]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/sparc64/kernel/time.c
Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-serial
[mirror_ubuntu-hirsute-kernel.git] / arch / sparc64 / kernel / time.c
1 /* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
2 * time.c: UltraSparc timer and TOD clock support.
3 *
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 *
7 * Based largely on code which is:
8 *
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
10 */
11
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/param.h>
17 #include <linux/string.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/init.h>
23 #include <linux/ioport.h>
24 #include <linux/mc146818rtc.h>
25 #include <linux/delay.h>
26 #include <linux/profile.h>
27 #include <linux/bcd.h>
28 #include <linux/jiffies.h>
29 #include <linux/cpufreq.h>
30 #include <linux/percpu.h>
31 #include <linux/profile.h>
32 #include <linux/miscdevice.h>
33 #include <linux/rtc.h>
34
35 #include <asm/oplib.h>
36 #include <asm/mostek.h>
37 #include <asm/timer.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <asm/prom.h>
41 #include <asm/of_device.h>
42 #include <asm/starfire.h>
43 #include <asm/smp.h>
44 #include <asm/sections.h>
45 #include <asm/cpudata.h>
46 #include <asm/uaccess.h>
47 #include <asm/prom.h>
48
49 DEFINE_SPINLOCK(mostek_lock);
50 DEFINE_SPINLOCK(rtc_lock);
51 void __iomem *mstk48t02_regs = NULL;
52 #ifdef CONFIG_PCI
53 unsigned long ds1287_regs = 0UL;
54 #endif
55
56 static void __iomem *mstk48t08_regs;
57 static void __iomem *mstk48t59_regs;
58
59 static int set_rtc_mmss(unsigned long);
60
61 #define TICK_PRIV_BIT (1UL << 63)
62
63 #ifdef CONFIG_SMP
64 unsigned long profile_pc(struct pt_regs *regs)
65 {
66 unsigned long pc = instruction_pointer(regs);
67
68 if (in_lock_functions(pc))
69 return regs->u_regs[UREG_RETPC];
70 return pc;
71 }
72 EXPORT_SYMBOL(profile_pc);
73 #endif
74
75 static void tick_disable_protection(void)
76 {
77 /* Set things up so user can access tick register for profiling
78 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
79 * read back of %tick after writing it.
80 */
81 __asm__ __volatile__(
82 " ba,pt %%xcc, 1f\n"
83 " nop\n"
84 " .align 64\n"
85 "1: rd %%tick, %%g2\n"
86 " add %%g2, 6, %%g2\n"
87 " andn %%g2, %0, %%g2\n"
88 " wrpr %%g2, 0, %%tick\n"
89 " rdpr %%tick, %%g0"
90 : /* no outputs */
91 : "r" (TICK_PRIV_BIT)
92 : "g2");
93 }
94
95 static void tick_init_tick(unsigned long offset)
96 {
97 tick_disable_protection();
98
99 __asm__ __volatile__(
100 " rd %%tick, %%g1\n"
101 " andn %%g1, %1, %%g1\n"
102 " ba,pt %%xcc, 1f\n"
103 " add %%g1, %0, %%g1\n"
104 " .align 64\n"
105 "1: wr %%g1, 0x0, %%tick_cmpr\n"
106 " rd %%tick_cmpr, %%g0"
107 : /* no outputs */
108 : "r" (offset), "r" (TICK_PRIV_BIT)
109 : "g1");
110 }
111
112 static unsigned long tick_get_tick(void)
113 {
114 unsigned long ret;
115
116 __asm__ __volatile__("rd %%tick, %0\n\t"
117 "mov %0, %0"
118 : "=r" (ret));
119
120 return ret & ~TICK_PRIV_BIT;
121 }
122
123 static unsigned long tick_get_compare(void)
124 {
125 unsigned long ret;
126
127 __asm__ __volatile__("rd %%tick_cmpr, %0\n\t"
128 "mov %0, %0"
129 : "=r" (ret));
130
131 return ret;
132 }
133
134 static unsigned long tick_add_compare(unsigned long adj)
135 {
136 unsigned long new_compare;
137
138 /* Workaround for Spitfire Errata (#54 I think??), I discovered
139 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
140 * number 103640.
141 *
142 * On Blackbird writes to %tick_cmpr can fail, the
143 * workaround seems to be to execute the wr instruction
144 * at the start of an I-cache line, and perform a dummy
145 * read back from %tick_cmpr right after writing to it. -DaveM
146 */
147 __asm__ __volatile__("rd %%tick_cmpr, %0\n\t"
148 "ba,pt %%xcc, 1f\n\t"
149 " add %0, %1, %0\n\t"
150 ".align 64\n"
151 "1:\n\t"
152 "wr %0, 0, %%tick_cmpr\n\t"
153 "rd %%tick_cmpr, %%g0"
154 : "=&r" (new_compare)
155 : "r" (adj));
156
157 return new_compare;
158 }
159
160 static unsigned long tick_add_tick(unsigned long adj, unsigned long offset)
161 {
162 unsigned long new_tick, tmp;
163
164 /* Also need to handle Blackbird bug here too. */
165 __asm__ __volatile__("rd %%tick, %0\n\t"
166 "add %0, %2, %0\n\t"
167 "wrpr %0, 0, %%tick\n\t"
168 "andn %0, %4, %1\n\t"
169 "ba,pt %%xcc, 1f\n\t"
170 " add %1, %3, %1\n\t"
171 ".align 64\n"
172 "1:\n\t"
173 "wr %1, 0, %%tick_cmpr\n\t"
174 "rd %%tick_cmpr, %%g0"
175 : "=&r" (new_tick), "=&r" (tmp)
176 : "r" (adj), "r" (offset), "r" (TICK_PRIV_BIT));
177
178 return new_tick;
179 }
180
181 static struct sparc64_tick_ops tick_operations __read_mostly = {
182 .init_tick = tick_init_tick,
183 .get_tick = tick_get_tick,
184 .get_compare = tick_get_compare,
185 .add_tick = tick_add_tick,
186 .add_compare = tick_add_compare,
187 .softint_mask = 1UL << 0,
188 };
189
190 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
191
192 static void stick_init_tick(unsigned long offset)
193 {
194 /* Writes to the %tick and %stick register are not
195 * allowed on sun4v. The Hypervisor controls that
196 * bit, per-strand.
