]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/sparc64/kernel/smp.c
Merge branch 'master' of /home/trondmy/kernel/linux-2.6/
[mirror_ubuntu-bionic-kernel.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32
33 #include <asm/irq.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/sections.h>
42
43 extern void calibrate_delay(void);
44
45 /* Please don't make this stuff initdata!!! --DaveM */
46 static unsigned char boot_cpu_id;
47
48 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
50 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
51 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
52 static cpumask_t smp_commenced_mask;
53 static cpumask_t cpu_callout_map;
54
55 void smp_info(struct seq_file *m)
56 {
57 int i;
58
59 seq_printf(m, "State:\n");
60 for_each_online_cpu(i)
61 seq_printf(m, "CPU%d:\t\tonline\n", i);
62 }
63
64 void smp_bogo(struct seq_file *m)
65 {
66 int i;
67
68 for_each_online_cpu(i)
69 seq_printf(m,
70 "Cpu%dBogo\t: %lu.%02lu\n"
71 "Cpu%dClkTck\t: %016lx\n",
72 i, cpu_data(i).udelay_val / (500000/HZ),
73 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
74 i, cpu_data(i).clock_tick);
75 }
76
77 void __init smp_store_cpu_info(int id)
78 {
79 int cpu_node, def;
80
81 /* multiplier and counter set by
82 smp_setup_percpu_timer() */
83 cpu_data(id).udelay_val = loops_per_jiffy;
84
85 cpu_find_by_mid(id, &cpu_node);
86 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
87 "clock-frequency", 0);
88
89 def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
90 cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
91 def);
92
93 def = 32;
94 cpu_data(id).dcache_line_size =
95 prom_getintdefault(cpu_node, "dcache-line-size", def);
96
97 def = 16 * 1024;
98 cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
99 def);
100
101 def = 32;
102 cpu_data(id).icache_line_size =
103 prom_getintdefault(cpu_node, "icache-line-size", def);
104
105 def = ((tlb_type == hypervisor) ?
106 (3 * 1024 * 1024) :
107 (4 * 1024 * 1024));
108 cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
109 def);
110
111 def = 64;
112 cpu_data(id).ecache_line_size =
113 prom_getintdefault(cpu_node, "ecache-line-size", def);
114
115 printk("CPU[%d]: Caches "
116 "D[sz(%d):line_sz(%d)] "
117 "I[sz(%d):line_sz(%d)] "
118 "E[sz(%d):line_sz(%d)]\n",
119 id,
120 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
121 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
122 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
123 }
124
125 static void smp_setup_percpu_timer(void);
126
127 static volatile unsigned long callin_flag = 0;
128
129 void __init smp_callin(void)
130 {
131 int cpuid = hard_smp_processor_id();
132
133 __local_per_cpu_offset = __per_cpu_offset(cpuid);
134
135 if (tlb_type == hypervisor)
136 sun4v_ktsb_register();
137
138 __flush_tlb_all();
139
140 smp_setup_percpu_timer();
141
142 if (cheetah_pcache_forced_on)
143 cheetah_enable_pcache();
144
145 local_irq_enable();
146
147 calibrate_delay();
148 smp_store_cpu_info(cpuid);
149 callin_flag = 1;
150 __asm__ __volatile__("membar #Sync\n\t"
151 "flush %%g6" : : : "memory");
152
153 /* Clear this or we will die instantly when we
154 * schedule back to this idler...
155 */
156 current_thread_info()->new_child = 0;
157
158 /* Attach to the address space of init_task. */
159 atomic_inc(&init_mm.mm_count);
160 current->active_mm = &init_mm;
161
162 while (!cpu_isset(cpuid, smp_commenced_mask))
163 rmb();
164
165 cpu_set(cpuid, cpu_online_map);
166
167 /* idle thread is expected to have preempt disabled */
168 preempt_disable();
169 }
170
171 void cpu_panic(void)
172 {
173 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
174 panic("SMP bolixed\n");
175 }
176
177 static unsigned long current_tick_offset __read_mostly;
178
179 /* This tick register synchronization scheme is taken entirely from
180 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
181 *
182 * The only change I've made is to rework it so that the master
183 * initiates the synchonization instead of the slave. -DaveM
184 */
185
186 #define MASTER 0
187 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
188
189 #define NUM_ROUNDS 64 /* magic value */
190 #define NUM_ITERS 5 /* likewise */
191
192 static DEFINE_SPINLOCK(itc_sync_lock);
193 static unsigned long go[SLAVE + 1];
194
195 #define DEBUG_TICK_SYNC 0
196
197 static inline long get_delta (long *rt, long *master)
198 {
199 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
200 unsigned long tcenter, t0, t1, tm;
201 unsigned long i;
202
