->flags &= ~IBF_INPROGRESS;
683 }
684
685 void handler_irq(int irq, struct pt_regs *regs)
686 {
687 struct ino_bucket *bp;
688 int cpu = smp_processor_id();
689
690 #ifndef CONFIG_SMP
691 /*
692 * Check for TICK_INT on level 14 softint.
693 */
694 {
695 unsigned long clr_mask = 1 << irq;
696 unsigned long tick_mask = tick_ops->softint_mask;
697
698 if ((irq == 14) && (get_softint() & tick_mask)) {
699 irq = 0;
700 clr_mask = tick_mask;
701 }
702 clear_softint(clr_mask);
703 }
704 #else
705 clear_softint(1 << irq);
706 #endif
707
708 irq_enter();
709 kstat_this_cpu.irqs[irq]++;
710
711 /* Sliiiick... */
712 #ifndef CONFIG_SMP
713 bp = ((irq != 0) ?
714 __bucket(xchg32(irq_work(cpu, irq), 0)) :
715 &pil0_dummy_bucket);
716 #else
717 bp = __bucket(xchg32(irq_work(cpu, irq), 0));
718 #endif
719 while (bp) {
720 struct ino_bucket *nbp = __bucket(bp->irq_chain);
721
722 bp->irq_chain = 0;
723 process_bucket(irq, bp, regs);
724 bp = nbp;
725 }
726 irq_exit();
727 }
728
729 #ifdef CONFIG_BLK_DEV_FD
730 extern irqreturn_t floppy_interrupt(int, void *, struct pt_regs *);;
731
732 /* XXX No easy way to include asm/floppy.h XXX */
733 extern unsigned char *pdma_vaddr;
734 extern unsigned long pdma_size;
735 extern volatile int doing_pdma;
736 extern unsigned long fdc_status;
737
738 irqreturn_t sparc_floppy_irq(int irq, void *dev_cookie, struct pt_regs *regs)
739 {
740 if (likely(doing_pdma)) {
741 void __iomem *stat = (void __iomem *) fdc_status;
742 unsigned char *vaddr = pdma_vaddr;
743 unsigned long size = pdma_size;
744 u8 val;
745
746 while (size) {
747 val = readb(stat);
748 if (unlikely(!(val & 0x80))) {
749 pdma_vaddr = vaddr;
750 pdma_size = size;
751 return IRQ_HANDLED;
752 }
753 if (unlikely(!(val & 0x20))) {
754 pdma_vaddr = vaddr;
755 pdma_size = size;
756 doing_pdma = 0;
757 goto main_interrupt;
758 }
759 if (val & 0x40) {
760 /* read */
761 *vaddr++ = readb(stat + 1);
762 } else {
763 unsigned char data = *vaddr++;
764
765 /* write */
766 writeb(data, stat + 1);
767 }
768 size--;
769 }
770
771 pdma_vaddr = vaddr;
772 pdma_size = size;
773
774 /* Send Terminal Count pulse to floppy controller. */
775 val = readb(auxio_register);
776 val |= AUXIO_AUX1_FTCNT;
777 writeb(val, auxio_register);
778 val &= ~AUXIO_AUX1_FTCNT;
779 writeb(val, auxio_register);
780
781 doing_pdma = 0;
782 }
783
784 main_interrupt:
785 return floppy_interrupt(irq, dev_cookie, regs);
786 }
787 EXPORT_SYMBOL(sparc_floppy_irq);
788 #endif
789
790 /* We really don't need these at all on the Sparc. We only have
791 * stubs here because they are exported to modules.