197 */
198 if (tlb_type != hypervisor) {
199 tick_disable_protection();
200
201 /* Let the user get at STICK too. */
202 __asm__ __volatile__(
203 " rd %%asr24, %%g2\n"
204 " andn %%g2, %0, %%g2\n"
205 " wr %%g2, 0, %%asr24"
206 : /* no outputs */
207 : "r" (TICK_PRIV_BIT)
208 : "g1", "g2");
209 }
210
211 __asm__ __volatile__(
212 " rd %%asr24, %%g1\n"
213 " andn %%g1, %1, %%g1\n"
214 " add %%g1, %0, %%g1\n"
215 " wr %%g1, 0x0, %%asr25"
216 : /* no outputs */
217 : "r" (offset), "r" (TICK_PRIV_BIT)
218 : "g1");
219 }
220
221 static unsigned long stick_get_tick(void)
222 {
223 unsigned long ret;
224
225 __asm__ __volatile__("rd %%asr24, %0"
226 : "=r" (ret));
227
228 return ret & ~TICK_PRIV_BIT;
229 }
230
231 static unsigned long stick_get_compare(void)
232 {
233 unsigned long ret;
234
235 __asm__ __volatile__("rd %%asr25, %0"
236 : "=r" (ret));
237
238 return ret;
239 }
240
241 static unsigned long stick_add_tick(unsigned long adj, unsigned long offset)
242 {
243 unsigned long new_tick, tmp;
244
245 __asm__ __volatile__("rd %%asr24, %0\n\t"
246 "add %0, %2, %0\n\t"
247 "wr %0, 0, %%asr24\n\t"
248 "andn %0, %4, %1\n\t"
249 "add %1, %3, %1\n\t"
250 "wr %1, 0, %%asr25"
251 : "=&r" (new_tick), "=&r" (tmp)
252 : "r" (adj), "r" (offset), "r" (TICK_PRIV_BIT));
253
254 return new_tick;
255 }
256
257 static unsigned long stick_add_compare(unsigned long adj)
258 {
259 unsigned long new_compare;
260
261 __asm__ __volatile__("rd %%asr25, %0\n\t"
262 "add %0, %1, %0\n\t"
263 "wr %0, 0, %%asr25"
264 : "=&r" (new_compare)
265 : "r" (adj));
266
267 return new_compare;
268 }
269
270 static struct sparc64_tick_ops stick_operations __read_mostly = {
271 .init_tick = stick_init_tick,
272 .get_tick = stick_get_tick,
273 .get_compare = stick_get_compare,
274 .add_tick = stick_add_tick,
275 .add_compare = stick_add_compare,
276 .softint_mask = 1UL << 16,
277 };
278
279 /* On Hummingbird the STICK/STICK_CMPR register is implemented
280 * in I/O space. There are two 64-bit registers each, the
281 * first holds the low 32-bits of the value and the second holds
282 * the high 32-bits.
283 *
284 * Since STICK is constantly updating, we have to access it carefully.
285 *
286 * The sequence we use to read is:
287 * 1) read high
288 * 2) read low
289 * 3) read high again, if it rolled re-read both low and high again.
