]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/sparc64/mm/init.c
Merge git://git.marvell.com/orion into devel
[mirror_ubuntu-zesty-kernel.git] / arch / sparc64 / mm / init.c
1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
29
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
52
53 #include "init.h"
54
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57 /* A bitmap, one bit for every 256MB of physical memory. If the bit
58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60 */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65 * Space is allocated for this right after the trap table
66 * in arch/sparc64/kernel/head.S
67 */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70
71 #define MAX_BANKS 32
72
73 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
74 static int pavail_ents __initdata;
75
76 static int cmp_p64(const void *a, const void *b)
77 {
78 const struct linux_prom64_registers *x = a, *y = b;
79
80 if (x->phys_addr > y->phys_addr)
81 return 1;
82 if (x->phys_addr < y->phys_addr)
83 return -1;
84 return 0;
85 }
86
87 static void __init read_obp_memory(const char *property,
88 struct linux_prom64_registers *regs,
89 int *num_ents)
90 {
91 int node = prom_finddevice("/memory");
92 int prop_size = prom_getproplen(node, property);
93 int ents, ret, i;
94
95 ents = prop_size / sizeof(struct linux_prom64_registers);
96 if (ents > MAX_BANKS) {
97 prom_printf("The machine has more %s property entries than "
98 "this kernel can support (%d).\n",
99 property, MAX_BANKS);
100 prom_halt();
101 }
102
103 ret = prom_getproperty(node, property, (char *) regs, prop_size);
104 if (ret == -1) {
105 prom_printf("Couldn't get %s property from /memory.\n");
106 prom_halt();
107 }
108
109 /* Sanitize what we got from the firmware, by page aligning
110 * everything.
111 */
112 for (i = 0; i < ents; i++) {
113 unsigned long base, size;
114
115 base = regs[i].phys_addr;
116 size = regs[i].reg_size;
117
118 size &= PAGE_MASK;
119 if (base & ~PAGE_MASK) {
120 unsigned long new_base = PAGE_ALIGN(base);
121
122 size -= new_base - base;
123 if ((long) size < 0L)
124 size = 0UL;
125 base = new_base;
126 }
127 if (size == 0UL) {
128 /* If it is empty, simply get rid of it.
129 * This simplifies the logic of the other
130 * functions that process these arrays.
131 */
132 memmove(&regs[i], &regs[i + 1],
133 (ents - i - 1) * sizeof(regs[0]));
134 i--;
135 ents--;
136 continue;
137 }
138 regs[i].phys_addr = base;
139 regs[i].reg_size = size;
140 }
141
142 *num_ents = ents;
143
144 sort(regs, ents, sizeof(struct linux_prom64_registers),
145 cmp_p64, NULL);
146 }
147
148 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
149
150 /* Kernel physical address base and size in bytes. */
151 unsigned long kern_base __read_mostly;
152 unsigned long kern_size __read_mostly;
153
154 /* Initial ramdisk setup */
155 extern unsigned long sparc_ramdisk_image64;
156 extern unsigned int sparc_ramdisk_image;
157 extern unsigned int sparc_ramdisk_size;
158
159 struct page *mem_map_zero __read_mostly;
160 EXPORT_SYMBOL(mem_map_zero);
161
162 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
163
164 unsigned long sparc64_kern_pri_context __read_mostly;
165 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
166 unsigned long sparc64_kern_sec_context __read_mostly;