203 for (i = 0; i < NUM_ITERS; i++) {
204 t0 = tick_ops->get_tick();
205 go[MASTER] = 1;
206 membar_storeload();
207 while (!(tm = go[SLAVE]))
208 rmb();
209 go[SLAVE] = 0;
210 wmb();
211 t1 = tick_ops->get_tick();
212
213 if (t1 - t0 < best_t1 - best_t0)
214 best_t0 = t0, best_t1 = t1, best_tm = tm;
215 }
216
217 *rt = best_t1 - best_t0;
218 *master = best_tm - best_t0;
219
220 /* average best_t0 and best_t1 without overflow: */
221 tcenter = (best_t0/2 + best_t1/2);
222 if (best_t0 % 2 + best_t1 % 2 == 2)
223 tcenter++;
224 return tcenter - best_tm;
225 }
226
227 void smp_synchronize_tick_client(void)
228 {
229 long i, delta, adj, adjust_latency = 0, done = 0;
230 unsigned long flags, rt, master_time_stamp, bound;
231 #if DEBUG_TICK_SYNC
232 struct {
233 long rt; /* roundtrip time */
234 long master; /* master's timestamp */
235 long diff; /* difference between midpoint and master's timestamp */
236 long lat; /* estimate of itc adjustment latency */
237 } t[NUM_ROUNDS];
238 #endif
239
240 go[MASTER] = 1;
241
242 while (go[MASTER])
243 rmb();
244
245 local_irq_save(flags);
246 {
247 for (i = 0; i < NUM_ROUNDS; i++) {
248 delta = get_delta(&rt, &master_time_stamp);
249 if (delta == 0) {
250 done = 1; /* let's lock on to this... */
251 bound = rt;
252 }
253
254 if (!done) {
255 if (i > 0) {
256 adjust_latency += -delta;
257 adj = -delta + adjust_latency/4;
258 } else
259 adj = -delta;
260
261 tick_ops->add_tick(adj, current_tick_offset);
262 }
263 #if DEBUG_TICK_SYNC
264 t[i].rt = rt;
265 t[i].master = master_time_stamp;
266 t[i].diff = delta;
267 t[i].lat = adjust_latency/4;
268 #endif
269 }
270 }
271 local_irq_restore(flags);
272
273 #if DEBUG_TICK_SYNC
274 for (i = 0; i < NUM_ROUNDS; i++)
275 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
276 t[i].rt, t[i].master, t[i].diff, t[i].lat);
277 #endif
278
279 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
280 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
281 }
282
283 static void smp_start_sync_tick_client(int cpu);
284
285 static void smp_synchronize_one_tick(int cpu)
286 {
287 unsigned long flags, i;
288
289 go[MASTER] = 0;
290
291 smp_start_sync_tick_client(cpu);
292
293 /* wait for client to be ready */
294 while (!go[MASTER])
295 rmb();
296
297 /* now let the client proceed into his loop */
298 go[MASTER] = 0;
299 membar_storeload();
300
301 spin_lock_irqsave(&itc_sync_lock, flags);
302 {
303 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
304 while (!go[MASTER])
305 rmb();
306 go[MASTER] = 0;
307 wmb();
308 go[SLAVE] = tick_ops->get_tick();
309 membar_storeload();
310 }
311 }
312 spin_unlock_irqrestore(&itc_sync_lock, flags);
313 }
314
315 extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
316
317 extern unsigned long sparc64_cpu_startup;
318
319 /* The OBP cpu startup callback truncates the 3rd arg cookie to
320 * 32-bits (I think) so to be safe we have it read the pointer
321 * contained here so we work on >4GB machines. -DaveM
322 */
323 static struct thread_info *cpu_new_thread = NULL;
324
325 static int __devinit smp_boot_one_cpu(unsigned int cpu)
326 {
327 unsigned long entry =
328 (unsigned long)(&sparc64_cpu_startup);
329 unsigned long cookie =
330 (unsigned long)(&cpu_new_thread);
331 struct task_struct *p;
332 int timeout, ret;
333
334 p = fork_idle(cpu);
335 callin_flag = 0;
336 cpu_new_thread = task_thread_info(p);
337 cpu_set(cpu, cpu_callout_map);
338
339 if (tlb_type == hypervisor) {
340 /* Alloc the mondo queues, cpu will load them. */
341 sun4v_init_mondo_queues(0, cpu, 1, 0);
342
343 prom_startcpu_cpuid(cpu, entry, cookie);
344 } else {
345 int cpu_node;
346
347 cpu_find_by_mid(cpu, &cpu_node);
348 prom_startcpu(cpu_node, entry, cookie);
349 }
350
351 for (timeout = 0; timeout < 5000000; timeout++) {
352 if (callin_flag)
353 break;
354 udelay(100);
355 }
356
357 if (callin_flag) {
358 ret = 0;
359 } else {
360 printk("Processor %d is stuck.\n", cpu);
361 cpu_clear(cpu, cpu_callout_map);
362 ret = -ENODEV;
363 }
364 cpu_new_thread = NULL;
365
366 return ret;
367 }
368
369 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
370 {
371 u64 result, target;
372 int stuck, tmp;
373
374 if (this_is_starfire) {
375 /* map to real upaid */
376 cpu = (((cpu & 0x3c) << 1) |
377 ((cpu & 0x40) >> 4) |
378 (cpu & 0x3));
379 }
380
381 target = (cpu << 14) | 0x70;
382 again:
383 /* Ok, this is the real Spitfire Errata #54.
384 * One must read back from a UDB internal register
385 * after writes to the UDB interrupt dispatch, but
386 * before the membar Sync for that write.