290 *
291 * Writing STICK safely is also tricky:
292 * 1) write low to zero
293 * 2) write high
294 * 3) write low
295 */
296 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
297 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
298
299 static unsigned long __hbird_read_stick(void)
300 {
301 unsigned long ret, tmp1, tmp2, tmp3;
302 unsigned long addr = HBIRD_STICK_ADDR+8;
303
304 __asm__ __volatile__("ldxa [%1] %5, %2\n"
305 "1:\n\t"
306 "sub %1, 0x8, %1\n\t"
307 "ldxa [%1] %5, %3\n\t"
308 "add %1, 0x8, %1\n\t"
309 "ldxa [%1] %5, %4\n\t"
310 "cmp %4, %2\n\t"
311 "bne,a,pn %%xcc, 1b\n\t"
312 " mov %4, %2\n\t"
313 "sllx %4, 32, %4\n\t"
314 "or %3, %4, %0\n\t"
315 : "=&r" (ret), "=&r" (addr),
316 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
317 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
318
319 return ret;
320 }
321
322 static unsigned long __hbird_read_compare(void)
323 {
324 unsigned long low, high;
325 unsigned long addr = HBIRD_STICKCMP_ADDR;
326
327 __asm__ __volatile__("ldxa [%2] %3, %0\n\t"
328 "add %2, 0x8, %2\n\t"
329 "ldxa [%2] %3, %1"
330 : "=&r" (low), "=&r" (high), "=&r" (addr)
331 : "i" (ASI_PHYS_BYPASS_EC_E), "2" (addr));
332
333 return (high << 32UL) | low;
334 }
335
336 static void __hbird_write_stick(unsigned long val)
337 {
338 unsigned long low = (val & 0xffffffffUL);
339 unsigned long high = (val >> 32UL);
340 unsigned long addr = HBIRD_STICK_ADDR;
341
342 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
343 "add %0, 0x8, %0\n\t"
344 "stxa %3, [%0] %4\n\t"
345 "sub %0, 0x8, %0\n\t"
346 "stxa %2, [%0] %4"
347 : "=&r" (addr)
348 : "0" (addr), "r" (low), "r" (high),
349 "i" (ASI_PHYS_BYPASS_EC_E));
350 }
351
352 static void __hbird_write_compare(unsigned long val)
353 {
354 unsigned long low = (val & 0xffffffffUL);
355 unsigned long high = (val >> 32UL);
356 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
357
358 __asm__ __volatile__("stxa %3, [%0] %4\n\t"
359 "sub %0, 0x8, %0\n\t"
360 "stxa %2, [%0] %4"
361 : "=&r" (addr)
362 : "0" (addr), "r" (low), "r" (high),
363 "i" (ASI_PHYS_BYPASS_EC_E));
364 }
365
366 static void hbtick_init_tick(unsigned long offset)
367 {
368 unsigned long val;
369
370 tick_disable_protection();
371
372 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
373 * XXX into actually sending STICK interrupts. I think because
374 * XXX of how we store %tick_cmpr in head.S this somehow resets the
375 * XXX {TICK + STICK} interrupt mux. -DaveM
376 */
377 __hbird_write_stick(__hbird_read_stick());
378
379 val = __hbird_read_stick() & ~TICK_PRIV_BIT;
380 __hbird_write_compare(val + offset);
381 }
382
383 static unsigned long hbtick_get_tick(void)
384 {
385 return __hbird_read_stick() & ~TICK_PRIV_BIT;
386 }
387
388 static unsigned long hbtick_get_compare(void)
389 {
390 return __hbird_read_compare();
391 }
392
393 static unsigned long hbtick_add_tick(unsigned long adj, unsigned long offset)
394 {
395 unsigned long val;
396
397 val = __hbird_read_stick() + adj;
398 __hbird_write_stick(val);
399
400 val &= ~TICK_PRIV_BIT;
401 __hbird_write_compare(val + offset);
402
403 return val;
404 }
405
406 static unsigned long hbtick_add_compare(unsigned long adj)
407 {
408 unsigned long val = __hbird_read_compare() + adj;
409
410 val &= ~TICK_PRIV_BIT;
411 __hbird_write_compare(val);
412
413 return val;
414 }
415
416 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
417 .init_tick = hbtick_init_tick,
418 .get_tick = hbtick_get_tick,
419 .get_compare = hbtick_get_compare,
420 .add_tick = hbtick_add_tick,
421 .add_compare = hbtick_add_compare,
422 .softint_mask = 1UL << 0,
423 };
424
425 /* timer_interrupt() needs to keep up the real-time clock,
426 * as well as call the "do_timer()" routine every clocktick
427 *
428 * NOTE: On SUN5 systems the ticker interrupt comes in using 2
429 * interrupts, one at level14 and one with softint bit 0.
430 */
431 unsigned long timer_tick_offset __read_mostly;
432
433 static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
434
435 #define TICK_SIZE (tick_nsec / 1000)
436
437 static inline void timer_check_rtc(void)
438 {
439 /* last time the cmos clock got updated */
440 static long last_rtc_update;
441
442 /* Determine when to update the Mostek clock. */
443 if (ntp_synced() &&
444 xtime.tv_sec > last_rtc_update + 660 &&
445 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
446 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
447 if (set_rtc_mmss(xtime.tv_sec) == 0)
448 last_rtc_update = xtime.tv_sec;
449 else
450 last_rtc_update = xtime.tv_sec - 600;
451 /* do it again in 60 s */
452 }
453 }
454
455 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs * regs)
456 {
457 unsigned long ticks, compare, pstate;
458
459 write_seqlock(&xtime_lock);
460
461 do {
462 #ifndef CONFIG_SMP
463 profile_tick(CPU_PROFILING, regs);
464 update_process_times(user_mode(regs));
465 #endif
466 do_timer(1);
467
468 /* Guarantee that the following sequences execute
469 * uninterrupted.