167
168 int num_kernel_image_mappings;
169
170 #ifdef CONFIG_DEBUG_DCFLUSH
171 atomic_t dcpage_flushes = ATOMIC_INIT(0);
172 #ifdef CONFIG_SMP
173 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
174 #endif
175 #endif
176
177 inline void flush_dcache_page_impl(struct page *page)
178 {
179 BUG_ON(tlb_type == hypervisor);
180 #ifdef CONFIG_DEBUG_DCFLUSH
181 atomic_inc(&dcpage_flushes);
182 #endif
183
184 #ifdef DCACHE_ALIASING_POSSIBLE
185 __flush_dcache_page(page_address(page),
186 ((tlb_type == spitfire) &&
187 page_mapping(page) != NULL));
188 #else
189 if (page_mapping(page) != NULL &&
190 tlb_type == spitfire)
191 __flush_icache_page(__pa(page_address(page)));
192 #endif
193 }
194
195 #define PG_dcache_dirty PG_arch_1
196 #define PG_dcache_cpu_shift 32UL
197 #define PG_dcache_cpu_mask \
198 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
199
200 #define dcache_dirty_cpu(page) \
201 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
202
203 static inline void set_dcache_dirty(struct page *page, int this_cpu)
204 {
205 unsigned long mask = this_cpu;
206 unsigned long non_cpu_bits;
207
208 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
209 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
210
211 __asm__ __volatile__("1:\n\t"
212 "ldx [%2], %%g7\n\t"
213 "and %%g7, %1, %%g1\n\t"
214 "or %%g1, %0, %%g1\n\t"
215 "casx [%2], %%g7, %%g1\n\t"
216 "cmp %%g7, %%g1\n\t"
217 "membar #StoreLoad | #StoreStore\n\t"
218 "bne,pn %%xcc, 1b\n\t"
219 " nop"
220 : /* no outputs */
221 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
222 : "g1", "g7");
223 }
224
225 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
226 {
227 unsigned long mask = (1UL << PG_dcache_dirty);
228
229 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
230 "1:\n\t"
231 "ldx [%2], %%g7\n\t"
232 "srlx %%g7, %4, %%g1\n\t"
233 "and %%g1, %3, %%g1\n\t"
234 "cmp %%g1, %0\n\t"
235 "bne,pn %%icc, 2f\n\t"
236 " andn %%g7, %1, %%g1\n\t"
237 "casx [%2], %%g7, %%g1\n\t"
238 "cmp %%g7, %%g1\n\t"
239 "membar #StoreLoad | #StoreStore\n\t"
240 "bne,pn %%xcc, 1b\n\t"
241 " nop\n"
242 "2:"
243 : /* no outputs */
244 : "r" (cpu), "r" (mask), "r" (&page->flags),
245 "i" (PG_dcache_cpu_mask),
246 "i" (PG_dcache_cpu_shift)
247 : "g1", "g7");
248 }
249
250 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
251 {
252 unsigned long tsb_addr = (unsigned long) ent;
253
254 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255 tsb_addr = __pa(tsb_addr);
256
257 __tsb_insert(tsb_addr, tag, pte);
258 }
259
260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261 unsigned long _PAGE_SZBITS __read_mostly;
262
263 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
264 {
265 struct mm_struct *mm;
266 struct tsb *tsb;
267 unsigned long tag, flags;
268 unsigned long tsb_index, tsb_hash_shift;
269
270 if (tlb_type != hypervisor) {
271 unsigned long pfn = pte_pfn(pte);
272 unsigned long pg_flags;
273 struct page *page;
274
275 if (pfn_valid(pfn) &&
276 (page = pfn_to_page(pfn), page_mapping(page)) &&
277 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
278 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
279 PG_dcache_cpu_mask);
280 int this_cpu = get_cpu();
281
282 /* This is just to optimize away some function calls
283 * in the SMP case.
