]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sparc64/kernel/of_device.c
[SPARC64]: Fix of_device bus_id settings.
[mirror_ubuntu-artful-kernel.git] / arch / sparc64 / kernel / of_device.c
1 #include <linux/string.h>
2 #include <linux/kernel.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/mod_devicetable.h>
6 #include <linux/slab.h>
7
8 #include <asm/errno.h>
9 #include <asm/of_device.h>
10
11 /**
12 * of_match_device - Tell if an of_device structure has a matching
13 * of_match structure
14 * @ids: array of of device match structures to search in
15 * @dev: the of device structure to match against
16 *
17 * Used by a driver to check whether an of_device present in the
18 * system is in its list of supported devices.
19 */
20 const struct of_device_id *of_match_device(const struct of_device_id *matches,
21 const struct of_device *dev)
22 {
23 if (!dev->node)
24 return NULL;
25 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
26 int match = 1;
27 if (matches->name[0])
28 match &= dev->node->name
29 && !strcmp(matches->name, dev->node->name);
30 if (matches->type[0])
31 match &= dev->node->type
32 && !strcmp(matches->type, dev->node->type);
33 if (matches->compatible[0])
34 match &= of_device_is_compatible(dev->node,
35 matches->compatible);
36 if (match)
37 return matches;
38 matches++;
39 }
40 return NULL;
41 }
42
43 static int of_platform_bus_match(struct device *dev, struct device_driver *drv)
44 {
45 struct of_device * of_dev = to_of_device(dev);
46 struct of_platform_driver * of_drv = to_of_platform_driver(drv);
47 const struct of_device_id * matches = of_drv->match_table;
48
49 if (!matches)
50 return 0;
51
52 return of_match_device(matches, of_dev) != NULL;
53 }
54
55 struct of_device *of_dev_get(struct of_device *dev)
56 {
57 struct device *tmp;
58
59 if (!dev)
60 return NULL;
61 tmp = get_device(&dev->dev);
62 if (tmp)
63 return to_of_device(tmp);
64 else
65 return NULL;
66 }
67
68 void of_dev_put(struct of_device *dev)
69 {
70 if (dev)
71 put_device(&dev->dev);
72 }
73
74
75 static int of_device_probe(struct device *dev)
76 {
77 int error = -ENODEV;
78 struct of_platform_driver *drv;
79 struct of_device *of_dev;
80 const struct of_device_id *match;
81
82 drv = to_of_platform_driver(dev->driver);
83 of_dev = to_of_device(dev);
84
85 if (!drv->probe)
86 return error;
87
88 of_dev_get(of_dev);
89
90 match = of_match_device(drv->match_table, of_dev);
91 if (match)
92 error = drv->probe(of_dev, match);
93 if (error)
94 of_dev_put(of_dev);
95
96 return error;
97 }
98
99 static int of_device_remove(struct device *dev)
100 {
101 struct of_device * of_dev = to_of_device(dev);
102 struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
103
104 if (dev->driver && drv->remove)
105 drv->remove(of_dev);
106 return 0;
107 }
108
109 static int of_device_suspend(struct device *dev, pm_message_t state)
110 {
111 struct of_device * of_dev = to_of_device(dev);
112 struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
113 int error = 0;
114
115 if (dev->driver && drv->suspend)
116 error = drv->suspend(of_dev, state);
117 return error;
118 }
119
120 static int of_device_resume(struct device * dev)
121 {
122 struct of_device * of_dev = to_of_device(dev);
123 struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
124 int error = 0;
125
126 if (dev->driver && drv->resume)
127 error = drv->resume(of_dev);
128 return error;
129 }
130
131 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
132 {
133 unsigned long ret = res->start + offset;
134
135 if (!request_region(ret, size, name))
136 ret = 0;
137
138 return (void __iomem *) ret;
139 }
140 EXPORT_SYMBOL(of_ioremap);
141
142 void of_iounmap(void __iomem *base, unsigned long size)
143 {
144 release_region((unsigned long) base, size);
145 }
146 EXPORT_SYMBOL(of_iounmap);
147
148 static int node_match(struct device *dev, void *data)
149 {
150 struct of_device *op = to_of_device(dev);
151 struct device_node *dp = data;
152
153 return (op->node == dp);
