]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/sparc64/kernel/process.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[mirror_ubuntu-focal-kernel.git] / arch / sparc64 / kernel / process.c
1 /* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/reboot.h>
26 #include <linux/delay.h>
27 #include <linux/compat.h>
28 #include <linux/tick.h>
29 #include <linux/init.h>
30 #include <linux/cpu.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33
34 #include <asm/oplib.h>
35 #include <asm/uaccess.h>
36 #include <asm/system.h>
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/pstate.h>
42 #include <asm/elf.h>
43 #include <asm/fpumacro.h>
44 #include <asm/head.h>
45 #include <asm/cpudata.h>
46 #include <asm/mmu_context.h>
47 #include <asm/unistd.h>
48 #include <asm/hypervisor.h>
49 #include <asm/sstate.h>
50 #include <asm/reboot.h>
51 #include <asm/syscalls.h>
52 #include <asm/irq_regs.h>
53 #include <asm/smp.h>
54
55 static void sparc64_yield(int cpu)
56 {
57 if (tlb_type != hypervisor)
58 return;
59
60 clear_thread_flag(TIF_POLLING_NRFLAG);
61 smp_mb__after_clear_bit();
62
63 while (!need_resched() && !cpu_is_offline(cpu)) {
64 unsigned long pstate;
65
66 /* Disable interrupts. */
67 __asm__ __volatile__(
68 "rdpr %%pstate, %0\n\t"
69 "andn %0, %1, %0\n\t"
70 "wrpr %0, %%g0, %%pstate"
71 : "=&r" (pstate)
72 : "i" (PSTATE_IE));
73
74 if (!need_resched() && !cpu_is_offline(cpu))
75 sun4v_cpu_yield();
76
77 /* Re-enable interrupts. */
78 __asm__ __volatile__(
79 "rdpr %%pstate, %0\n\t"
80 "or %0, %1, %0\n\t"
81 "wrpr %0, %%g0, %%pstate"
82 : "=&r" (pstate)
83 : "i" (PSTATE_IE));
84 }
85
86 set_thread_flag(TIF_POLLING_NRFLAG);
87 }
88
89 /* The idle loop on sparc64. */
90 void cpu_idle(void)
91 {
92 int cpu = smp_processor_id();
93
94 set_thread_flag(TIF_POLLING_NRFLAG);
95
96 while(1) {
97 tick_nohz_stop_sched_tick(1);
98
99 while (!need_resched() && !cpu_is_offline(cpu))
100 sparc64_yield(cpu);
101
102 tick_nohz_restart_sched_tick();
103
104 preempt_enable_no_resched();
105
106 #ifdef CONFIG_HOTPLUG_CPU
107 if (cpu_is_offline(cpu))
108 cpu_play_dead();
109 #endif
110
111 schedule();
112 preempt_disable();
113 }
114 }
115
116 void machine_halt(void)
117 {
118 sstate_halt();
119 prom_halt();
120 panic("Halt failed!");
121 }
122
123 void machine_alt_power_off(void)
124 {
125 sstate_poweroff();
126 prom_halt_power_off();
127 panic("Power-off failed!");
128 }
129
130 void machine_restart(char * cmd)
131 {
132 char *p;
133
134 sstate_reboot();
135 p = strchr (reboot_command, '\n');
136 if (p) *p = 0;
137 if (cmd)
138 prom_reboot(cmd);
139 if (*reboot_command)
140 prom_reboot(reboot_command);
141 prom_reboot("");
142 panic("Reboot failed!");
143 }
144
145 #ifdef CONFIG_COMPAT
146 static void show_regwindow32(struct pt_regs *regs)
147 {
148 struct reg_window32 __user *rw;
149 struct reg_window32 r_w;
150 mm_segment_t old_fs;
151
152 __asm__ __volatile__ ("flushw");
153 rw = compat_ptr((unsigned)regs->u_regs[14]);
154 old_fs = get_fs();
155 set_fs (USER_DS);
156 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
157 set_fs (old_fs);
158 return;
159 }
160
161 set_fs (old_fs);
162 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
163 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
164 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
165 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
166 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
167 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
168 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
169 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
170 }
171 #else
172 #define show_regwindow32(regs) do { } while (0)
173 #endif
174