792 */
793 unsigned long probe_irq_on(void)
794 {
795 return 0;
796 }
797
798 EXPORT_SYMBOL(probe_irq_on);
799
800 int probe_irq_off(unsigned long mask)
801 {
802 return 0;
803 }
804
805 EXPORT_SYMBOL(probe_irq_off);
806
807 #ifdef CONFIG_SMP
808 static int retarget_one_irq(struct irqaction *p, int goal_cpu)
809 {
810 struct ino_bucket *bucket = get_ino_in_irqaction(p) + ivector_table;
811
812 while (!cpu_online(goal_cpu)) {
813 if (++goal_cpu >= NR_CPUS)
814 goal_cpu = 0;
815 }
816
817 if (tlb_type == hypervisor) {
818 unsigned int ino = __irq_ino(bucket);
819
820 sun4v_intr_settarget(ino, goal_cpu);
821 sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
822 } else {
823 unsigned long imap = bucket->imap;
824 unsigned int tid = sun4u_compute_tid(imap, goal_cpu);
825
826 upa_writel(tid | IMAP_VALID, imap);
827 }
828
829 do {
830 if (++goal_cpu >= NR_CPUS)
831 goal_cpu = 0;
832 } while (!cpu_online(goal_cpu));
833
834 return goal_cpu;
835 }
836
837 /* Called from request_irq. */
838 static void distribute_irqs(void)
839 {
840 unsigned long flags;
841 int cpu, level;
842
843 spin_lock_irqsave(&irq_action_lock, flags);
844 cpu = 0;
845
846 /*
847 * Skip the timer at [0], and very rare error/power intrs at [15].
848 * Also level [12], it causes problems on Ex000 systems.
849 */
850 for (level = 1; level < NR_IRQS; level++) {
851 struct irqaction *p = irq_action[level];
852
853 if (level == 12)
854 continue;
855
856 while(p) {
857 cpu = retarget_one_irq(p, cpu);
858 p = p->next;
859 }
860 }
861 spin_unlock_irqrestore(&irq_action_lock, flags);
862 }
863 #endif
864
865 struct sun5_timer {
866 u64 count0;
867 u64 limit0;
868 u64 count1;
869 u64 limit1;
870 };
871
872 static struct sun5_timer *prom_timers;
873 static u64 prom_limit0, prom_limit1;
874
875 static void map_prom_timers(void)
876 {
877 unsigned int addr[3];
878 int tnode, err;
879
880 /* PROM timer node hangs out in the top level of device siblings... */
881 tnode = prom_finddevice("/counter-timer");
882
883 /* Assume if node is not present, PROM uses different tick mechanism
884 * which we should not care about.
885 */
886 if (tnode == 0 || tnode == -1) {
887 prom_timers = (struct sun5_timer *) 0;
888 return;
889 }
890
891 /* If PROM is really using this, it must be mapped by him. */
892 err = prom_getproperty(tnode, "address", (char *)addr, sizeof(addr));
893 if (err == -1) {
894 prom_printf("PROM does not have timer mapped, trying to continue.\n");
895 prom_timers = (struct sun5_timer *) 0;
896 return;
897 }
898 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
899 }
900
901 static void kill_prom_timer(void)
902 {
903 if (!prom_timers)
904 return;
905
906 /* Save them away for later. */
907 prom_limit0 = prom_timers->limit0;
908 prom_limit1 = prom_timers->limit1;
909
910 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
911 * We turn both off here just to be paranoid.