284 */
285 if (cpu == this_cpu)
286 flush_dcache_page_impl(page);
287 else
288 smp_flush_dcache_page_impl(page, cpu);
289
290 clear_dcache_dirty_cpu(page, cpu);
291
292 put_cpu();
293 }
294 }
295
296 mm = vma->vm_mm;
297
298 tsb_index = MM_TSB_BASE;
299 tsb_hash_shift = PAGE_SHIFT;
300
301 spin_lock_irqsave(&mm->context.lock, flags);
302
303 #ifdef CONFIG_HUGETLB_PAGE
304 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
305 if ((tlb_type == hypervisor &&
306 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
307 (tlb_type != hypervisor &&
308 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
309 tsb_index = MM_TSB_HUGE;
310 tsb_hash_shift = HPAGE_SHIFT;
311 }
312 }
313 #endif
314
315 tsb = mm->context.tsb_block[tsb_index].tsb;
316 tsb += ((address >> tsb_hash_shift) &
317 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
318 tag = (address >> 22UL);
319 tsb_insert(tsb, tag, pte_val(pte));
320
321 spin_unlock_irqrestore(&mm->context.lock, flags);
322 }
323
324 void flush_dcache_page(struct page *page)
325 {
326 struct address_space *mapping;
327 int this_cpu;
328
329 if (tlb_type == hypervisor)
330 return;
331
332 /* Do not bother with the expensive D-cache flush if it
333 * is merely the zero page. The 'bigcore' testcase in GDB
334 * causes this case to run millions of times.
335 */
336 if (page == ZERO_PAGE(0))
337 return;
338
339 this_cpu = get_cpu();
340
341 mapping = page_mapping(page);
342 if (mapping && !mapping_mapped(mapping)) {
343 int dirty = test_bit(PG_dcache_dirty, &page->flags);
344 if (dirty) {
345 int dirty_cpu = dcache_dirty_cpu(page);
346
347 if (dirty_cpu == this_cpu)
348 goto out;
349 smp_flush_dcache_page_impl(page, dirty_cpu);
350 }
351 set_dcache_dirty(page, this_cpu);
352 } else {
353 /* We could delay the flush for the !page_mapping
354 * case too. But that case is for exec env/arg
355 * pages and those are %99 certainly going to get
356 * faulted into the tlb (and thus flushed) anyways.
357 */
358 flush_dcache_page_impl(page);
359 }
360
361 out:
362 put_cpu();
363 }
364
365 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
366 {
367 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
368 if (tlb_type == spitfire) {
369 unsigned long kaddr;
370
371 /* This code only runs on Spitfire cpus so this is
372 * why we can assume _PAGE_PADDR_4U.
373 */
374 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
375 unsigned long paddr, mask = _PAGE_PADDR_4U;
376
377 if (kaddr >= PAGE_OFFSET)
378 paddr = kaddr & mask;
379 else {
380 pgd_t *pgdp = pgd_offset_k(kaddr);
381 pud_t *pudp = pud_offset(pgdp, kaddr);
382 pmd_t *pmdp = pmd_offset(pudp, kaddr);
383 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
384
385 paddr = pte_val(*ptep) & mask;
386 }
387 __flush_icache_page(paddr);
388 }
389 }
390 }
391
392 void mmu_info(struct seq_file *m)
393 {
394 if (tlb_type == cheetah)
395 seq_printf(m, "MMU Type\t: Cheetah\n");
396 else if (tlb_type == cheetah_plus)
397 seq_printf(m, "MMU Type\t: Cheetah+\n");
398 else if (tlb_type == spitfire)
399 seq_printf(m, "MMU Type\t: Spitfire\n");
400 else if (tlb_type == hypervisor)
401 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
402 else
403 seq_printf(m, "MMU Type\t: ???\n");
404
405 #ifdef CONFIG_DEBUG_DCFLUSH
406 seq_printf(m, "DCPageFlushes\t: %d\n",
407 atomic_read(&dcpage_flushes));
408 #ifdef CONFIG_SMP
409 seq_printf(m, "DCPageFlushesXC\t: %d\n",
410 atomic_read(&dcpage_flushes_xcall));
411 #endif /* CONFIG_SMP */
412 #endif /* CONFIG_DEBUG_DCFLUSH */
413 }
414
415 struct linux_prom_translation prom_trans[512] __read_mostly;
416 unsigned int prom_trans_ents __read_mostly;
417
418 unsigned long kern_locked_tte_data;
419
420 /* The obp translations are saved based on 8k pagesize, since obp can
421 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
422 * HI_OBP_ADDRESS range are handled in ktlb.S.