154 }
155
156 struct of_device *of_find_device_by_node(struct device_node *dp)
157 {
158 struct device *dev = bus_find_device(&of_bus_type, NULL,
159 dp, node_match);
160
161 if (dev)
162 return to_of_device(dev);
163
164 return NULL;
165 }
166 EXPORT_SYMBOL(of_find_device_by_node);
167
168 #ifdef CONFIG_PCI
169 struct bus_type isa_bus_type = {
170 .name = "isa",
171 .match = of_platform_bus_match,
172 .probe = of_device_probe,
173 .remove = of_device_remove,
174 .suspend = of_device_suspend,
175 .resume = of_device_resume,
176 };
177 EXPORT_SYMBOL(isa_bus_type);
178
179 struct bus_type ebus_bus_type = {
180 .name = "ebus",
181 .match = of_platform_bus_match,
182 .probe = of_device_probe,
183 .remove = of_device_remove,
184 .suspend = of_device_suspend,
185 .resume = of_device_resume,
186 };
187 EXPORT_SYMBOL(ebus_bus_type);
188 #endif
189
190 #ifdef CONFIG_SBUS
191 struct bus_type sbus_bus_type = {
192 .name = "sbus",
193 .match = of_platform_bus_match,
194 .probe = of_device_probe,
195 .remove = of_device_remove,
196 .suspend = of_device_suspend,
197 .resume = of_device_resume,
198 };
199 EXPORT_SYMBOL(sbus_bus_type);
200 #endif
201
202 struct bus_type of_bus_type = {
203 .name = "of",
204 .match = of_platform_bus_match,
205 .probe = of_device_probe,
206 .remove = of_device_remove,
207 .suspend = of_device_suspend,
208 .resume = of_device_resume,
209 };
210 EXPORT_SYMBOL(of_bus_type);
211
212 static inline u64 of_read_addr(const u32 *cell, int size)
213 {
214 u64 r = 0;
215 while (size--)
216 r = (r << 32) | *(cell++);
217 return r;
218 }
219
220 static void __init get_cells(struct device_node *dp,
221 int *addrc, int *sizec)
222 {
223 if (addrc)
224 *addrc = of_n_addr_cells(dp);
225 if (sizec)
226 *sizec = of_n_size_cells(dp);
227 }
228
229 /* Max address size we deal with */
230 #define OF_MAX_ADDR_CELLS 4
231
232 struct of_bus {
233 const char *name;
234 const char *addr_prop_name;
235 int (*match)(struct device_node *parent);
236 void (*count_cells)(struct device_node *child,
237 int *addrc, int *sizec);
238 int (*map)(u32 *addr, const u32 *range,
239 int na, int ns, int pna);
240 unsigned int (*get_flags)(u32 *addr);
241 };
242
243 /*
244 * Default translator (generic bus)
245 */
246
247 static void of_bus_default_count_cells(struct device_node *dev,
248 int *addrc, int *sizec)
249 {
250 get_cells(dev, addrc, sizec);
251 }
252
253 /* Make sure the least significant 64-bits are in-range. Even
254 * for 3 or 4 cell values it is a good enough approximation.
255 */
256 static int of_out_of_range(const u32 *addr, const u32 *base,
257 const u32 *size, int na, int ns)
258 {
259 u64 a = of_read_addr(addr, na);
260 u64 b = of_read_addr(base, na);
261
262 if (a < b)
263 return 1;
264
265 b += of_read_addr(size, ns);
266 if (a >= b)
267 return 1;
268
269 return 0;
270 }
271
272 static int of_bus_default_map(u32 *addr, const u32 *range,
273 int na, int ns, int pna)
274 {
275 u32 result[OF_MAX_ADDR_CELLS];
276 int i;
277
278 if (ns > 2) {
279 printk("of_device: Cannot handle size cells (%d) > 2.", ns);
280 return -EINVAL;
281 }
282
283 if (of_out_of_range(addr, range, range + na + pna, na, ns))
284 return -EINVAL;
285
286 /* Start with the parent range base. */
287 memcpy(result, range + na, pna * 4);
288
289 /* Add in the child address offset. */
290 for (i = 0; i < na; i++)
291 result[pna - 1 - i] +=
292 (addr[na - 1 - i] -
293 range[na - 1 - i]);
294
295 memcpy(addr, result, pna * 4);
296
297 return 0;
298 }
299
300 static unsigned int of_bus_default_get_flags(u32 *addr)
301 {
302 return IORESOURCE_MEM;
303 }
304
305 /*
306 * PCI bus specific translator
307 */
308
309 static int of_bus_pci_match(struct device_node *np)
310 {
311 if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
312 /* Do not do PCI specific frobbing if the
313 * PCI bridge lacks a ranges property. We
314 * want to pass it through up to the next
315 * parent as-is, not with the PCI translate
316 * method which chops off the top address cell.