912 */
913 prom_timers->limit0 = 0;
914 prom_timers->limit1 = 0;
915
916 /* Wheee, eat the interrupt packet too... */
917 __asm__ __volatile__(
918 " mov 0x40, %%g2\n"
919 " ldxa [%%g0] %0, %%g1\n"
920 " ldxa [%%g2] %1, %%g1\n"
921 " stxa %%g0, [%%g0] %0\n"
922 " membar #Sync\n"
923 : /* no outputs */
924 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
925 : "g1", "g2");
926 }
927
928 void init_irqwork_curcpu(void)
929 {
930 int cpu = hard_smp_processor_id();
931
932 memset(__irq_work + cpu, 0, sizeof(struct irq_work_struct));
933 }
934
935 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type)
936 {
937 unsigned long num_entries = 128;
938 unsigned long status;
939
940 status = sun4v_cpu_qconf(type, paddr, num_entries);
941 if (status != HV_EOK) {
942 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
943 "err %lu\n", type, paddr, num_entries, status);
944 prom_halt();
945 }
946 }
947
948 static void __cpuinit sun4v_register_mondo_queues(int this_cpu)
949 {
950 struct trap_per_cpu *tb = &trap_block[this_cpu];
951
952 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO);
953 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO);
954 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR);
955 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR);
956 }
957
958 static void __cpuinit alloc_one_mondo(unsigned long *pa_ptr, int use_bootmem)
959 {
960 void *page;
961
962 if (use_bootmem)
963 page = alloc_bootmem_low_pages(PAGE_SIZE);
964 else
965 page = (void *) get_zeroed_page(GFP_ATOMIC);
966
967 if (!page) {
968 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
969 prom_halt();
970 }
971
972 *pa_ptr = __pa(page);
973 }
974
975 static void __cpuinit alloc_one_kbuf(unsigned long *pa_ptr, int use_bootmem)
976 {
977 void *page;
978
979 if (use_bootmem)
980 page = alloc_bootmem_low_pages(PAGE_SIZE);
981 else
982 page = (void *) get_zeroed_page(GFP_ATOMIC);
983
984 if (!page) {
985 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
986 prom_halt();
987 }
988
989 *pa_ptr = __pa(page);
990 }
991
992 static void __cpuinit init_cpu_send_mondo_info(struct trap_per_cpu *tb, int use_bootmem)
993 {
994 #ifdef CONFIG_SMP
995 void *page;
996
997 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
998
999 if (use_bootmem)
1000 page = alloc_bootmem_low_pages(PAGE_SIZE);
1001 else
1002 page = (void *) get_zeroed_page(GFP_ATOMIC);
1003
1004 if (!page) {
1005 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
1006 prom_halt();
1007 }
1008
1009 tb->cpu_mondo_block_pa = __pa(page);
1010 tb->cpu_list_pa = __pa(page + 64);
1011 #endif
1012 }
1013
1014 /* Allocate and register the mondo and error queues for this cpu. */
1015 void __cpuinit sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load)
1016 {
1017 struct trap_per_cpu *tb = &trap_block[cpu];
1018
1019 if (alloc) {
1020 alloc_one_mondo(&tb->cpu_mondo_pa, use_bootmem);
1021 alloc_one_mondo(&tb->dev_mondo_pa, use_bootmem);
1022 alloc_one_mondo(&tb->resum_mondo_pa, use_bootmem);
1023 alloc_one_kbuf(&tb->resum_kernel_buf_pa, use_bootmem);
1024 alloc_one_mondo(&tb->nonresum_mondo_pa, use_bootmem);
1025 alloc_one_kbuf(&tb->nonresum_kernel_buf_pa, use_bootmem);
1026
1027 init_cpu_send_mondo_info(tb, use_bootmem);
1028 }
1029
1030 if (load) {
1031 if (cpu != hard_smp_processor_id()) {
1032 prom_printf("SUN4V: init mondo on cpu %d not %d\n",
1033 cpu, hard_smp_processor_id());
1034 prom_halt();
1035 }
1036 sun4v_register_mondo_queues(cpu);
1037 }
1038 }
1039
1040 /* Only invoked on boot processor. */
1041 void __init init_IRQ(void)
1042 {
1043 map_prom_timers();
1044 kill_prom_timer();
1045 memset(&ivector_table[0], 0, sizeof(ivector_table));
1046
1047 if (tlb_type == hypervisor)
1048 sun4v_init_mondo_queues(1, hard_smp_processor_id(), 1, 1);
1049
1050 /* We need to clear any IRQ's pending in the soft interrupt
1051 * registers, a spurious one could be left around from the
1052 * PROM timer which we just disabled.
1053 */
1054 clear_softint(get_softint());
1055
1056 /* Now that ivector table is initialized, it is safe
1057 * to receive IRQ vector traps. We will normally take
1058 * one or two right now, in case some device PROM used
1059 * to boot us wants to speak to us. We just ignore them.