423 */
424 static inline int in_obp_range(unsigned long vaddr)
425 {
426 return (vaddr >= LOW_OBP_ADDRESS &&
427 vaddr < HI_OBP_ADDRESS);
428 }
429
430 static int cmp_ptrans(const void *a, const void *b)
431 {
432 const struct linux_prom_translation *x = a, *y = b;
433
434 if (x->virt > y->virt)
435 return 1;
436 if (x->virt < y->virt)
437 return -1;
438 return 0;
439 }
440
441 /* Read OBP translations property into 'prom_trans[]'. */
442 static void __init read_obp_translations(void)
443 {
444 int n, node, ents, first, last, i;
445
446 node = prom_finddevice("/virtual-memory");
447 n = prom_getproplen(node, "translations");
448 if (unlikely(n == 0 || n == -1)) {
449 prom_printf("prom_mappings: Couldn't get size.\n");
450 prom_halt();
451 }
452 if (unlikely(n > sizeof(prom_trans))) {
453 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
454 prom_halt();
455 }
456
457 if ((n = prom_getproperty(node, "translations",
458 (char *)&prom_trans[0],
459 sizeof(prom_trans))) == -1) {
460 prom_printf("prom_mappings: Couldn't get property.\n");
461 prom_halt();
462 }
463
464 n = n / sizeof(struct linux_prom_translation);
465
466 ents = n;
467
468 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
469 cmp_ptrans, NULL);
470
471 /* Now kick out all the non-OBP entries. */
472 for (i = 0; i < ents; i++) {
473 if (in_obp_range(prom_trans[i].virt))
474 break;
475 }
476 first = i;
477 for (; i < ents; i++) {
478 if (!in_obp_range(prom_trans[i].virt))
479 break;
480 }
481 last = i;
482
483 for (i = 0; i < (last - first); i++) {
484 struct linux_prom_translation *src = &prom_trans[i + first];
485 struct linux_prom_translation *dest = &prom_trans[i];
486
487 *dest = *src;
488 }
489 for (; i < ents; i++) {
490 struct linux_prom_translation *dest = &prom_trans[i];
491 dest->virt = dest->size = dest->data = 0x0UL;
492 }
493
494 prom_trans_ents = last - first;
495
496 if (tlb_type == spitfire) {
497 /* Clear diag TTE bits. */
498 for (i = 0; i < prom_trans_ents; i++)
499 prom_trans[i].data &= ~0x0003fe0000000000UL;
500 }
501 }
502
503 static void __init hypervisor_tlb_lock(unsigned long vaddr,
504 unsigned long pte,
505 unsigned long mmu)
506 {
507 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
508
509 if (ret != 0) {
510 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
511 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
512 prom_halt();
513 }
514 }
515
516 static unsigned long kern_large_tte(unsigned long paddr);
517
518 static void __init remap_kernel(void)
519 {
520 unsigned long phys_page, tte_vaddr, tte_data;
521 int i, tlb_ent = sparc64_highest_locked_tlbent();
522
523 tte_vaddr = (unsigned long) KERNBASE;
524 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
525 tte_data = kern_large_tte(phys_page);
526
527 kern_locked_tte_data = tte_data;
528
529 /* Now lock us into the TLBs via Hypervisor or OBP. */
530 if (tlb_type == hypervisor) {
531 for (i = 0; i < num_kernel_image_mappings; i++) {
532 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
533 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
534 tte_vaddr += 0x400000;
535 tte_data += 0x400000;
536 }
537 } else {
538 for (i = 0; i < num_kernel_image_mappings; i++) {
539 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
540 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
541 tte_vaddr += 0x400000;
542 tte_data += 0x400000;
543 }
544 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
545 }
546 if (tlb_type == cheetah_plus) {
547 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
548 CTX_CHEETAH_PLUS_NUC);
549 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
550 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
551 }
552 }
553
554
555 static void __init inherit_prom_mappings(void)
556 {
557 /* Now fixup OBP's idea about where we really are mapped. */
558 printk("Remapping the kernel... ");
559 remap_kernel();
560 printk("done.\n");
561 }
562
563 void prom_world(int enter)
564 {
565 if (!enter)
566 set_fs((mm_segment_t) { get_thread_current_ds() });
567
568 __asm__ __volatile__("flushw");
569 }
570
571 void __flush_dcache_range(unsigned long start, unsigned long end)
572 {
573 unsigned long va;
574
575 if (tlb_type == spitfire) {
576 int n = 0;
577
578 for (va = start; va < end; va += 32) {
579 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
580 if (++n >= 512)
581 break;
582 }
583 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
584 start = __pa(start);
585 end = __pa(end);
586 for (va = start; va < end; va += 32)
587 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
588 "membar #Sync"
589 : /* no outputs */
590 : "r" (va),
591 "i" (ASI_DCACHE_INVALIDATE));
592 }
593 }
594
595 /* get_new_mmu_context() uses "cache + 1". */
596 DEFINE_SPINLOCK(ctx_alloc_lock);
597 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
598 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
599 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
600 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
601
602 /* Caller does TLB context flushing on local CPU if necessary.