387 * So we use the high UDB control register (ASI 0x7f,
388 * ADDR 0x20) for the dummy read. -DaveM
389 */
390 tmp = 0x40;
391 __asm__ __volatile__(
392 "wrpr %1, %2, %%pstate\n\t"
393 "stxa %4, [%0] %3\n\t"
394 "stxa %5, [%0+%8] %3\n\t"
395 "add %0, %8, %0\n\t"
396 "stxa %6, [%0+%8] %3\n\t"
397 "membar #Sync\n\t"
398 "stxa %%g0, [%7] %3\n\t"
399 "membar #Sync\n\t"
400 "mov 0x20, %%g1\n\t"
401 "ldxa [%%g1] 0x7f, %%g0\n\t"
402 "membar #Sync"
403 : "=r" (tmp)
404 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
405 "r" (data0), "r" (data1), "r" (data2), "r" (target),
406 "r" (0x10), "0" (tmp)
407 : "g1");
408
409 /* NOTE: PSTATE_IE is still clear. */
410 stuck = 100000;
411 do {
412 __asm__ __volatile__("ldxa [%%g0] %1, %0"
413 : "=r" (result)
414 : "i" (ASI_INTR_DISPATCH_STAT));
415 if (result == 0) {
416 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
417 : : "r" (pstate));
418 return;
419 }
420 stuck -= 1;
421 if (stuck == 0)
422 break;
423 } while (result & 0x1);
424 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
425 : : "r" (pstate));
426 if (stuck == 0) {
427 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
428 smp_processor_id(), result);
429 } else {
430 udelay(2);
431 goto again;
432 }
433 }
434
435 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
436 {
437 u64 pstate;
438 int i;
439
440 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
441 for_each_cpu_mask(i, mask)
442 spitfire_xcall_helper(data0, data1, data2, pstate, i);
443 }
444
445 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
446 * packet, but we have no use for that. However we do take advantage of
447 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
448 */
449 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
450 {
451 u64 pstate, ver;
452 int nack_busy_id, is_jbus;
453
454 if (cpus_empty(mask))
455 return;
456
457 /* Unfortunately, someone at Sun had the brilliant idea to make the
458 * busy/nack fields hard-coded by ITID number for this Ultra-III
459 * derivative processor.
460 */
461 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
462 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
463 (ver >> 32) == __SERRANO_ID);
464
465 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
466
467 retry:
468 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
469 : : "r" (pstate), "i" (PSTATE_IE));
470
471 /* Setup the dispatch data registers. */
472 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
473 "stxa %1, [%4] %6\n\t"
474 "stxa %2, [%5] %6\n\t"
475 "membar #Sync\n\t"
476 : /* no outputs */
477 : "r" (data0), "r" (data1), "r" (data2),
478 "r" (0x40), "r" (0x50), "r" (0x60),
479 "i" (ASI_INTR_W));
480
481 nack_busy_id = 0;
482 {
483 int i;
484
485 for_each_cpu_mask(i, mask) {
486 u64 target = (i << 14) | 0x70;
487
488 if (!is_jbus)
489 target |= (nack_busy_id << 24);
490 __asm__ __volatile__(
491 "stxa %%g0, [%0] %1\n\t"
492 "membar #Sync\n\t"
493 : /* no outputs */
494 : "r" (target), "i" (ASI_INTR_W));
495 nack_busy_id++;
496 }
497 }
498
499 /* Now, poll for completion. */
500 {
501 u64 dispatch_stat;
502 long stuck;
503
504 stuck = 100000 * nack_busy_id;
505 do {
506 __asm__ __volatile__("ldxa [%%g0] %1, %0"
507 : "=r" (dispatch_stat)
508 : "i" (ASI_INTR_DISPATCH_STAT));
509 if (dispatch_stat == 0UL) {
510 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
511 : : "r" (pstate));
512 return;
513 }
514 if (!--stuck)
515 break;
516 } while (dispatch_stat & 0x5555555555555555UL);
517
518 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
519 : : "r" (pstate));
520
521 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
522 /* Busy bits will not clear, continue instead
523 * of freezing up on this cpu.
524 */
525 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
526 smp_processor_id(), dispatch_stat);
527 } else {
528 int i, this_busy_nack = 0;
529
530 /* Delay some random time with interrupts enabled
531 * to prevent deadlock.
532 */
533 udelay(2 * nack_busy_id);
534
535 /* Clear out the mask bits for cpus which did not
536 * NACK us.
537 */
538 for_each_cpu_mask(i, mask) {
539 u64 check_mask;
540
541 if (is_jbus)
542 check_mask = (0x2UL << (2*i));
543 else
544 check_mask = (0x2UL <<
545 this_busy_nack);
546 if ((dispatch_stat & check_mask) == 0)
547 cpu_clear(i, mask);
548 this_busy_nack += 2;
549 }
550
551 goto retry;
552 }
553 }
554 }
555
556 /* Multi-cpu list version. */
557 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
558 {
559 struct trap_per_cpu *tb;
560 u16 *cpu_list;
561 u64 *mondo;
562 cpumask_t error_mask;
563 unsigned long flags, status;
564 int cnt, retries, this_cpu, prev_sent, i;
565
566 /* We have to do this whole thing with interrupts fully disabled.
567 * Otherwise if we send an xcall from interrupt context it will
568 * corrupt both our mondo block and cpu list state.
569 *
570 * One consequence of this is that we cannot use timeout mechanisms
571 * that depend upon interrupts being delivered locally. So, for
572 * example, we cannot sample jiffies and expect it to advance.
573 *
574 * Fortunately, udelay() uses %stick/%tick so we can use that.