317 */
318 if (!of_find_property(np, "ranges", NULL))
319 return 0;
320
321 return 1;
322 }
323
324 return 0;
325 }
326
327 static void of_bus_pci_count_cells(struct device_node *np,
328 int *addrc, int *sizec)
329 {
330 if (addrc)
331 *addrc = 3;
332 if (sizec)
333 *sizec = 2;
334 }
335
336 static int of_bus_pci_map(u32 *addr, const u32 *range,
337 int na, int ns, int pna)
338 {
339 u32 result[OF_MAX_ADDR_CELLS];
340 int i;
341
342 /* Check address type match */
343 if ((addr[0] ^ range[0]) & 0x03000000)
344 return -EINVAL;
345
346 if (of_out_of_range(addr + 1, range + 1, range + na + pna,
347 na - 1, ns))
348 return -EINVAL;
349
350 /* Start with the parent range base. */
351 memcpy(result, range + na, pna * 4);
352
353 /* Add in the child address offset, skipping high cell. */
354 for (i = 0; i < na - 1; i++)
355 result[pna - 1 - i] +=
356 (addr[na - 1 - i] -
357 range[na - 1 - i]);
358
359 memcpy(addr, result, pna * 4);
360
361 return 0;
362 }
363
364 static unsigned int of_bus_pci_get_flags(u32 *addr)
365 {
366 unsigned int flags = 0;
367 u32 w = addr[0];
368
369 switch((w >> 24) & 0x03) {
370 case 0x01:
371 flags |= IORESOURCE_IO;
372 case 0x02: /* 32 bits */
373 case 0x03: /* 64 bits */
374 flags |= IORESOURCE_MEM;
375 }
376 if (w & 0x40000000)
377 flags |= IORESOURCE_PREFETCH;
378 return flags;
379 }
380
381 /*
382 * SBUS bus specific translator
383 */
384
385 static int of_bus_sbus_match(struct device_node *np)
386 {
387 return !strcmp(np->name, "sbus") ||
388 !strcmp(np->name, "sbi");
389 }
390
391 static void of_bus_sbus_count_cells(struct device_node *child,
392 int *addrc, int *sizec)
393 {
394 if (addrc)
395 *addrc = 2;
396 if (sizec)
397 *sizec = 1;
398 }
399
400 static int of_bus_sbus_map(u32 *addr, const u32 *range, int na, int ns, int pna)
401 {
402 return of_bus_default_map(addr, range, na, ns, pna);
403 }
404
405 static unsigned int of_bus_sbus_get_flags(u32 *addr)
406 {
407 return IORESOURCE_MEM;
408 }
409
410
411 /*
412 * Array of bus specific translators
413 */
414
415 static struct of_bus of_busses[] = {
416 /* PCI */
417 {
418 .name = "pci",
419 .addr_prop_name = "assigned-addresses",
420 .match = of_bus_pci_match,
421 .count_cells = of_bus_pci_count_cells,
422 .map = of_bus_pci_map,
423 .get_flags = of_bus_pci_get_flags,
424 },
425 /* SBUS */
426 {
427 .name = "sbus",
428 .addr_prop_name = "reg",
429 .match = of_bus_sbus_match,
430 .count_cells = of_bus_sbus_count_cells,
431 .map = of_bus_sbus_map,
432 .get_flags = of_bus_sbus_get_flags,
433 },
434 /* Default */
435 {
436 .name = "default",
437 .addr_prop_name = "reg",
438 .match = NULL,
439 .count_cells = of_bus_default_count_cells,
440 .map = of_bus_default_map,
441 .get_flags = of_bus_default_get_flags,
442 },
443 };
444
445 static struct of_bus *of_match_bus(struct device_node *np)
446 {
447 int i;
448
449 for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
450 if (!of_busses[i].match || of_busses[i].match(np))
451 return &of_busses[i];
452 BUG();
453 return NULL;
454 }
455
456 static int __init build_one_resource(struct device_node *parent,
457 struct of_bus *bus,
458 struct of_bus *pbus,