470 */
471 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
472 "wrpr %0, %1, %%pstate"
473 : "=r" (pstate)
474 : "i" (PSTATE_IE));
475
476 compare = tick_ops->add_compare(timer_tick_offset);
477 ticks = tick_ops->get_tick();
478
479 /* Restore PSTATE_IE. */
480 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
481 : /* no outputs */
482 : "r" (pstate));
483 } while (time_after_eq(ticks, compare));
484
485 timer_check_rtc();
486
487 write_sequnlock(&xtime_lock);
488
489 return IRQ_HANDLED;
490 }
491
492 #ifdef CONFIG_SMP
493 void timer_tick_interrupt(struct pt_regs *regs)
494 {
495 write_seqlock(&xtime_lock);
496
497 do_timer(1);
498
499 timer_check_rtc();
500
501 write_sequnlock(&xtime_lock);
502 }
503 #endif
504
505 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
506 static void __init kick_start_clock(void)
507 {
508 void __iomem *regs = mstk48t02_regs;
509 u8 sec, tmp;
510 int i, count;
511
512 prom_printf("CLOCK: Clock was stopped. Kick start ");
513
514 spin_lock_irq(&mostek_lock);
515
516 /* Turn on the kick start bit to start the oscillator. */
517 tmp = mostek_read(regs + MOSTEK_CREG);
518 tmp |= MSTK_CREG_WRITE;
519 mostek_write(regs + MOSTEK_CREG, tmp);
520 tmp = mostek_read(regs + MOSTEK_SEC);
521 tmp &= ~MSTK_STOP;
522 mostek_write(regs + MOSTEK_SEC, tmp);
523 tmp = mostek_read(regs + MOSTEK_HOUR);
524 tmp |= MSTK_KICK_START;
525 mostek_write(regs + MOSTEK_HOUR, tmp);
526 tmp = mostek_read(regs + MOSTEK_CREG);
527 tmp &= ~MSTK_CREG_WRITE;
528 mostek_write(regs + MOSTEK_CREG, tmp);
529
530 spin_unlock_irq(&mostek_lock);
531
532 /* Delay to allow the clock oscillator to start. */
533 sec = MSTK_REG_SEC(regs);
534 for (i = 0; i < 3; i++) {
535 while (sec == MSTK_REG_SEC(regs))
536 for (count = 0; count < 100000; count++)
537 /* nothing */ ;
538 prom_printf(".");
539 sec = MSTK_REG_SEC(regs);
540 }
541 prom_printf("\n");
542
543 spin_lock_irq(&mostek_lock);
544
545 /* Turn off kick start and set a "valid" time and date. */
546 tmp = mostek_read(regs + MOSTEK_CREG);
547 tmp |= MSTK_CREG_WRITE;
548 mostek_write(regs + MOSTEK_CREG, tmp);
549 tmp = mostek_read(regs + MOSTEK_HOUR);
550 tmp &= ~MSTK_KICK_START;
551 mostek_write(regs + MOSTEK_HOUR, tmp);
552 MSTK_SET_REG_SEC(regs,0);
553 MSTK_SET_REG_MIN(regs,0);
554 MSTK_SET_REG_HOUR(regs,0);
555 MSTK_SET_REG_DOW(regs,5);
556 MSTK_SET_REG_DOM(regs,1);
557 MSTK_SET_REG_MONTH(regs,8);
558 MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
559 tmp = mostek_read(regs + MOSTEK_CREG);
560 tmp &= ~MSTK_CREG_WRITE;
561 mostek_write(regs + MOSTEK_CREG, tmp);
562
563 spin_unlock_irq(&mostek_lock);
564
565 /* Ensure the kick start bit is off. If it isn't, turn it off. */
566 while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
567 prom_printf("CLOCK: Kick start still on!\n");
568
569 spin_lock_irq(&mostek_lock);
570
571 tmp = mostek_read(regs + MOSTEK_CREG);
572 tmp |= MSTK_CREG_WRITE;
573 mostek_write(regs + MOSTEK_CREG, tmp);
574
575 tmp = mostek_read(regs + MOSTEK_HOUR);
576 tmp &= ~MSTK_KICK_START;
577 mostek_write(regs + MOSTEK_HOUR, tmp);
578
579 tmp = mostek_read(regs + MOSTEK_CREG);
580 tmp &= ~MSTK_CREG_WRITE;
581 mostek_write(regs + MOSTEK_CREG, tmp);
582
583 spin_unlock_irq(&mostek_lock);
584 }
585
586 prom_printf("CLOCK: Kick start procedure successful.\n");
587 }
588
589 /* Return nonzero if the clock chip battery is low. */
590 static int __init has_low_battery(void)
591 {
592 void __iomem *regs = mstk48t02_regs;
593 u8 data1, data2;
594
595 spin_lock_irq(&mostek_lock);
596
597 data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */
598 mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */
599 data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */
600 mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */
601
602 spin_unlock_irq(&mostek_lock);
603
604 return (data1 == data2); /* Was the write blocked? */
605 }
606
607 /* Probe for the real time clock chip. */
608 static void __init set_system_time(void)
609 {
610 unsigned int year, mon, day, hour, min, sec;
611 void __iomem *mregs = mstk48t02_regs;
612 #ifdef CONFIG_PCI
613 unsigned long dregs = ds1287_regs;
614 #else
615 unsigned long dregs = 0UL;
616 #endif
617 u8 tmp;
618
619 if (!mregs && !dregs) {
620 prom_printf("Something wrong, clock regs not mapped yet.\n");
621 prom_halt();
622 }
623
624 if (mregs) {
625 spin_lock_irq(&mostek_lock);
626
627 /* Traditional Mostek chip. */
628 tmp = mostek_read(mregs + MOSTEK_CREG);
629 tmp |= MSTK_CREG_READ;
630 mostek_write(mregs + MOSTEK_CREG, tmp);
631
632 sec = MSTK_REG_SEC(mregs);
633 min = MSTK_REG_MIN(mregs);
634 hour = MSTK_REG_HOUR(mregs);
635 day = MSTK_REG_DOM(mregs);
636 mon = MSTK_REG_MONTH(mregs);
637 year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
638 } else {
639 /* Dallas 12887 RTC chip. */
640
641 do {
642 sec = CMOS_READ(RTC_SECONDS);
643 min = CMOS_READ(RTC_MINUTES);
644 hour = CMOS_READ(RTC_HOURS);
645 day = CMOS_READ(RTC_DAY_OF_MONTH);
646 mon = CMOS_READ(RTC_MONTH);
647 year = CMOS_READ(RTC_YEAR);
648 } while (sec != CMOS_READ(RTC_SECONDS));
649
650 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
651 BCD_TO_BIN(sec);
652 BCD_TO_BIN(min);
653 BCD_TO_BIN(hour);
654 BCD_TO_BIN(day);
655 BCD_TO_BIN(mon);
656 BCD_TO_BIN(year);
657 }
658 if ((year += 1900) < 1970)
659 year += 100;
660 }
661
662 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
663 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
664 set_normalized_timespec(&wall_to_monotonic,
665 -xtime.tv_sec, -xtime.tv_nsec);
666
667 if (mregs) {
668 tmp = mostek_read(mregs + MOSTEK_CREG);
669 tmp &= ~MSTK_CREG_READ;
670 mostek_write(mregs + MOSTEK_CREG, tmp);
671
672 spin_unlock_irq(&mostek_lock);
673 }
674 }
675
676 /* davem suggests we keep this within the 4M locked kernel image */
677 static u32 starfire_get_time(void)
678 {
679 static char obp_gettod[32];
680 static u32 unix_tod;
681
682 sprintf(obp_gettod, "h# %08x unix-gettod",
683 (unsigned int) (long) &unix_tod);
684 prom_feval(obp_gettod);
685
686 return unix_tod;
687 }
688
689 static int starfire_set_time(u32 val)
690 {
691 /* Do nothing, time is set using the service processor
692 * console on this platform.