575 */
576 local_irq_save(flags);
577
578 this_cpu = smp_processor_id();
579 tb = &trap_block[this_cpu];
580
581 mondo = __va(tb->cpu_mondo_block_pa);
582 mondo[0] = data0;
583 mondo[1] = data1;
584 mondo[2] = data2;
585 wmb();
586
587 cpu_list = __va(tb->cpu_list_pa);
588
589 /* Setup the initial cpu list. */
590 cnt = 0;
591 for_each_cpu_mask(i, mask)
592 cpu_list[cnt++] = i;
593
594 cpus_clear(error_mask);
595 retries = 0;
596 prev_sent = 0;
597 do {
598 int forward_progress, n_sent;
599
600 status = sun4v_cpu_mondo_send(cnt,
601 tb->cpu_list_pa,
602 tb->cpu_mondo_block_pa);
603
604 /* HV_EOK means all cpus received the xcall, we're done. */
605 if (likely(status == HV_EOK))
606 break;
607
608 /* First, see if we made any forward progress.
609 *
610 * The hypervisor indicates successful sends by setting
611 * cpu list entries to the value 0xffff.
612 */
613 n_sent = 0;
614 for (i = 0; i < cnt; i++) {
615 if (likely(cpu_list[i] == 0xffff))
616 n_sent++;
617 }
618
619 forward_progress = 0;
620 if (n_sent > prev_sent)
621 forward_progress = 1;
622
623 prev_sent = n_sent;
624
625 /* If we get a HV_ECPUERROR, then one or more of the cpus
626 * in the list are in error state. Use the cpu_state()
627 * hypervisor call to find out which cpus are in error state.
628 */
629 if (unlikely(status == HV_ECPUERROR)) {
630 for (i = 0; i < cnt; i++) {
631 long err;
632 u16 cpu;
633
634 cpu = cpu_list[i];
635 if (cpu == 0xffff)
636 continue;
637
638 err = sun4v_cpu_state(cpu);
639 if (err >= 0 &&
640 err == HV_CPU_STATE_ERROR) {
641 cpu_list[i] = 0xffff;
642 cpu_set(cpu, error_mask);
643 }
644 }
645 } else if (unlikely(status != HV_EWOULDBLOCK))
646 goto fatal_mondo_error;
647
648 /* Don't bother rewriting the CPU list, just leave the
649 * 0xffff and non-0xffff entries in there and the
650 * hypervisor will do the right thing.
651 *
652 * Only advance timeout state if we didn't make any
653 * forward progress.
654 */
655 if (unlikely(!forward_progress)) {
656 if (unlikely(++retries > 10000))
657 goto fatal_mondo_timeout;
658
659 /* Delay a little bit to let other cpus catch up
660 * on their cpu mondo queue work.
661 */
662 udelay(2 * cnt);
663 }
664 } while (1);
665
666 local_irq_restore(flags);
667
668 if (unlikely(!cpus_empty(error_mask)))
669 goto fatal_mondo_cpu_error;
670
671 return;
672
673 fatal_mondo_cpu_error:
674 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
675 "were in error state\n",
676 this_cpu);
677 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
678 for_each_cpu_mask(i, error_mask)
679 printk("%d ", i);
680 printk("]\n");
681 return;
682
683 fatal_mondo_timeout:
684 local_irq_restore(flags);
685 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
686 " progress after %d retries.\n",
687 this_cpu, retries);
688 goto dump_cpu_list_and_out;
689
690 fatal_mondo_error:
691 local_irq_restore(flags);
692 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
693 this_cpu, status);
694 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
695 "mondo_block_pa(%lx)\n",
696 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
697
698 dump_cpu_list_and_out:
699 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
700 for (i = 0; i < cnt; i++)
701 printk("%u ", cpu_list[i]);
702 printk("]\n");
703 }
704
705 /* Send cross call to all processors mentioned in MASK
706 * except self.
707 */
708 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
709 {
710 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
711 int this_cpu = get_cpu();
712
713 cpus_and(mask, mask, cpu_online_map);
714 cpu_clear(this_cpu, mask);
715
716 if (tlb_type == spitfire)
717 spitfire_xcall_deliver(data0, data1, data2, mask);
718 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
719 cheetah_xcall_deliver(data0, data1, data2, mask);
720 else
721 hypervisor_xcall_deliver(data0, data1, data2, mask);
722 /* NOTE: Caller runs local copy on master. */
723
724 put_cpu();
725 }
726
727 extern unsigned long xcall_sync_tick;
728
729 static void smp_start_sync_tick_client(int cpu)
730 {
731 cpumask_t mask = cpumask_of_cpu(cpu);
732
733 smp_cross_call_masked(&xcall_sync_tick,
734 0, 0, 0, mask);
735 }
736
737 /* Send cross call to all processors except self. */
738 #define smp_cross_call(func, ctx, data1, data2) \
739 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
740
741 struct call_data_struct {
742 void (*func) (void *info);
743 void *info;
744 atomic_t finished;
745 int wait;
746 };
747
748 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
749 static struct call_data_struct *call_data;
750
751 extern unsigned long xcall_call_function;
752
753 /**
754 * smp_call_function(): Run a function on all other CPUs.
755 * @func: The function to run. This must be fast and non-blocking.
756 * @info: An arbitrary pointer to pass to the function.
757 * @nonatomic: currently unused.
758 * @wait: If true, wait (atomically) until function has completed on other CPUs.
759 *
760 * Returns 0 on success, else a negative status code. Does not return until
761 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
762 *
763 * You must not call this function with disabled interrupts or from a
764 * hardware interrupt handler or from a bottom half handler.