175 static void show_regwindow(struct pt_regs *regs)
176 {
177 struct reg_window __user *rw;
178 struct reg_window *rwk;
179 struct reg_window r_w;
180 mm_segment_t old_fs;
181
182 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
183 __asm__ __volatile__ ("flushw");
184 rw = (struct reg_window __user *)
185 (regs->u_regs[14] + STACK_BIAS);
186 rwk = (struct reg_window *)
187 (regs->u_regs[14] + STACK_BIAS);
188 if (!(regs->tstate & TSTATE_PRIV)) {
189 old_fs = get_fs();
190 set_fs (USER_DS);
191 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
192 set_fs (old_fs);
193 return;
194 }
195 rwk = &r_w;
196 set_fs (old_fs);
197 }
198 } else {
199 show_regwindow32(regs);
200 return;
201 }
202 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
203 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
204 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
205 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
206 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
207 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
208 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
209 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
210 if (regs->tstate & TSTATE_PRIV)
211 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
212 }
213
214 void show_regs(struct pt_regs *regs)
215 {
216 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
217 regs->tpc, regs->tnpc, regs->y, print_tainted());
218 printk("TPC: <%pS>\n", (void *) regs->tpc);
219 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
220 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
221 regs->u_regs[3]);
222 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
223 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
224 regs->u_regs[7]);
225 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
226 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
227 regs->u_regs[11]);
228 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
229 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
230 regs->u_regs[15]);
231 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
232 show_regwindow(regs);
233 }
234
235 struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
236 static DEFINE_SPINLOCK(global_reg_snapshot_lock);
237
238 static bool kstack_valid(struct thread_info *tp, struct reg_window *rw)
239 {
240 unsigned long thread_base, fp;
241
242 thread_base = (unsigned long) tp;
243 fp = (unsigned long) rw;
244
245 if (fp < (thread_base + sizeof(struct thread_info)) ||
246 fp >= (thread_base + THREAD_SIZE))
247 return false;
248 return true;
249 }
250
251 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
252 int this_cpu)
253 {
254 flushw_all();
255
256 global_reg_snapshot[this_cpu].tstate = regs->tstate;
257 global_reg_snapshot[this_cpu].tpc = regs->tpc;
258 global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
259 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
260
261 if (regs->tstate & TSTATE_PRIV) {
262 struct thread_info *tp = current_thread_info();
263 struct reg_window *rw;
264
265 rw = (struct reg_window *)
266 (regs->u_regs[UREG_FP] + STACK_BIAS);
267 if (kstack_valid(tp, rw)) {
268 global_reg_snapshot[this_cpu].i7 = rw->ins[7];
269 rw = (struct reg_window *)
270 (rw->ins[6] + STACK_BIAS);
271 if (kstack_valid(tp, rw))
272 global_reg_snapshot[this_cpu].rpc = rw->ins[7];
273 }
274 } else {
275 global_reg_snapshot[this_cpu].i7 = 0;
276 global_reg_snapshot[this_cpu].rpc = 0;
277 }
278 global_reg_snapshot[this_cpu].thread = tp;
279 }
280
281 /* In order to avoid hangs we do not try to synchronize with the
282 * global register dump client cpus. The last store they make is to
283 * the thread pointer, so do a short poll waiting for that to become
284 * non-NULL.