693 */
694 return 0;
695 }
696
697 static u32 hypervisor_get_time(void)
698 {
699 register unsigned long func asm("%o5");
700 register unsigned long arg0 asm("%o0");
701 register unsigned long arg1 asm("%o1");
702 int retries = 10000;
703
704 retry:
705 func = HV_FAST_TOD_GET;
706 arg0 = 0;
707 arg1 = 0;
708 __asm__ __volatile__("ta %6"
709 : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
710 : "0" (func), "1" (arg0), "2" (arg1),
711 "i" (HV_FAST_TRAP));
712 if (arg0 == HV_EOK)
713 return arg1;
714 if (arg0 == HV_EWOULDBLOCK) {
715 if (--retries > 0) {
716 udelay(100);
717 goto retry;
718 }
719 printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
720 return 0;
721 }
722 printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
723 return 0;
724 }
725
726 static int hypervisor_set_time(u32 secs)
727 {
728 register unsigned long func asm("%o5");
729 register unsigned long arg0 asm("%o0");
730 int retries = 10000;
731
732 retry:
733 func = HV_FAST_TOD_SET;
734 arg0 = secs;
735 __asm__ __volatile__("ta %4"
736 : "=&r" (func), "=&r" (arg0)
737 : "0" (func), "1" (arg0),
738 "i" (HV_FAST_TRAP));
739 if (arg0 == HV_EOK)
740 return 0;
741 if (arg0 == HV_EWOULDBLOCK) {
742 if (--retries > 0) {
743 udelay(100);
744 goto retry;
745 }
746 printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
747 return -EAGAIN;
748 }
749 printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
750 return -EOPNOTSUPP;
751 }
752
753 static int __init clock_model_matches(char *model)
754 {
755 if (strcmp(model, "mk48t02") &&
756 strcmp(model, "mk48t08") &&
757 strcmp(model, "mk48t59") &&
758 strcmp(model, "m5819") &&
759 strcmp(model, "m5819p") &&
760 strcmp(model, "m5823") &&
761 strcmp(model, "ds1287"))
762 return 0;
763
764 return 1;
765 }
766
767 static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match)
768 {
769 struct device_node *dp = op->node;
770 char *model = of_get_property(dp, "model", NULL);
771 unsigned long size, flags;
772 void __iomem *regs;
773
774 if (!model || !clock_model_matches(model))
775 return -ENODEV;
776
777 /* On an Enterprise system there can be multiple mostek clocks.
778 * We should only match the one that is on the central FHC bus.
779 */
780 if (!strcmp(dp->parent->name, "fhc") &&
781 strcmp(dp->parent->parent->name, "central") != 0)
782 return -ENODEV;
783
784 size = (op->resource[0].end - op->resource[0].start) + 1;
785 regs = of_ioremap(&op->resource[0], 0, size, "clock");
786 if (!regs)
787 return -ENOMEM;
788
789 #ifdef CONFIG_PCI
790 if (!strcmp(model, "ds1287") ||
791 !strcmp(model, "m5819") ||
792 !strcmp(model, "m5819p") ||
793 !strcmp(model, "m5823")) {
794 ds1287_regs = (unsigned long) regs;
795 } else
796 #endif
797 if (model[5] == '0' && model[6] == '2') {
798 mstk48t02_regs = regs;
799 } else if(model[5] == '0' && model[6] == '8') {
800 mstk48t08_regs = regs;
801 mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
802 } else {
803 mstk48t59_regs = regs;
804 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
805 }
806
807 printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs);
808
809 local_irq_save(flags);
810
811 if (mstk48t02_regs != NULL) {
812 /* Report a low battery voltage condition. */
813 if (has_low_battery())
814 prom_printf("NVRAM: Low battery voltage!\n");
815
816 /* Kick start the clock if it is completely stopped. */
817 if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
818 kick_start_clock();
819 }
820
821 set_system_time();
822
823 local_irq_restore(flags);
824
825 return 0;
826 }
827
828 static struct of_device_id clock_match[] = {
829 {
830 .name = "eeprom",
831 },
832 {
833 .name = "rtc",
834 },
835 {},
836 };
837
838 static struct of_platform_driver clock_driver = {
839 .name = "clock",
840 .match_table = clock_match,
841 .probe = clock_probe,
842 };
843
844 static int __init clock_init(void)
845 {
846 if (this_is_starfire) {
847 xtime.tv_sec = starfire_get_time();
848 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
849 set_normalized_timespec(&wall_to_monotonic,
850 -xtime.tv_sec, -xtime.tv_nsec);
851 return 0;
852 }
853 if (tlb_type == hypervisor) {
854 xtime.tv_sec = hypervisor_get_time();
855 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
856 set_normalized_timespec(&wall_to_monotonic,
857 -xtime.tv_sec, -xtime.tv_nsec);
858 return 0;
859 }
860
861 return of_register_driver(&clock_driver, &of_bus_type);
862 }
863
864 /* Must be after subsys_initcall() so that busses are probed. Must
865 * be before device_initcall() because things like the RTC driver
866 * need to see the clock registers.