765 */
766 static int smp_call_function_mask(void (*func)(void *info), void *info,
767 int nonatomic, int wait, cpumask_t mask)
768 {
769 struct call_data_struct data;
770 int cpus;
771
772 /* Can deadlock when called with interrupts disabled */
773 WARN_ON(irqs_disabled());
774
775 data.func = func;
776 data.info = info;
777 atomic_set(&data.finished, 0);
778 data.wait = wait;
779
780 spin_lock(&call_lock);
781
782 cpu_clear(smp_processor_id(), mask);
783 cpus = cpus_weight(mask);
784 if (!cpus)
785 goto out_unlock;
786
787 call_data = &data;
788 mb();
789
790 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
791
792 /* Wait for response */
793 while (atomic_read(&data.finished) != cpus)
794 cpu_relax();
795
796 out_unlock:
797 spin_unlock(&call_lock);
798
799 return 0;
800 }
801
802 int smp_call_function(void (*func)(void *info), void *info,
803 int nonatomic, int wait)
804 {
805 return smp_call_function_mask(func, info, nonatomic, wait,
806 cpu_online_map);
807 }
808
809 void smp_call_function_client(int irq, struct pt_regs *regs)
810 {
811 void (*func) (void *info) = call_data->func;
812 void *info = call_data->info;
813
814 clear_softint(1 << irq);
815 if (call_data->wait) {
816 /* let initiator proceed only after completion */
817 func(info);
818 atomic_inc(&call_data->finished);
819 } else {
820 /* let initiator proceed after getting data */
821 atomic_inc(&call_data->finished);
822 func(info);
823 }
824 }
825
826 static void tsb_sync(void *info)
827 {
828 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
829 struct mm_struct *mm = info;
830
831 /* It is not valid to test "currrent->active_mm == mm" here.
832 *
833 * The value of "current" is not changed atomically with
834 * switch_mm(). But that's OK, we just need to check the
835 * current cpu's trap block PGD physical address.
836 */
837 if (tp->pgd_paddr == __pa(mm->pgd))
838 tsb_context_switch(mm);
839 }
840
841 void smp_tsb_sync(struct mm_struct *mm)
842 {
843 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
844 }
845
846 extern unsigned long xcall_flush_tlb_mm;
847 extern unsigned long xcall_flush_tlb_pending;
848 extern unsigned long xcall_flush_tlb_kernel_range;
849 extern unsigned long xcall_report_regs;
850 extern unsigned long xcall_receive_signal;
851 extern unsigned long xcall_new_mmu_context_version;
852
853 #ifdef DCACHE_ALIASING_POSSIBLE
854 extern unsigned long xcall_flush_dcache_page_cheetah;
855 #endif
856 extern unsigned long xcall_flush_dcache_page_spitfire;
857
858 #ifdef CONFIG_DEBUG_DCFLUSH
859 extern atomic_t dcpage_flushes;
860 extern atomic_t dcpage_flushes_xcall;
861 #endif
862
863 static __inline__ void __local_flush_dcache_page(struct page *page)
864 {
865 #ifdef DCACHE_ALIASING_POSSIBLE
866 __flush_dcache_page(page_address(page),
867 ((tlb_type == spitfire) &&
868 page_mapping(page) != NULL));
869 #else
870 if (page_mapping(page) != NULL &&
871 tlb_type == spitfire)
872 __flush_icache_page(__pa(page_address(page)));
873 #endif
874 }
875
876 void smp_flush_dcache_page_impl(struct page *page, int cpu)
877 {
878 cpumask_t mask = cpumask_of_cpu(cpu);
879 int this_cpu;
880
881 if (tlb_type == hypervisor)
882 return;
883
884 #ifdef CONFIG_DEBUG_DCFLUSH
885 atomic_inc(&dcpage_flushes);
886 #endif
887
888 this_cpu = get_cpu();
889
890 if (cpu == this_cpu) {
891 __local_flush_dcache_page(page);
892 } else if (cpu_online(cpu)) {
893 void *pg_addr = page_address(page);
894 u64 data0;
895
896 if (tlb_type == spitfire) {
897 data0 =
898 ((u64)&xcall_flush_dcache_page_spitfire);
899 if (page_mapping(page) != NULL)
900 data0 |= ((u64)1 << 32);
901 spitfire_xcall_deliver(data0,
902 __pa(pg_addr),
903 (u64) pg_addr,
904 mask);
905 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
906 #ifdef DCACHE_ALIASING_POSSIBLE
907 data0 =
908 ((u64)&xcall_flush_dcache_page_cheetah);
909 cheetah_xcall_deliver(data0,
910 __pa(pg_addr),
911 0, mask);
912 #endif
913 }
914 #ifdef CONFIG_DEBUG_DCFLUSH
915 atomic_inc(&dcpage_flushes_xcall);
916 #endif
917 }
918
919 put_cpu();
920 }
921
922 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
923 {
924 void *pg_addr = page_address(page);
925 cpumask_t mask = cpu_online_map;
926 u64 data0;
927 int this_cpu;
928
929 if (tlb_type == hypervisor)
930 return;
931
932 this_cpu = get_cpu();
933
934 cpu_clear(this_cpu, mask);
935
936 #ifdef CONFIG_DEBUG_DCFLUSH
937 atomic_inc(&dcpage_flushes);
938 #endif
939 if (cpus_empty(mask))
940 goto flush_self;
941 if (tlb_type == spitfire) {
942 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
943 if (page_mapping(page) != NULL)
944 data0 |= ((u64)1 << 32);
945 spitfire_xcall_deliver(data0,
946 __pa(pg_addr),
947 (u64) pg_addr,
948 mask);
949 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
950 #ifdef DCACHE_ALIASING_POSSIBLE
951 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
952 cheetah_xcall_deliver(data0,
953 __pa(pg_addr),
954 0, mask);
955 #endif
956 }
957 #ifdef CONFIG_DEBUG_DCFLUSH
958 atomic_inc(&dcpage_flushes_xcall);
959 #endif
960 flush_self:
961 __local_flush_dcache_page(page);
962
963 put_cpu();
964 }
965
966 static void __smp_receive_signal_mask(cpumask_t mask)
967 {
968 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
969 }
970
971 void smp_receive_signal(int cpu)
972 {
973 cpumask_t mask = cpumask_of_cpu(cpu);
974
975 if (cpu_online(cpu))
976 __smp_receive_signal_mask(mask);
977 }
978
979 void smp_receive_signal_client(int irq, struct pt_regs *regs)
980 {
981 clear_softint(1 << irq);
982 }
983
984 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
985 {
986 struct mm_struct *mm;
987 unsigned long flags;
988
989 clear_softint(1 << irq);
990
991 /* See if we need to allocate a new TLB context because
992 * the version of the one we are using is now out of date.