285 */
286 static void __global_reg_poll(struct global_reg_snapshot *gp)
287 {
288 int limit = 0;
289
290 while (!gp->thread && ++limit < 100) {
291 barrier();
292 udelay(1);
293 }
294 }
295
296 void __trigger_all_cpu_backtrace(void)
297 {
298 struct thread_info *tp = current_thread_info();
299 struct pt_regs *regs = get_irq_regs();
300 unsigned long flags;
301 int this_cpu, cpu;
302
303 if (!regs)
304 regs = tp->kregs;
305
306 spin_lock_irqsave(&global_reg_snapshot_lock, flags);
307
308 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
309
310 this_cpu = raw_smp_processor_id();
311
312 __global_reg_self(tp, regs, this_cpu);
313
314 smp_fetch_global_regs();
315
316 for_each_online_cpu(cpu) {
317 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
318 struct thread_info *tp;
319
320 __global_reg_poll(gp);
321
322 tp = gp->thread;
323 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
324 (cpu == this_cpu ? '*' : ' '), cpu,
325 gp->tstate, gp->tpc, gp->tnpc,
326 ((tp && tp->task) ? tp->task->comm : "NULL"),
327 ((tp && tp->task) ? tp->task->pid : -1));
328
329 if (gp->tstate & TSTATE_PRIV) {
330 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
331 (void *) gp->tpc,
332 (void *) gp->o7,
333 (void *) gp->i7,
334 (void *) gp->rpc);
335 } else {
336 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
337 gp->tpc, gp->o7, gp->i7, gp->rpc);
338 }
339 }
340
341 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
342
343 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
344 }
345
346 #ifdef CONFIG_MAGIC_SYSRQ
347
348 static void sysrq_handle_globreg(int key, struct tty_struct *tty)
349 {
350 __trigger_all_cpu_backtrace();
351 }
352
353 static struct sysrq_key_op sparc_globalreg_op = {
354 .handler = sysrq_handle_globreg,
355 .help_msg = "Globalregs",
356 .action_msg = "Show Global CPU Regs",
357 };
358
359 static int __init sparc_globreg_init(void)
360 {
361 return register_sysrq_key('y', &sparc_globalreg_op);
362 }
363
364 core_initcall(sparc_globreg_init);
365
366 #endif
367
368 unsigned long thread_saved_pc(struct task_struct *tsk)
369 {
370 struct thread_info *ti = task_thread_info(tsk);
371 unsigned long ret = 0xdeadbeefUL;
372
373 if (ti && ti->ksp) {
374 unsigned long *sp;
375 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
376 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
377 sp[14]) {
378 unsigned long *fp;
379 fp = (unsigned long *)(sp[14] + STACK_BIAS);
380 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
381 ret = fp[15];
382 }
383 }
384 return ret;
385 }
386
387 /* Free current thread data structures etc.. */
388 void exit_thread(void)
389 {
390 struct thread_info *t = current_thread_info();
391
392 if (t->utraps) {
393 if (t->utraps[0] < 2)
394 kfree (t->utraps);
395 else
396 t->utraps[0]--;
397 }
398
399 if (test_and_clear_thread_flag(TIF_PERFCTR)) {
400 t->user_cntd0 = t->user_cntd1 = NULL;
401 t->pcr_reg = 0;
402 write_pcr(0);
403 }
404 }
405
406 void flush_thread(void)
407 {
408 struct thread_info *t = current_thread_info();
409 struct mm_struct *mm;
410
411 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
412 clear_ti_thread_flag(t, TIF_ABI_PENDING);
413 if (test_ti_thread_flag(t, TIF_32BIT))
414 clear_ti_thread_flag(t, TIF_32BIT);
415 else
416 set_ti_thread_flag(t, TIF_32BIT);
417 }
418
419 mm = t->task->mm;
420 if (mm)
421 tsb_context_switch(mm);
422
423 set_thread_wsaved(0);
424
425 /* Turn off performance counters if on. */
426 if (test_and_clear_thread_flag(TIF_PERFCTR)) {
427 t->user_cntd0 = t->user_cntd1 = NULL;
428 t->pcr_reg = 0;
429 write_pcr(0);
430 }
431
432 /* Clear FPU register state. */
433 t->fpsaved[0] = 0;
434
435 if (get_thread_current_ds() != ASI_AIUS)
436 set_fs(USER_DS);
437 }
438
439 /* It's a bit more tricky when 64-bit tasks are involved... */
440 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
441 {
442 unsigned long fp, distance, rval;
443
444 if (!(test_thread_flag(TIF_32BIT))) {
445 csp += STACK_BIAS;