867 */
868 fs_initcall(clock_init);
869
870 /* This is gets the master TICK_INT timer going. */
871 static unsigned long sparc64_init_timers(void)
872 {
873 struct device_node *dp;
874 struct property *prop;
875 unsigned long clock;
876 #ifdef CONFIG_SMP
877 extern void smp_tick_init(void);
878 #endif
879
880 dp = of_find_node_by_path("/");
881 if (tlb_type == spitfire) {
882 unsigned long ver, manuf, impl;
883
884 __asm__ __volatile__ ("rdpr %%ver, %0"
885 : "=&r" (ver));
886 manuf = ((ver >> 48) & 0xffff);
887 impl = ((ver >> 32) & 0xffff);
888 if (manuf == 0x17 && impl == 0x13) {
889 /* Hummingbird, aka Ultra-IIe */
890 tick_ops = &hbtick_operations;
891 prop = of_find_property(dp, "stick-frequency", NULL);
892 } else {
893 tick_ops = &tick_operations;
894 cpu_find_by_instance(0, &dp, NULL);
895 prop = of_find_property(dp, "clock-frequency", NULL);
896 }
897 } else {
898 tick_ops = &stick_operations;
899 prop = of_find_property(dp, "stick-frequency", NULL);
900 }
901 clock = *(unsigned int *) prop->value;
902 timer_tick_offset = clock / HZ;
903
904 #ifdef CONFIG_SMP
905 smp_tick_init();
906 #endif
907
908 return clock;
909 }
910
911 static void sparc64_start_timers(void)
912 {
913 unsigned long pstate;
914
915 /* Guarantee that the following sequences execute
916 * uninterrupted.
917 */
918 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
919 "wrpr %0, %1, %%pstate"
920 : "=r" (pstate)
921 : "i" (PSTATE_IE));
922
923 tick_ops->init_tick(timer_tick_offset);
924
925 /* Restore PSTATE_IE. */
926 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
927 : /* no outputs */
928 : "r" (pstate));
929 }
930
931 struct freq_table {
932 unsigned long clock_tick_ref;
933 unsigned int ref_freq;
934 };
935 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
936
937 unsigned long sparc64_get_clock_tick(unsigned int cpu)
938 {
939 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
940
941 if (ft->clock_tick_ref)
942 return ft->clock_tick_ref;
943 return cpu_data(cpu).clock_tick;
944 }
945
946 #ifdef CONFIG_CPU_FREQ
947
948 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
949 void *data)
950 {
951 struct cpufreq_freqs *freq = data;
952 unsigned int cpu = freq->cpu;
953 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
954
955 if (!ft->ref_freq) {
956 ft->ref_freq = freq->old;
957 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
958 }
959 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
960 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
961 (val == CPUFREQ_RESUMECHANGE)) {
962 cpu_data(cpu).clock_tick =
963 cpufreq_scale(ft->clock_tick_ref,
964 ft->ref_freq,
965 freq->new);
966 }
967
968 return 0;
969 }
970
971 static struct notifier_block sparc64_cpufreq_notifier_block = {
972 .notifier_call = sparc64_cpufreq_notifier
973 };
974
975 #endif /* CONFIG_CPU_FREQ */
976
977 static struct time_interpolator sparc64_cpu_interpolator = {
978 .source = TIME_SOURCE_CPU,
979 .shift = 16,
980 .mask = 0xffffffffffffffffLL
981 };
982
983 /* The quotient formula is taken from the IA64 port. */
984 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL
985 void __init time_init(void)
986 {
987 unsigned long clock = sparc64_init_timers();
988
989 sparc64_cpu_interpolator.frequency = clock;
990 register_time_interpolator(&sparc64_cpu_interpolator);
991
992 /* Now that the interpolator is registered, it is
993 * safe to start the timer ticking.
994 */
995 sparc64_start_timers();
996
997 timer_ticks_per_nsec_quotient =
998 (((NSEC_PER_SEC << SPARC64_NSEC_PER_CYC_SHIFT) +
999 (clock / 2)) / clock);
1000
1001 #ifdef CONFIG_CPU_FREQ
1002 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
1003 CPUFREQ_TRANSITION_NOTIFIER);
1004 #endif
1005 }
1006
1007 unsigned long long sched_clock(void)
1008 {
1009 unsigned long ticks = tick_ops->get_tick();
1010
1011 return (ticks * timer_ticks_per_nsec_quotient)
1012 >> SPARC64_NSEC_PER_CYC_SHIFT;
1013 }
1014
1015 static int set_rtc_mmss(unsigned long nowtime)
1016 {
1017 int real_seconds, real_minutes, chip_minutes;
1018 void __iomem *mregs = mstk48t02_regs;
1019 #ifdef CONFIG_PCI
1020 unsigned long dregs = ds1287_regs;
1021 #else
1022 unsigned long dregs = 0UL;
1023 #endif
1024 unsigned long flags;
1025 u8 tmp;
1026
1027 /*
1028 * Not having a register set can lead to trouble.