993 */
994 mm = current->active_mm;
995 if (unlikely(!mm || (mm == &init_mm)))
996 return;
997
998 spin_lock_irqsave(&mm->context.lock, flags);
999
1000 if (unlikely(!CTX_VALID(mm->context)))
1001 get_new_mmu_context(mm);
1002
1003 spin_unlock_irqrestore(&mm->context.lock, flags);
1004
1005 load_secondary_context(mm);
1006 __flush_tlb_mm(CTX_HWBITS(mm->context),
1007 SECONDARY_CONTEXT);
1008 }
1009
1010 void smp_new_mmu_context_version(void)
1011 {
1012 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1013 }
1014
1015 void smp_report_regs(void)
1016 {
1017 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1018 }
1019
1020 /* We know that the window frames of the user have been flushed
1021 * to the stack before we get here because all callers of us
1022 * are flush_tlb_*() routines, and these run after flush_cache_*()
1023 * which performs the flushw.
1024 *
1025 * The SMP TLB coherency scheme we use works as follows:
1026 *
1027 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1028 * space has (potentially) executed on, this is the heuristic
1029 * we use to avoid doing cross calls.
1030 *
1031 * Also, for flushing from kswapd and also for clones, we
1032 * use cpu_vm_mask as the list of cpus to make run the TLB.
1033 *
1034 * 2) TLB context numbers are shared globally across all processors
1035 * in the system, this allows us to play several games to avoid
1036 * cross calls.
1037 *
1038 * One invariant is that when a cpu switches to a process, and
1039 * that processes tsk->active_mm->cpu_vm_mask does not have the
1040 * current cpu's bit set, that tlb context is flushed locally.
1041 *
1042 * If the address space is non-shared (ie. mm->count == 1) we avoid
1043 * cross calls when we want to flush the currently running process's
1044 * tlb state. This is done by clearing all cpu bits except the current
1045 * processor's in current->active_mm->cpu_vm_mask and performing the
1046 * flush locally only. This will force any subsequent cpus which run
1047 * this task to flush the context from the local tlb if the process
1048 * migrates to another cpu (again).
1049 *
1050 * 3) For shared address spaces (threads) and swapping we bite the
1051 * bullet for most cases and perform the cross call (but only to
1052 * the cpus listed in cpu_vm_mask).
1053 *
1054 * The performance gain from "optimizing" away the cross call for threads is
1055 * questionable (in theory the big win for threads is the massive sharing of
1056 * address space state across processors).
1057 */
1058
1059 /* This currently is only used by the hugetlb arch pre-fault
1060 * hook on UltraSPARC-III+ and later when changing the pagesize
1061 * bits of the context register for an address space.