459 u32 *addr,
460 int na, int ns, int pna)
461 {
462 u32 *ranges;
463 unsigned int rlen;
464 int rone;
465
466 ranges = of_get_property(parent, "ranges", &rlen);
467 if (ranges == NULL || rlen == 0) {
468 u32 result[OF_MAX_ADDR_CELLS];
469 int i;
470
471 memset(result, 0, pna * 4);
472 for (i = 0; i < na; i++)
473 result[pna - 1 - i] =
474 addr[na - 1 - i];
475
476 memcpy(addr, result, pna * 4);
477 return 0;
478 }
479
480 /* Now walk through the ranges */
481 rlen /= 4;
482 rone = na + pna + ns;
483 for (; rlen >= rone; rlen -= rone, ranges += rone) {
484 if (!bus->map(addr, ranges, na, ns, pna))
485 return 0;
486 }
487
488 return 1;
489 }
490
491 static int __init use_1to1_mapping(struct device_node *pp)
492 {
493 char *model;
494
495 /* If this is on the PMU bus, don't try to translate it even
496 * if a ranges property exists.
497 */
498 if (!strcmp(pp->name, "pmu"))
499 return 1;
500
501 /* If we have a ranges property in the parent, use it. */
502 if (of_find_property(pp, "ranges", NULL) != NULL)
503 return 0;
504
505 /* If the parent is the dma node of an ISA bus, pass
506 * the translation up to the root.
507 */
508 if (!strcmp(pp->name, "dma"))
509 return 0;
510
511 /* Similarly for Simba PCI bridges. */
512 model = of_get_property(pp, "model", NULL);
513 if (model && !strcmp(model, "SUNW,simba"))
514 return 0;
515
516 return 1;
517 }
518
519 static int of_resource_verbose;
520
521 static void __init build_device_resources(struct of_device *op,
522 struct device *parent)
523 {
524 struct of_device *p_op;
525 struct of_bus *bus;
526 int na, ns;
527 int index, num_reg;
528 void *preg;
529
530 if (!parent)
531 return;
532
533 p_op = to_of_device(parent);
534 bus = of_match_bus(p_op->node);
535 bus->count_cells(op->node, &na, &ns);
536
537 preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
538 if (!preg || num_reg == 0)
539 return;
540
541 /* Convert to num-cells. */
542 num_reg /= 4;
543
544 /* Convert to num-entries. */
545 num_reg /= na + ns;
546
547 /* Prevent overruning the op->resources[] array. */
548 if (num_reg > PROMREG_MAX) {
549 printk(KERN_WARNING "%s: Too many regs (%d), "
550 "limiting to %d.\n",
551 op->node->full_name, num_reg, PROMREG_MAX);
552 num_reg = PROMREG_MAX;
553 }
554
555 for (index = 0; index < num_reg; index++) {
556 struct resource *r = &op->resource[index];
557 u32 addr[OF_MAX_ADDR_CELLS];
558 u32 *reg = (preg + (index * ((na + ns) * 4)));
559 struct device_node *dp = op->node;
560 struct device_node *pp = p_op->node;
561 struct of_bus *pbus;
562 u64 size, result = OF_BAD_ADDR;
563 unsigned long flags;
564 int dna, dns;
565 int pna, pns;
566
567 size = of_read_addr(reg + na, ns);
568 flags = bus->get_flags(reg);
569
570 memcpy(addr, reg, na * 4);
571
572 if (use_1to1_mapping(pp)) {
573 result = of_read_addr(addr, na);
574 goto build_res;
575 }
576
577 dna = na;
578 dns = ns;
579
580 while (1) {
581 dp = pp;
582 pp = dp->parent;
583 if (!pp) {
584 result = of_read_addr(addr, dna);
585 break;
586 }
587
588 pbus = of_match_bus(pp);
589 pbus->count_cells(dp, &pna, &pns);
590
591 if (build_one_resource(dp, bus, pbus, addr,
592 dna, dns, pna))