446 psp += STACK_BIAS;
447 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
448 fp += STACK_BIAS;
449 } else
450 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
451
452 /* Now 8-byte align the stack as this is mandatory in the
453 * Sparc ABI due to how register windows work. This hides
454 * the restriction from thread libraries etc. -DaveM
455 */
456 csp &= ~7UL;
457
458 distance = fp - psp;
459 rval = (csp - distance);
460 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
461 rval = 0;
462 else if (test_thread_flag(TIF_32BIT)) {
463 if (put_user(((u32)csp),
464 &(((struct reg_window32 __user *)rval)->ins[6])))
465 rval = 0;
466 } else {
467 if (put_user(((u64)csp - STACK_BIAS),
468 &(((struct reg_window __user *)rval)->ins[6])))
469 rval = 0;
470 else
471 rval = rval - STACK_BIAS;
472 }
473
474 return rval;
475 }
476
477 /* Standard stuff. */
478 static inline void shift_window_buffer(int first_win, int last_win,
479 struct thread_info *t)
480 {
481 int i;
482
483 for (i = first_win; i < last_win; i++) {
484 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
485 memcpy(&t->reg_window[i], &t->reg_window[i+1],
486 sizeof(struct reg_window));
487 }
488 }
489
490 void synchronize_user_stack(void)
491 {
492 struct thread_info *t = current_thread_info();
493 unsigned long window;
494
495 flush_user_windows();
496 if ((window = get_thread_wsaved()) != 0) {
497 int winsize = sizeof(struct reg_window);
498 int bias = 0;
499
500 if (test_thread_flag(TIF_32BIT))
501 winsize = sizeof(struct reg_window32);
502 else
503 bias = STACK_BIAS;
504
505 window -= 1;
506 do {
507 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
508 struct reg_window *rwin = &t->reg_window[window];
509
510 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
511 shift_window_buffer(window, get_thread_wsaved() - 1, t);
512 set_thread_wsaved(get_thread_wsaved() - 1);
513 }
514 } while (window--);
515 }
516 }
517
518 static void stack_unaligned(unsigned long sp)
519 {
520 siginfo_t info;
521
522 info.si_signo = SIGBUS;
523 info.si_errno = 0;
524 info.si_code = BUS_ADRALN;
525 info.si_addr = (void __user *) sp;
526 info.si_trapno = 0;
527 force_sig_info(SIGBUS, &info, current);
528 }
529
530 void fault_in_user_windows(void)
531 {
532 struct thread_info *t = current_thread_info();
533 unsigned long window;
534 int winsize = sizeof(struct reg_window);
535 int bias = 0;
536
537 if (test_thread_flag(TIF_32BIT))
538 winsize = sizeof(struct reg_window32);
539 else
540 bias = STACK_BIAS;
541
542 flush_user_windows();
543 window = get_thread_wsaved();
544
545 if (likely(window != 0)) {
546 window -= 1;
547 do {
548 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
549 struct reg_window *rwin = &t->reg_window[window];
550
551 if (unlikely(sp & 0x7UL))
552 stack_unaligned(sp);
553
554 if (unlikely(copy_to_user((char __user *)sp,
555 rwin, winsize)))
556 goto barf;
557 } while (window--);
558 }
559 set_thread_wsaved(0);
560 return;
561
562 barf:
563 set_thread_wsaved(window + 1);
564 do_exit(SIGILL);
565 }
566
567 asmlinkage long sparc_do_fork(unsigned long clone_flags,
568 unsigned long stack_start,
569 struct pt_regs *regs,
570 unsigned long stack_size)
571 {
572 int __user *parent_tid_ptr, *child_tid_ptr;
573 unsigned long orig_i1 = regs->u_regs[UREG_I1];
574 long ret;
575
576 #ifdef CONFIG_COMPAT
577 if (test_thread_flag(TIF_32BIT)) {
578 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
579 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
580 } else
581 #endif
582 {
583 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
584 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
585 }
586
587 ret = do_fork(clone_flags, stack_start,
588 regs, stack_size,
589 parent_tid_ptr, child_tid_ptr);
590
591 /* If we get an error and potentially restart the system
592 * call, we're screwed because copy_thread() clobbered
593 * the parent's %o1. So detect that case and restore it
594 * here.