1062 */
1063 void smp_flush_tlb_mm(struct mm_struct *mm)
1064 {
1065 u32 ctx = CTX_HWBITS(mm->context);
1066 int cpu = get_cpu();
1067
1068 if (atomic_read(&mm->mm_users) == 1) {
1069 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1070 goto local_flush_and_out;
1071 }
1072
1073 smp_cross_call_masked(&xcall_flush_tlb_mm,
1074 ctx, 0, 0,
1075 mm->cpu_vm_mask);
1076
1077 local_flush_and_out:
1078 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1079
1080 put_cpu();
1081 }
1082
1083 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1084 {
1085 u32 ctx = CTX_HWBITS(mm->context);
1086 int cpu = get_cpu();
1087
1088 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1089 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1090 else
1091 smp_cross_call_masked(&xcall_flush_tlb_pending,
1092 ctx, nr, (unsigned long) vaddrs,
1093 mm->cpu_vm_mask);
1094
1095 __flush_tlb_pending(ctx, nr, vaddrs);
1096
1097 put_cpu();
1098 }
1099
1100 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1101 {
1102 start &= PAGE_MASK;
1103 end = PAGE_ALIGN(end);
1104 if (start != end) {
1105 smp_cross_call(&xcall_flush_tlb_kernel_range,
1106 0, start, end);
1107
1108 __flush_tlb_kernel_range(start, end);
1109 }
1110 }
1111
1112 /* CPU capture. */
1113 /* #define CAPTURE_DEBUG */
1114 extern unsigned long xcall_capture;
1115
1116 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1117 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1118 static unsigned long penguins_are_doing_time;
1119
1120 void smp_capture(void)
1121 {
1122 int result = atomic_add_ret(1, &smp_capture_depth);
1123
1124 if (result == 1) {
1125 int ncpus = num_online_cpus();
1126
1127 #ifdef CAPTURE_DEBUG
1128 printk("CPU[%d]: Sending penguins to jail...",
1129 smp_processor_id());
1130 #endif
1131 penguins_are_doing_time = 1;
1132 membar_storestore_loadstore();
1133 atomic_inc(&smp_capture_registry);
1134 smp_cross_call(&xcall_capture, 0, 0, 0);
1135 while (atomic_read(&smp_capture_registry) != ncpus)
1136 rmb();
1137 #ifdef CAPTURE_DEBUG
1138 printk("done\n");
1139 #endif
1140 }
1141 }
1142
1143 void smp_release(void)
1144 {
1145 if (atomic_dec_and_test(&smp_capture_depth)) {
1146 #ifdef CAPTURE_DEBUG
1147 printk("CPU[%d]: Giving pardon to "
1148 "imprisoned penguins\n",
1149 smp_processor_id());
1150 #endif
1151 penguins_are_doing_time = 0;
1152 membar_storeload_storestore();
1153 atomic_dec(&smp_capture_registry);
1154 }
1155 }
1156
1157 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1158 * can service tlb flush xcalls...
1159 */
1160 extern void prom_world(int);
1161
1162 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1163 {
1164 clear_softint(1 << irq);
1165
1166 preempt_disable();
1167
1168 __asm__ __volatile__("flushw");
1169 prom_world(1);
1170 atomic_inc(&smp_capture_registry);
1171 membar_storeload_storestore();
1172 while (penguins_are_doing_time)
1173 rmb();
1174 atomic_dec(&smp_capture_registry);
1175 prom_world(0);
1176
1177 preempt_enable();
1178 }
1179
1180 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
1181 #define prof_counter(__cpu) cpu_data(__cpu).counter
1182
1183 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1184 {
1185 unsigned long compare, tick, pstate;
1186 int cpu = smp_processor_id();
1187 int user = user_mode(regs);
1188
1189 /*
1190 * Check for level 14 softint.
1191 */
1192 {
1193 unsigned long tick_mask = tick_ops->softint_mask;
1194
1195 if (!(get_softint() & tick_mask)) {
1196 extern void handler_irq(int, struct pt_regs *);
1197
1198 handler_irq(14, regs);
1199 return;
1200 }
1201 clear_softint(tick_mask);
1202 }
1203
1204 do {
1205 profile_tick(CPU_PROFILING, regs);
1206 if (!--prof_counter(cpu)) {
1207 irq_enter();
1208
1209 if (cpu == boot_cpu_id) {
1210 kstat_this_cpu.irqs[0]++;
1211 timer_tick_interrupt(regs);
1212 }
1213
1214 update_process_times(user);
1215
1216 irq_exit();
1217
1218 prof_counter(cpu) = prof_multiplier(cpu);
1219 }
1220
1221 /* Guarantee that the following sequences execute
1222 * uninterrupted.
1223 */
1224 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1225 "wrpr %0, %1, %%pstate"
1226 : "=r" (pstate)
1227 : "i" (PSTATE_IE));
1228
1229 compare = tick_ops->add_compare(current_tick_offset);
1230 tick = tick_ops->get_tick();
1231
1232 /* Restore PSTATE_IE. */
1233 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1234 : /* no outputs */
1235 : "r" (pstate));
1236 } while (time_after_eq(tick, compare));
1237 }
1238
1239 static void __init smp_setup_percpu_timer(void)
1240 {
1241 int cpu = smp_processor_id();
1242 unsigned long pstate;
1243
1244 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1245
1246 /* Guarantee that the following sequences execute
1247 * uninterrupted.
1248 */
1249 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1250 "wrpr %0, %1, %%pstate"
1251 : "=r" (pstate)
1252 : "i" (PSTATE_IE));
1253
1254 tick_ops->init_tick(current_tick_offset);
1255
1256 /* Restore PSTATE_IE. */
1257 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1258 : /* no outputs */
1259 : "r" (pstate));
1260 }
1261
1262 void __init smp_tick_init(void)
1263 {
1264 boot_cpu_id = hard_smp_processor_id();
1265 current_tick_offset = timer_tick_offset;
1266
1267 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1268 }
1269
1270 /* /proc/profile writes can call this, don't __init it please. */
1271 static DEFINE_SPINLOCK(prof_setup_lock);
1272
1273 int setup_profiling_timer(unsigned int multiplier)
1274 {
1275 unsigned long flags;
1276 int i;
1277
1278 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1279 return -EINVAL;
1280
1281 spin_lock_irqsave(&prof_setup_lock, flags);
1282 for_each_possible_cpu(i)
1283 prof_multiplier(i) = multiplier;
1284 current_tick_offset = (timer_tick_offset / multiplier);
1285 spin_unlock_irqrestore(&prof_setup_lock, flags);
1286
1287 return 0;
1288 }
1289
1290 static void __init smp_tune_scheduling(void)
1291 {
1292 int instance, node;
1293 unsigned int def, smallest = ~0U;
1294
1295 def = ((tlb_type == hypervisor) ?