593 break;
594
595 dna = pna;
596 dns = pns;
597 bus = pbus;
598 }
599
600 build_res:
601 memset(r, 0, sizeof(*r));
602
603 if (of_resource_verbose)
604 printk("%s reg[%d] -> %lx\n",
605 op->node->full_name, index,
606 result);
607
608 if (result != OF_BAD_ADDR) {
609 if (tlb_type == hypervisor)
610 result &= 0x0fffffffffffffffUL;
611
612 r->start = result;
613 r->end = result + size - 1;
614 r->flags = flags;
615 } else {
616 r->start = ~0UL;
617 r->end = ~0UL;
618 }
619 r->name = op->node->name;
620 }
621 }
622
623 static struct device_node * __init
624 apply_interrupt_map(struct device_node *dp, struct device_node *pp,
625 u32 *imap, int imlen, u32 *imask,
626 unsigned int *irq_p)
627 {
628 struct device_node *cp;
629 unsigned int irq = *irq_p;
630 struct of_bus *bus;
631 phandle handle;
632 u32 *reg;
633 int na, num_reg, i;
634
635 bus = of_match_bus(pp);
636 bus->count_cells(dp, &na, NULL);
637
638 reg = of_get_property(dp, "reg", &num_reg);
639 if (!reg || !num_reg)
640 return NULL;
641
642 imlen /= ((na + 3) * 4);
643 handle = 0;
644 for (i = 0; i < imlen; i++) {
645 int j;
646
647 for (j = 0; j < na; j++) {
648 if ((reg[j] & imask[j]) != imap[j])
649 goto next;
650 }
651 if (imap[na] == irq) {
652 handle = imap[na + 1];
653 irq = imap[na + 2];
654 break;
655 }
656
657 next:
658 imap += (na + 3);
659 }
660 if (i == imlen) {
661 /* Psycho and Sabre PCI controllers can have 'interrupt-map'
662 * properties that do not include the on-board device
663 * interrupts. Instead, the device's 'interrupts' property
664 * is already a fully specified INO value.
665 *
666 * Handle this by deciding that, if we didn't get a
667 * match in the parent's 'interrupt-map', and the
668 * parent is an IRQ translater, then use the parent as
669 * our IRQ controller.
670 */
671 if (pp->irq_trans)
672 return pp;
673
674 return NULL;
675 }
676
677 *irq_p = irq;
678 cp = of_find_node_by_phandle(handle);
679
680 return cp;
681 }
682
683 static unsigned int __init pci_irq_swizzle(struct device_node *dp,
684 struct device_node *pp,
685 unsigned int irq)
686 {
687 struct linux_prom_pci_registers *regs;
688 unsigned int devfn, slot, ret;
689
690 if (irq < 1 || irq > 4)
691 return irq;
692
693 regs = of_get_property(dp, "reg", NULL);
694 if (!regs)
695 return irq;
696
697 devfn = (regs->phys_hi >> 8) & 0xff;
698 slot = (devfn >> 3) & 0x1f;
699
700 ret = ((irq - 1 + (slot & 3)) & 3) + 1;
701
702 return ret;
703 }
704
705 static int of_irq_verbose;
706
707 static unsigned int __init build_one_device_irq(struct of_device *op,
708 struct device *parent,
709 unsigned int irq)
710 {
711 struct device_node *dp = op->node;
712 struct device_node *pp, *ip;
713 unsigned int orig_irq = irq;
714
715 if (irq == 0xffffffff)
716 return irq;
717
718 if (dp->irq_trans) {
719 irq = dp->irq_trans->irq_build(dp, irq,
720 dp->irq_trans->data);
721
722 if (of_irq_verbose)
723 printk("%s: direct translate %x --> %x\n",
724 dp->full_name, orig_irq, irq);
725
726 return irq;
727 }
728
729 /* Something more complicated. Walk up to the root, applying
730 * interrupt-map or bus specific translations, until we hit
731 * an IRQ translator.