603 * The caller also ensures that CTX_VALID(mm->context) is false.
604 *
605 * We must be careful about boundary cases so that we never
606 * let the user have CTX 0 (nucleus) or we ever use a CTX
607 * version of zero (and thus NO_CONTEXT would not be caught
608 * by version mis-match tests in mmu_context.h).
609 *
610 * Always invoked with interrupts disabled.
611 */
612 void get_new_mmu_context(struct mm_struct *mm)
613 {
614 unsigned long ctx, new_ctx;
615 unsigned long orig_pgsz_bits;
616 unsigned long flags;
617 int new_version;
618
619 spin_lock_irqsave(&ctx_alloc_lock, flags);
620 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
621 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
622 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
623 new_version = 0;
624 if (new_ctx >= (1 << CTX_NR_BITS)) {
625 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
626 if (new_ctx >= ctx) {
627 int i;
628 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
629 CTX_FIRST_VERSION;
630 if (new_ctx == 1)
631 new_ctx = CTX_FIRST_VERSION;
632
633 /* Don't call memset, for 16 entries that's just
634 * plain silly...
635 */
636 mmu_context_bmap[0] = 3;
637 mmu_context_bmap[1] = 0;
638 mmu_context_bmap[2] = 0;
639 mmu_context_bmap[3] = 0;
640 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
641 mmu_context_bmap[i + 0] = 0;
642 mmu_context_bmap[i + 1] = 0;
643 mmu_context_bmap[i + 2] = 0;
644 mmu_context_bmap[i + 3] = 0;
645 }
646 new_version = 1;
647 goto out;
648 }
649 }
650 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
651 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
652 out:
653 tlb_context_cache = new_ctx;
654 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
655 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
656
657 if (unlikely(new_version))
658 smp_new_mmu_context_version();
659 }
660
661 static int numa_enabled = 1;
662 static int numa_debug;
663
664 static int __init early_numa(char *p)
665 {
666 if (!p)
667 return 0;
668
669 if (strstr(p, "off"))
670 numa_enabled = 0;
671
672 if (strstr(p, "debug"))
673 numa_debug = 1;
674
675 return 0;
676 }
677 early_param("numa", early_numa);
678
679 #define numadbg(f, a...) \
680 do { if (numa_debug) \
681 printk(KERN_INFO f, ## a); \
682 } while (0)
683
684 static void __init find_ramdisk(unsigned long phys_base)
685 {
686 #ifdef CONFIG_BLK_DEV_INITRD
687 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
688 unsigned long ramdisk_image;
689
690 /* Older versions of the bootloader only supported a
691 * 32-bit physical address for the ramdisk image
692 * location, stored at sparc_ramdisk_image. Newer
693 * SILO versions set sparc_ramdisk_image to zero and
694 * provide a full 64-bit physical address at
695 * sparc_ramdisk_image64.