1296 (3 * 1024 * 1024) :
1297 (4 * 1024 * 1024));
1298
1299 instance = 0;
1300 while (!cpu_find_by_instance(instance, &node, NULL)) {
1301 unsigned int val;
1302
1303 val = prom_getintdefault(node, "ecache-size", def);
1304 if (val < smallest)
1305 smallest = val;
1306
1307 instance++;
1308 }
1309
1310 /* Any value less than 256K is nonsense. */
1311 if (smallest < (256U * 1024U))
1312 smallest = 256 * 1024;
1313
1314 max_cache_size = smallest;
1315
1316 if (smallest < 1U * 1024U * 1024U)
1317 printk(KERN_INFO "Using max_cache_size of %uKB\n",
1318 smallest / 1024U);
1319 else
1320 printk(KERN_INFO "Using max_cache_size of %uMB\n",
1321 smallest / 1024U / 1024U);
1322 }
1323
1324 /* Constrain the number of cpus to max_cpus. */
1325 void __init smp_prepare_cpus(unsigned int max_cpus)
1326 {
1327 int i;
1328
1329 if (num_possible_cpus() > max_cpus) {
1330 int instance, mid;
1331
1332 instance = 0;
1333 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1334 if (mid != boot_cpu_id) {
1335 cpu_clear(mid, phys_cpu_present_map);
1336 cpu_clear(mid, cpu_present_map);
1337 if (num_possible_cpus() <= max_cpus)
1338 break;
1339 }
1340 instance++;
1341 }
1342 }
1343
1344 for_each_possible_cpu(i) {
1345 if (tlb_type == hypervisor) {
1346 int j;
1347
1348 /* XXX get this mapping from machine description */
1349 for_each_possible_cpu(j) {
1350 if ((j >> 2) == (i >> 2))
1351 cpu_set(j, cpu_sibling_map[i]);
1352 }
1353 } else {
1354 cpu_set(i, cpu_sibling_map[i]);
1355 }
1356 }
1357
1358 smp_store_cpu_info(boot_cpu_id);
1359 smp_tune_scheduling();
1360 }
1361
1362 /* Set this up early so that things like the scheduler can init
1363 * properly. We use the same cpu mask for both the present and
1364 * possible cpu map.
1365 */
1366 void __init smp_setup_cpu_possible_map(void)
1367 {
1368 int instance, mid;
1369
1370 instance = 0;
1371 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1372 if (mid < NR_CPUS) {
1373 cpu_set(mid, phys_cpu_present_map);
1374 cpu_set(mid, cpu_present_map);
1375 }
1376 instance++;
1377 }
1378 }
1379
1380 void __devinit smp_prepare_boot_cpu(void)
1381 {
1382 }
1383
1384 int __devinit __cpu_up(unsigned int cpu)
1385 {
1386 int ret = smp_boot_one_cpu(cpu);
1387
1388 if (!ret) {
1389 cpu_set(cpu, smp_commenced_mask);
1390 while (!cpu_isset(cpu, cpu_online_map))
1391 mb();
1392 if (!cpu_isset(cpu, cpu_online_map)) {
1393 ret = -ENODEV;
1394 } else {
1395 /* On SUN4V, writes to %tick and %stick are
1396 * not allowed.
1397 */
1398 if (tlb_type != hypervisor)
1399 smp_synchronize_one_tick(cpu);
1400 }
1401 }
1402 return ret;
1403 }
1404
1405 void __init smp_cpus_done(unsigned int max_cpus)
1406 {
1407 unsigned long bogosum = 0;
1408 int i;
1409
1410 for_each_online_cpu(i)
1411 bogosum += cpu_data(i).udelay_val;
1412 printk("Total of %ld processors activated "
1413 "(%lu.%02lu BogoMIPS).\n",
1414 (long) num_online_cpus(),
1415 bogosum/(500000/HZ),
1416 (bogosum/(5000/HZ))%100);
1417 }
1418
1419 void smp_send_reschedule(int cpu)
1420 {
1421 smp_receive_signal(cpu);
1422 }
1423
1424 /* This is a nop because we capture all other cpus
1425 * anyways when making the PROM active.
1426 */
1427 void smp_send_stop(void)
1428 {
1429 }
1430
1431 unsigned long __per_cpu_base __read_mostly;
1432 unsigned long __per_cpu_shift __read_mostly;
1433
1434 EXPORT_SYMBOL(__per_cpu_base);
1435 EXPORT_SYMBOL(__per_cpu_shift);
1436
1437 void __init setup_per_cpu_areas(void)
1438 {
1439 unsigned long goal, size, i;
1440 char *ptr;
1441
1442 /* Copy section for each CPU (we discard the original) */
1443 goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1444 #ifdef CONFIG_MODULES
1445 if (goal < PERCPU_ENOUGH_ROOM)
1446 goal = PERCPU_ENOUGH_ROOM;
1447 #endif
1448 __per_cpu_shift = 0;
1449 for (size = 1UL; size < goal; size <<= 1UL)
1450 __per_cpu_shift++;
1451
1452 ptr = alloc_bootmem(size * NR_CPUS);
1453
1454 __per_cpu_base = ptr - __per_cpu_start;
1455
1456 for (i = 0; i < NR_CPUS; i++, ptr += size)
1457 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1458
1459 /* Setup %g5 for the boot cpu. */
1460 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1461 }