732 *
733 * If we hit a bus type or situation we cannot handle, we
734 * stop and assume that the original IRQ number was in a
735 * format which has special meaning to it's immediate parent.
736 */
737 pp = dp->parent;
738 ip = NULL;
739 while (pp) {
740 void *imap, *imsk;
741 int imlen;
742
743 imap = of_get_property(pp, "interrupt-map", &imlen);
744 imsk = of_get_property(pp, "interrupt-map-mask", NULL);
745 if (imap && imsk) {
746 struct device_node *iret;
747 int this_orig_irq = irq;
748
749 iret = apply_interrupt_map(dp, pp,
750 imap, imlen, imsk,
751 &irq);
752
753 if (of_irq_verbose)
754 printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
755 op->node->full_name,
756 pp->full_name, this_orig_irq,
757 (iret ? iret->full_name : "NULL"), irq);
758
759 if (!iret)
760 break;
761
762 if (iret->irq_trans) {
763 ip = iret;
764 break;
765 }
766 } else {
767 if (!strcmp(pp->type, "pci") ||
768 !strcmp(pp->type, "pciex")) {
769 unsigned int this_orig_irq = irq;
770
771 irq = pci_irq_swizzle(dp, pp, irq);
772 if (of_irq_verbose)
773 printk("%s: PCI swizzle [%s] "
774 "%x --> %x\n",
775 op->node->full_name,
776 pp->full_name, this_orig_irq,
777 irq);
778
779 }
780
781 if (pp->irq_trans) {
782 ip = pp;
783 break;
784 }
785 }
786 dp = pp;
787 pp = pp->parent;
788 }
789 if (!ip)
790 return orig_irq;
791
792 irq = ip->irq_trans->irq_build(op->node, irq,
793 ip->irq_trans->data);
794 if (of_irq_verbose)
795 printk("%s: Apply IRQ trans [%s] %x --> %x\n",
796 op->node->full_name, ip->full_name, orig_irq, irq);
797
798 return irq;
799 }
800
801 static struct of_device * __init scan_one_device(struct device_node *dp,
802 struct device *parent)
803 {
804 struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
805 unsigned int *irq;
806 int len, i;
807
808 if (!op)
809 return NULL;
810
811 op->node = dp;
812
813 op->clock_freq = of_getintprop_default(dp, "clock-frequency",
814 (25*1000*1000));
815 op->portid = of_getintprop_default(dp, "upa-portid", -1);
816 if (op->portid == -1)
817 op->portid = of_getintprop_default(dp, "portid", -1);
818
819 irq = of_get_property(dp, "interrupts", &len);
820 if (irq) {
821 memcpy(op->irqs, irq, len);
822 op->num_irqs = len / 4;
823 } else {
824 op->num_irqs = 0;
825 }
826
827 /* Prevent overruning the op->irqs[] array. */
828 if (op->num_irqs > PROMINTR_MAX) {
829 printk(KERN_WARNING "%s: Too many irqs (%d), "
830 "limiting to %d.\n",
831 dp->full_name, op->num_irqs, PROMINTR_MAX);
832 op->num_irqs = PROMINTR_MAX;
833 }
834
835 build_device_resources(op, parent);
836 for (i = 0; i < op->num_irqs; i++)
837 op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
838
839 op->dev.parent = parent;
840 op->dev.bus = &of_bus_type;
841 if (!parent)
842 strcpy(op->dev.bus_id, "root");
843 else
844 sprintf(op->dev.bus_id, "%s@%08x", dp->name, dp->node);
845
846 if (of_device_register(op)) {
847 printk("%s: Could not register of device.\n",
848 dp->full_name);
849 kfree(op);
850 op = NULL;
851 }
852
853 return op;
854 }
855
856 static void __init scan_tree(struct device_node *dp, struct device *parent)
857 {
858 while (dp) {
859 struct of_device *op = scan_one_device(dp, parent);
860
861 if (op)
862 scan_tree(dp->child, &op->dev);
863
864 dp = dp->sibling;
865 }
866 }
867
868 static void __init scan_of_devices(void)
869 {
870 struct device_node *root = of_find_node_by_path("/");