1029 * Also starfire doesn't have a tod clock.
1030 */
1031 if (!mregs && !dregs)
1032 return -1;
1033
1034 if (mregs) {
1035 spin_lock_irqsave(&mostek_lock, flags);
1036
1037 /* Read the current RTC minutes. */
1038 tmp = mostek_read(mregs + MOSTEK_CREG);
1039 tmp |= MSTK_CREG_READ;
1040 mostek_write(mregs + MOSTEK_CREG, tmp);
1041
1042 chip_minutes = MSTK_REG_MIN(mregs);
1043
1044 tmp = mostek_read(mregs + MOSTEK_CREG);
1045 tmp &= ~MSTK_CREG_READ;
1046 mostek_write(mregs + MOSTEK_CREG, tmp);
1047
1048 /*
1049 * since we're only adjusting minutes and seconds,
1050 * don't interfere with hour overflow. This avoids
1051 * messing with unknown time zones but requires your
1052 * RTC not to be off by more than 15 minutes
1053 */
1054 real_seconds = nowtime % 60;
1055 real_minutes = nowtime / 60;
1056 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1057 real_minutes += 30; /* correct for half hour time zone */
1058 real_minutes %= 60;
1059
1060 if (abs(real_minutes - chip_minutes) < 30) {
1061 tmp = mostek_read(mregs + MOSTEK_CREG);
1062 tmp |= MSTK_CREG_WRITE;
1063 mostek_write(mregs + MOSTEK_CREG, tmp);
1064
1065 MSTK_SET_REG_SEC(mregs,real_seconds);
1066 MSTK_SET_REG_MIN(mregs,real_minutes);
1067
1068 tmp = mostek_read(mregs + MOSTEK_CREG);
1069 tmp &= ~MSTK_CREG_WRITE;
1070 mostek_write(mregs + MOSTEK_CREG, tmp);
1071
1072 spin_unlock_irqrestore(&mostek_lock, flags);
1073
1074 return 0;
1075 } else {
1076 spin_unlock_irqrestore(&mostek_lock, flags);
1077
1078 return -1;
1079 }
1080 } else {
1081 int retval = 0;
1082 unsigned char save_control, save_freq_select;
1083
1084 /* Stolen from arch/i386/kernel/time.c, see there for
1085 * credits and descriptive comments.
1086 */
1087 spin_lock_irqsave(&rtc_lock, flags);
1088 save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
1089 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1090
1091 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
1092 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1093
1094 chip_minutes = CMOS_READ(RTC_MINUTES);
1095 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1096 BCD_TO_BIN(chip_minutes);
1097 real_seconds = nowtime % 60;
1098 real_minutes = nowtime / 60;
1099 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1100 real_minutes += 30;
1101 real_minutes %= 60;
1102
1103 if (abs(real_minutes - chip_minutes) < 30) {
1104 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1105 BIN_TO_BCD(real_seconds);
1106 BIN_TO_BCD(real_minutes);
1107 }
1108 CMOS_WRITE(real_seconds,RTC_SECONDS);
1109 CMOS_WRITE(real_minutes,RTC_MINUTES);
1110 } else {
1111 printk(KERN_WARNING
1112 "set_rtc_mmss: can't update from %d to %d\n",
1113 chip_minutes, real_minutes);
1114 retval = -1;
1115 }
1116
1117 CMOS_WRITE(save_control, RTC_CONTROL);
1118 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1119 spin_unlock_irqrestore(&rtc_lock, flags);
1120
1121 return retval;
1122 }
1123 }
1124
1125 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1126 static unsigned char mini_rtc_status; /* bitmapped status byte. */
1127
1128 /* months start at 0 now */
1129 static unsigned char days_in_mo[] =
1130 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
1131
1132 #define FEBRUARY 2
1133 #define STARTOFTIME 1970
1134 #define SECDAY 86400L
1135 #define SECYR (SECDAY * 365)
1136 #define leapyear(year) ((year) % 4 == 0 && \
1137 ((year) % 100 != 0 || (year) % 400 == 0))
1138 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1139 #define days_in_month(a) (month_days[(a) - 1])
1140
1141 static int month_days[12] = {
1142 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1143 };
1144
1145 /*
1146 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1147 */
1148 static void GregorianDay(struct rtc_time * tm)
1149 {
1150 int leapsToDate;
1151 int lastYear;
1152 int day;
1153 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1154
1155 lastYear = tm->tm_year - 1;
1156
1157 /*
1158 * Number of leap corrections to apply up to end of last year
1159 */
1160 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1161
1162 /*
1163 * This year is a leap year if it is divisible by 4 except when it is
1164 * divisible by 100 unless it is divisible by 400
1165 *
1166 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1167 */
1168 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1169
1170 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1171 tm->tm_mday;
1172
1173 tm->tm_wday = day % 7;
1174 }
1175
1176 static void to_tm(int tim, struct rtc_time *tm)
1177 {
1178 register int i;
1179 register long hms, day;
1180
1181 day = tim / SECDAY;
1182 hms = tim % SECDAY;
1183
1184 /* Hours, minutes, seconds are easy */
1185 tm->tm_hour = hms / 3600;
1186 tm->tm_min = (hms % 3600) / 60;
1187 tm->tm_sec = (hms % 3600) % 60;
1188
1189 /* Number of years in days */
1190 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1191 day -= days_in_year(i);
1192 tm->tm_year = i;
1193
1194 /* Number of months in days left */
1195 if (leapyear(tm->tm_year))
1196 days_in_month(FEBRUARY) = 29;
1197 for (i = 1; day >= days_in_month(i); i++)
1198 day -= days_in_month(i);
1199 days_in_month(FEBRUARY) = 28;
1200 tm->tm_mon = i;
1201
1202 /* Days are what is left over (+1) from all that. */
1203 tm->tm_mday = day + 1;
1204
1205 /*
1206 * Determine the day of week
1207 */
1208 GregorianDay(tm);
1209 }
1210
1211 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1212 * aka Unix time. So we have to convert to/from rtc_time.