696 */
697 ramdisk_image = sparc_ramdisk_image;
698 if (!ramdisk_image)
699 ramdisk_image = sparc_ramdisk_image64;
700
701 /* Another bootloader quirk. The bootloader normalizes
702 * the physical address to KERNBASE, so we have to
703 * factor that back out and add in the lowest valid
704 * physical page address to get the true physical address.
705 */
706 ramdisk_image -= KERNBASE;
707 ramdisk_image += phys_base;
708
709 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
710 ramdisk_image, sparc_ramdisk_size);
711
712 initrd_start = ramdisk_image;
713 initrd_end = ramdisk_image + sparc_ramdisk_size;
714
715 lmb_reserve(initrd_start, sparc_ramdisk_size);
716
717 initrd_start += PAGE_OFFSET;
718 initrd_end += PAGE_OFFSET;
719 }
720 #endif
721 }
722
723 struct node_mem_mask {
724 unsigned long mask;
725 unsigned long val;
726 unsigned long bootmem_paddr;
727 };
728 static struct node_mem_mask node_masks[MAX_NUMNODES];
729 static int num_node_masks;
730
731 int numa_cpu_lookup_table[NR_CPUS];
732 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
733
734 #ifdef CONFIG_NEED_MULTIPLE_NODES
735
736 struct mdesc_mblock {
737 u64 base;
738 u64 size;
739 u64 offset; /* RA-to-PA */
740 };
741 static struct mdesc_mblock *mblocks;
742 static int num_mblocks;
743
744 static unsigned long ra_to_pa(unsigned long addr)
745 {
746 int i;
747
748 for (i = 0; i < num_mblocks; i++) {
749 struct mdesc_mblock *m = &mblocks[i];
750
751 if (addr >= m->base &&
752 addr < (m->base + m->size)) {
753 addr += m->offset;
754 break;
755 }
756 }
757 return addr;
758 }
759
760 static int find_node(unsigned long addr)
761 {
762 int i;
763
764 addr = ra_to_pa(addr);
765 for (i = 0; i < num_node_masks; i++) {
766 struct node_mem_mask *p = &node_masks[i];
767
768 if ((addr & p->mask) == p->val)
769 return i;
770 }
771 return -1;
772 }
773
774 static unsigned long nid_range(unsigned long start, unsigned long end,
775 int *nid)
776 {
777 *nid = find_node(start);
778 start += PAGE_SIZE;
779 while (start < end) {
780 int n = find_node(start);
781
782 if (n != *nid)
783 break;
784 start += PAGE_SIZE;
785 }
786
787 if (start > end)
788 start = end;
789
790 return start;
791 }
792 #else
793 static unsigned long nid_range(unsigned long start, unsigned long end,
794 int *nid)
795 {
796 *nid = 0;
797 return end;
798 }
799 #endif
800
801 /* This must be invoked after performing all of the necessary
802 * add_active_range() calls for 'nid'. We need to be able to get
803 * correct data from get_pfn_range_for_nid().