871 struct of_device *parent;
872
873 parent = scan_one_device(root, NULL);
874 if (!parent)
875 return;
876
877 scan_tree(root->child, &parent->dev);
878 }
879
880 static int __init of_bus_driver_init(void)
881 {
882 int err;
883
884 err = bus_register(&of_bus_type);
885 #ifdef CONFIG_PCI
886 if (!err)
887 err = bus_register(&isa_bus_type);
888 if (!err)
889 err = bus_register(&ebus_bus_type);
890 #endif
891 #ifdef CONFIG_SBUS
892 if (!err)
893 err = bus_register(&sbus_bus_type);
894 #endif
895
896 if (!err)
897 scan_of_devices();
898
899 return err;
900 }
901
902 postcore_initcall(of_bus_driver_init);
903
904 static int __init of_debug(char *str)
905 {
906 int val = 0;
907
908 get_option(&str, &val);
909 if (val & 1)
910 of_resource_verbose = 1;
911 if (val & 2)
912 of_irq_verbose = 1;
913 return 1;
914 }
915
916 __setup("of_debug=", of_debug);
917
918 int of_register_driver(struct of_platform_driver *drv, struct bus_type *bus)
919 {
920 /* initialize common driver fields */
921 drv->driver.name = drv->name;
922 drv->driver.bus = bus;
923
924 /* register with core */
925 return driver_register(&drv->driver);
926 }
927
928 void of_unregister_driver(struct of_platform_driver *drv)
929 {
930 driver_unregister(&drv->driver);
931 }
932
933
934 static ssize_t dev_show_devspec(struct device *dev, struct device_attribute *attr, char *buf)
935 {
936 struct of_device *ofdev;
937
938 ofdev = to_of_device(dev);
939 return sprintf(buf, "%s", ofdev->node->full_name);
940 }
941
942 static DEVICE_ATTR(devspec, S_IRUGO, dev_show_devspec, NULL);
943
944 /**
945 * of_release_dev - free an of device structure when all users of it are finished.
946 * @dev: device that's been disconnected
947 *
948 * Will be called only by the device core when all users of this of device are
949 * done.
950 */
951 void of_release_dev(struct device *dev)
952 {
953 struct of_device *ofdev;
954
955 ofdev = to_of_device(dev);
956
957 kfree(ofdev);
958 }
959
960 int of_device_register(struct of_device *ofdev)
961 {
962 int rc;
963
964 BUG_ON(ofdev->node == NULL);
965
966 rc = device_register(&ofdev->dev);
967 if (rc)
968 return rc;
969
970 rc = device_create_file(&ofdev->dev, &dev_attr_devspec);
971 if (rc)
972 device_unregister(&ofdev->dev);
973
974 return rc;
975 }
976
977 void of_device_unregister(struct of_device *ofdev)
978 {
979 device_remove_file(&ofdev->dev, &dev_attr_devspec);
980 device_unregister(&ofdev->dev);
981 }
982
983 struct of_device* of_platform_device_create(struct device_node *np,
984 const char *bus_id,
985 struct device *parent,
986 struct bus_type *bus)
987 {
988 struct of_device *dev;
989
990 dev = kmalloc(sizeof(*dev), GFP_KERNEL);
991 if (!dev)
992 return NULL;
993 memset(dev, 0, sizeof(*dev));
994
995 dev->dev.parent = parent;
996 dev->dev.bus = bus;
997 dev->dev.release = of_release_dev;
998
999 strlcpy(dev->dev.bus_id, bus_id, BUS_ID_SIZE);
1000
1001 if (of_device_register(dev) != 0) {
1002 kfree(dev);
1003 return NULL;
1004 }
1005
1006 return dev;
1007 }
1008
1009 EXPORT_SYMBOL(of_match_device);
1010 EXPORT_SYMBOL(of_register_driver);
1011 EXPORT_SYMBOL(of_unregister_driver);
1012 EXPORT_SYMBOL(of_device_register);
1013 EXPORT_SYMBOL(of_device_unregister);
1014 EXPORT_SYMBOL(of_dev_get);
1015 EXPORT_SYMBOL(of_dev_put);
1016 EXPORT_SYMBOL(of_platform_device_create);
1017 EXPORT_SYMBOL(of_release_dev);