1213 */
1214 static inline void mini_get_rtc_time(struct rtc_time *time)
1215 {
1216 unsigned long flags;
1217 u32 seconds;
1218
1219 spin_lock_irqsave(&rtc_lock, flags);
1220 seconds = 0;
1221 if (this_is_starfire)
1222 seconds = starfire_get_time();
1223 else if (tlb_type == hypervisor)
1224 seconds = hypervisor_get_time();
1225 spin_unlock_irqrestore(&rtc_lock, flags);
1226
1227 to_tm(seconds, time);
1228 time->tm_year -= 1900;
1229 time->tm_mon -= 1;
1230 }
1231
1232 static inline int mini_set_rtc_time(struct rtc_time *time)
1233 {
1234 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1235 time->tm_mday, time->tm_hour,
1236 time->tm_min, time->tm_sec);
1237 unsigned long flags;
1238 int err;
1239
1240 spin_lock_irqsave(&rtc_lock, flags);
1241 err = -ENODEV;
1242 if (this_is_starfire)
1243 err = starfire_set_time(seconds);
1244 else if (tlb_type == hypervisor)
1245 err = hypervisor_set_time(seconds);
1246 spin_unlock_irqrestore(&rtc_lock, flags);
1247
1248 return err;
1249 }
1250
1251 static int mini_rtc_ioctl(struct inode *inode, struct file *file,
1252 unsigned int cmd, unsigned long arg)
1253 {
1254 struct rtc_time wtime;
1255 void __user *argp = (void __user *)arg;
1256
1257 switch (cmd) {
1258
1259 case RTC_PLL_GET:
1260 return -EINVAL;
1261
1262 case RTC_PLL_SET:
1263 return -EINVAL;
1264
1265 case RTC_UIE_OFF: /* disable ints from RTC updates. */
1266 return 0;
1267
1268 case RTC_UIE_ON: /* enable ints for RTC updates. */
1269 return -EINVAL;
1270
1271 case RTC_RD_TIME: /* Read the time/date from RTC */
1272 /* this doesn't get week-day, who cares */
1273 memset(&wtime, 0, sizeof(wtime));
1274 mini_get_rtc_time(&wtime);
1275
1276 return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
1277
1278 case RTC_SET_TIME: /* Set the RTC */
1279 {
1280 int year;
1281 unsigned char leap_yr;
1282
1283 if (!capable(CAP_SYS_TIME))
1284 return -EACCES;
1285
1286 if (copy_from_user(&wtime, argp, sizeof(wtime)))
1287 return -EFAULT;
1288
1289 year = wtime.tm_year + 1900;
1290 leap_yr = ((!(year % 4) && (year % 100)) ||
1291 !(year % 400));
1292
1293 if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) || (wtime.tm_mday < 1))
1294 return -EINVAL;
1295
1296 if (wtime.tm_mday < 0 || wtime.tm_mday >
1297 (days_in_mo[wtime.tm_mon] + ((wtime.tm_mon == 1) && leap_yr)))
1298 return -EINVAL;
1299
1300 if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
1301 wtime.tm_min < 0 || wtime.tm_min >= 60 ||
1302 wtime.tm_sec < 0 || wtime.tm_sec >= 60)
1303 return -EINVAL;
1304
1305 return mini_set_rtc_time(&wtime);
1306 }
1307 }
1308
1309 return -EINVAL;
1310 }
1311
1312 static int mini_rtc_open(struct inode *inode, struct file *file)
1313 {
1314 if (mini_rtc_status & RTC_IS_OPEN)
1315 return -EBUSY;
1316
1317 mini_rtc_status |= RTC_IS_OPEN;
1318
1319 return 0;
1320 }
1321
1322 static int mini_rtc_release(struct inode *inode, struct file *file)
1323 {
1324 mini_rtc_status &= ~RTC_IS_OPEN;
1325 return 0;
1326 }
1327
1328
1329 static struct file_operations mini_rtc_fops = {
1330 .owner = THIS_MODULE,
1331 .ioctl = mini_rtc_ioctl,
1332 .open = mini_rtc_open,
1333 .release = mini_rtc_release,
1334 };
1335
1336 static struct miscdevice rtc_mini_dev =
1337 {
1338 .minor = RTC_MINOR,
1339 .name = "rtc",
1340 .fops = &mini_rtc_fops,
1341 };
1342
1343 static int __init rtc_mini_init(void)
1344 {
1345 int retval;
1346
1347 if (tlb_type != hypervisor && !this_is_starfire)
1348 return -ENODEV;
1349
1350 printk(KERN_INFO "Mini RTC Driver\n");
1351
1352 retval = misc_register(&rtc_mini_dev);
1353 if (retval < 0)
1354 return retval;
1355
1356 return 0;
1357 }
1358
1359 static void __exit rtc_mini_exit(void)
1360 {
1361 misc_deregister(&rtc_mini_dev);
1362 }
1363
1364
1365 module_init(rtc_mini_init);
1366 module_exit(rtc_mini_exit);