595 */
596 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
597 regs->u_regs[UREG_I1] = orig_i1;
598
599 return ret;
600 }
601
602 /* Copy a Sparc thread. The fork() return value conventions
603 * under SunOS are nothing short of bletcherous:
604 * Parent --> %o0 == childs pid, %o1 == 0
605 * Child --> %o0 == parents pid, %o1 == 1
606 */
607 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
608 unsigned long unused,
609 struct task_struct *p, struct pt_regs *regs)
610 {
611 struct thread_info *t = task_thread_info(p);
612 struct sparc_stackf *parent_sf;
613 unsigned long child_stack_sz;
614 char *child_trap_frame;
615 int kernel_thread;
616
617 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
618 parent_sf = ((struct sparc_stackf *) regs) - 1;
619
620 /* Calculate offset to stack_frame & pt_regs */
621 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
622 (kernel_thread ? STACKFRAME_SZ : 0));
623 child_trap_frame = (task_stack_page(p) +
624 (THREAD_SIZE - child_stack_sz));
625 memcpy(child_trap_frame, parent_sf, child_stack_sz);
626
627 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
628 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
629 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
630 t->new_child = 1;
631 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
632 t->kregs = (struct pt_regs *) (child_trap_frame +
633 sizeof(struct sparc_stackf));
634 t->fpsaved[0] = 0;
635
636 if (kernel_thread) {
637 struct sparc_stackf *child_sf = (struct sparc_stackf *)
638 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
639
640 /* Zero terminate the stack backtrace. */
641 child_sf->fp = NULL;
642 t->kregs->u_regs[UREG_FP] =
643 ((unsigned long) child_sf) - STACK_BIAS;
644
645 /* Special case, if we are spawning a kernel thread from
646 * a userspace task (usermode helper, NFS or similar), we
647 * must disable performance counters in the child because
648 * the address space and protection realm are changing.
649 */
650 if (t->flags & _TIF_PERFCTR) {
651 t->user_cntd0 = t->user_cntd1 = NULL;
652 t->pcr_reg = 0;
653 t->flags &= ~_TIF_PERFCTR;
654 }
655 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
656 t->kregs->u_regs[UREG_G6] = (unsigned long) t;
657 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
658 } else {
659 if (t->flags & _TIF_32BIT) {
660 sp &= 0x00000000ffffffffUL;
661 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
662 }
663 t->kregs->u_regs[UREG_FP] = sp;
664 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
665 if (sp != regs->u_regs[UREG_FP]) {
666 unsigned long csp;
667
668 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
669 if (!csp)
670 return -EFAULT;
671 t->kregs->u_regs[UREG_FP] = csp;
672 }
673 if (t->utraps)
674 t->utraps[0]++;
675 }
676
677 /* Set the return value for the child. */
678 t->kregs->u_regs[UREG_I0] = current->pid;
679 t->kregs->u_regs[UREG_I1] = 1;
680
681 /* Set the second return value for the parent. */
682 regs->u_regs[UREG_I1] = 0;
683
684 if (clone_flags & CLONE_SETTLS)
685 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
686
687 return 0;
688 }
689
690 /*
691 * This is the mechanism for creating a new kernel thread.
692 *
693 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
694 * who haven't done an "execve()") should use this: it will work within
695 * a system call from a "real" process, but the process memory space will
696 * not be freed until both the parent and the child have exited.
697 */
698 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
699 {
700 long retval;
701
702 /* If the parent runs before fn(arg) is called by the child,
703 * the input registers of this function can be clobbered.
704 * So we stash 'fn' and 'arg' into global registers which
705 * will not be modified by the parent.
706 */
707 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
708 "mov %5, %%g3\n\t" /* Save ARG into global */
709 "mov %1, %%g1\n\t" /* Clone syscall nr. */
710 "mov %2, %%o0\n\t" /* Clone flags. */
711 "mov 0, %%o1\n\t" /* usp arg == 0 */
712 "t 0x6d\n\t" /* Linux/Sparc clone(). */
713 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
714 " mov %%o0, %0\n\t"
715 "jmpl %%g2, %%o7\n\t" /* Call the function. */
716 " mov %%g3, %%o0\n\t" /* Set arg in delay. */
717 "mov %3, %%g1\n\t"
718 "t 0x6d\n\t" /* Linux/Sparc exit(). */
719 /* Notreached by child. */
720 "1:" :
721 "=r" (retval) :
722 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
723 "i" (__NR_exit), "r" (fn), "r" (arg) :
724 "g1", "g2", "g3", "o0", "o1", "memory", "cc");
725 return retval;
726 }
727
728 typedef struct {
729 union {
730 unsigned int pr_regs[32];
731 unsigned long pr_dregs[16];
732 } pr_fr;
733 unsigned int __unused;
734 unsigned int pr_fsr;
735 unsigned char pr_qcnt;
736 unsigned char pr_q_entrysize;
737 unsigned char pr_en;
738 unsigned int pr_q[64];
739 } elf_fpregset_t32;
740
741 /*
742 * fill in the fpu structure for a core dump.