1060 */
1061 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1062 "or %%g1, %0, %%g1\n\t"
1063 "wrpr %%g1, 0x0, %%pstate"
1064 : /* No outputs */
1065 : "i" (PSTATE_IE)
1066 : "g1");
1067 }
1068
1069 static struct proc_dir_entry * root_irq_dir;
1070 static struct proc_dir_entry * irq_dir [NUM_IVECS];
1071
1072 #ifdef CONFIG_SMP
1073
1074 static int irq_affinity_read_proc (char *page, char **start, off_t off,
1075 int count, int *eof, void *data)
1076 {
1077 struct ino_bucket *bp = ivector_table + (long)data;
1078 struct irq_desc *desc = bp->irq_info;
1079 struct irqaction *ap = desc->action;
1080 cpumask_t mask;
1081 int len;
1082
1083 mask = get_smpaff_in_irqaction(ap);
1084 if (cpus_empty(mask))
1085 mask = cpu_online_map;
1086
1087 len = cpumask_scnprintf(page, count, mask);
1088 if (count - len < 2)
1089 return -EINVAL;
1090 len += sprintf(page + len, "\n");
1091 return len;
1092 }
1093
1094 static inline void set_intr_affinity(int irq, cpumask_t hw_aff)
1095 {
1096 struct ino_bucket *bp = ivector_table + irq;
1097 struct irq_desc *desc = bp->irq_info;
1098 struct irqaction *ap = desc->action;
1099
1100 /* Users specify affinity in terms of hw cpu ids.
1101 * As soon as we do this, handler_irq() might see and take action.
1102 */
1103 put_smpaff_in_irqaction(ap, hw_aff);
1104
1105 /* Migration is simply done by the next cpu to service this
1106 * interrupt.
1107 */
1108 }
1109
1110 static int irq_affinity_write_proc (struct file *file, const char __user *buffer,
1111 unsigned long count, void *data)
1112 {
1113 int irq = (long) data, full_count = count, err;
1114 cpumask_t new_value;
1115
1116 err = cpumask_parse(buffer, count, new_value);
1117
1118 /*
1119 * Do not allow disabling IRQs completely - it's a too easy
1120 * way to make the system unusable accidentally :-) At least
1121 * one online CPU still has to be targeted.
1122 */
1123 cpus_and(new_value, new_value, cpu_online_map);
1124 if (cpus_empty(new_value))
1125 return -EINVAL;
1126
1127 set_intr_affinity(irq, new_value);
1128
1129 return full_count;
1130 }
1131
1132 #endif
1133
1134 #define MAX_NAMELEN 10
1135
1136 static void register_irq_proc (unsigned int irq)
1137 {
1138 char name [MAX_NAMELEN];
1139
1140 if (!root_irq_dir || irq_dir[irq])
1141 return;
1142
1143 memset(name, 0, MAX_NAMELEN);
1144 sprintf(name, "%x", irq);
1145
1146 /* create /proc/irq/1234 */
1147 irq_dir[irq] = proc_mkdir(name, root_irq_dir);
1148
1149 #ifdef CONFIG_SMP
1150 /* XXX SMP affinity not supported on starfire yet. */
1151 if (this_is_starfire == 0) {
1152 struct proc_dir_entry *entry;
1153
1154 /* create /proc/irq/1234/smp_affinity */
1155 entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
1156
1157 if (entry) {
1158 entry->nlink = 1;
1159 entry->data = (void *)(long)irq;
1160 entry->read_proc = irq_affinity_read_proc;
1161 entry->write_proc = irq_affinity_write_proc;
1162 }
1163 }
1164 #endif
1165 }
1166
1167 void init_irq_proc (void)
1168 {
1169 /* create /proc/irq */
1170 root_irq_dir = proc_mkdir("irq", NULL);
1171 }
1172