743 */
744 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
745 {
746 unsigned long *kfpregs = current_thread_info()->fpregs;
747 unsigned long fprs = current_thread_info()->fpsaved[0];
748
749 if (test_thread_flag(TIF_32BIT)) {
750 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
751
752 if (fprs & FPRS_DL)
753 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
754 sizeof(unsigned int) * 32);
755 else
756 memset(&fpregs32->pr_fr.pr_regs[0], 0,
757 sizeof(unsigned int) * 32);
758 fpregs32->pr_qcnt = 0;
759 fpregs32->pr_q_entrysize = 8;
760 memset(&fpregs32->pr_q[0], 0,
761 (sizeof(unsigned int) * 64));
762 if (fprs & FPRS_FEF) {
763 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
764 fpregs32->pr_en = 1;
765 } else {
766 fpregs32->pr_fsr = 0;
767 fpregs32->pr_en = 0;
768 }
769 } else {
770 if(fprs & FPRS_DL)
771 memcpy(&fpregs->pr_regs[0], kfpregs,
772 sizeof(unsigned int) * 32);
773 else
774 memset(&fpregs->pr_regs[0], 0,
775 sizeof(unsigned int) * 32);
776 if(fprs & FPRS_DU)
777 memcpy(&fpregs->pr_regs[16], kfpregs+16,
778 sizeof(unsigned int) * 32);
779 else
780 memset(&fpregs->pr_regs[16], 0,
781 sizeof(unsigned int) * 32);
782 if(fprs & FPRS_FEF) {
783 fpregs->pr_fsr = current_thread_info()->xfsr[0];
784 fpregs->pr_gsr = current_thread_info()->gsr[0];
785 } else {
786 fpregs->pr_fsr = fpregs->pr_gsr = 0;
787 }
788 fpregs->pr_fprs = fprs;
789 }
790 return 1;
791 }
792
793 /*
794 * sparc_execve() executes a new program after the asm stub has set
795 * things up for us. This should basically do what I want it to.
796 */
797 asmlinkage int sparc_execve(struct pt_regs *regs)
798 {
799 int error, base = 0;
800 char *filename;
801
802 /* User register window flush is done by entry.S */
803
804 /* Check for indirect call. */
805 if (regs->u_regs[UREG_G1] == 0)
806 base = 1;
807
808 filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
809 error = PTR_ERR(filename);
810 if (IS_ERR(filename))
811 goto out;
812 error = do_execve(filename,
813 (char __user * __user *)
814 regs->u_regs[base + UREG_I1],
815 (char __user * __user *)
816 regs->u_regs[base + UREG_I2], regs);
817 putname(filename);
818 if (!error) {
819 fprs_write(0);
820 current_thread_info()->xfsr[0] = 0;
821 current_thread_info()->fpsaved[0] = 0;
822 regs->tstate &= ~TSTATE_PEF;
823 }
824 out:
825 return error;
826 }
827
828 unsigned long get_wchan(struct task_struct *task)
829 {
830 unsigned long pc, fp, bias = 0;
831 unsigned long thread_info_base;
832 struct reg_window *rw;
833 unsigned long ret = 0;
834 int count = 0;
835
836 if (!task || task == current ||
837 task->state == TASK_RUNNING)
838 goto out;
839
840 thread_info_base = (unsigned long) task_stack_page(task);
841 bias = STACK_BIAS;
842 fp = task_thread_info(task)->ksp + bias;
843
844 do {
845 /* Bogus frame pointer? */
846 if (fp < (thread_info_base + sizeof(struct thread_info)) ||
847 fp >= (thread_info_base + THREAD_SIZE))
848 break;
849 rw = (struct reg_window *) fp;
850 pc = rw->ins[7];
851 if (!in_sched_functions(pc)) {
852 ret = pc;
853 goto out;
854 }
855 fp = rw->ins[6] + bias;
856 } while (++count < 16);
857
858 out:
859 return ret;
860 }