804 */
805 static void __init allocate_node_data(int nid)
806 {
807 unsigned long paddr, num_pages, start_pfn, end_pfn;
808 struct pglist_data *p;
809
810 #ifdef CONFIG_NEED_MULTIPLE_NODES
811 paddr = lmb_alloc_nid(sizeof(struct pglist_data),
812 SMP_CACHE_BYTES, nid, nid_range);
813 if (!paddr) {
814 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
815 prom_halt();
816 }
817 NODE_DATA(nid) = __va(paddr);
818 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
819
820 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
821 #endif
822
823 p = NODE_DATA(nid);
824
825 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
826 p->node_start_pfn = start_pfn;
827 p->node_spanned_pages = end_pfn - start_pfn;
828
829 if (p->node_spanned_pages) {
830 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
831
832 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
833 nid_range);
834 if (!paddr) {
835 prom_printf("Cannot allocate bootmap for nid[%d]\n",
836 nid);
837 prom_halt();
838 }
839 node_masks[nid].bootmem_paddr = paddr;
840 }
841 }
842
843 static void init_node_masks_nonnuma(void)
844 {
845 int i;
846
847 numadbg("Initializing tables for non-numa.\n");
848
849 node_masks[0].mask = node_masks[0].val = 0;
850 num_node_masks = 1;
851
852 for (i = 0; i < NR_CPUS; i++)
853 numa_cpu_lookup_table[i] = 0;
854
855 numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
856 }
857
858 #ifdef CONFIG_NEED_MULTIPLE_NODES
859 struct pglist_data *node_data[MAX_NUMNODES];
860
861 EXPORT_SYMBOL(numa_cpu_lookup_table);
862 EXPORT_SYMBOL(numa_cpumask_lookup_table);
863 EXPORT_SYMBOL(node_data);
864
865 struct mdesc_mlgroup {
866 u64 node;
867 u64 latency;
868 u64 match;
869 u64 mask;
870 };
871 static struct mdesc_mlgroup *mlgroups;
872 static int num_mlgroups;
873
874 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
875 u32 cfg_handle)
876 {
877 u64 arc;
878
879 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
880 u64 target = mdesc_arc_target(md, arc);
881 const u64 *val;
882
883 val = mdesc_get_property(md, target,
884 "cfg-handle", NULL);
885 if (val && *val == cfg_handle)
886 return 0;
887 }
888 return -ENODEV;
889 }
890
891 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
892 u32 cfg_handle)
893 {
894 u64 arc, candidate, best_latency = ~(u64)0;
895
896 candidate = MDESC_NODE_NULL;
897 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
898 u64 target = mdesc_arc_target(md, arc);
899 const char *name = mdesc_node_name(md, target);
900 const u64 *val;
901
902 if (strcmp(name, "pio-latency-group"))
903 continue;
904
905 val = mdesc_get_property(md, target, "latency", NULL);
906 if (!val)
907 continue;
908
909 if (*val < best_latency) {
910 candidate = target;
911 best_latency = *val;
912 }
913 }
914
915 if (candidate == MDESC_NODE_NULL)
916 return -ENODEV;
917
918 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
919 }
920
921 int of_node_to_nid(struct device_node *dp)
922 {
923 const struct linux_prom64_registers *regs;
924 struct mdesc_handle *md;
925 u32 cfg_handle;
926 int count, nid;
927 u64 grp;
928
929 /* This is the right thing to do on currently supported
930 * SUN4U NUMA platforms as well, as the PCI controller does
931 * not sit behind any particular memory controller.
932 */
933 if (!mlgroups)
934 return -1;
935
936 regs = of_get_property(dp, "reg", NULL);
937 if (!regs)
938 return -1;
939
940 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
941
942 md = mdesc_grab();
943
944 count = 0;
945 nid = -1;
946 mdesc_for_each_node_by_name(md, grp, "group") {
947 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
948 nid = count;
949 break;
950 }
951 count++;
952 }
953
954 mdesc_release(md);
955
956 return nid;
957 }
958
959 static void __init add_node_ranges(void)
960 {
961 int i;
962
963 for (i = 0; i < lmb.memory.cnt; i++) {
964 unsigned long size = lmb_size_bytes(&lmb.memory, i);
965 unsigned long start, end;
966
967 start = lmb.memory.region[i].base;
968 end = start + size;
969 while (start < end) {
970 unsigned long this_end;
971 int nid;
972
973 this_end = nid_range(start, end, &nid);
974
975 numadbg("Adding active range nid[%d] "
976 "start[%lx] end[%lx]\n",
977 nid, start, this_end);
978
979 add_active_range(nid,
980 start >> PAGE_SHIFT,
981 this_end >> PAGE_SHIFT);
982
983 start = this_end;
984 }
985 }
986 }
987
988 static int __init grab_mlgroups(struct mdesc_handle *md)
989 {
990 unsigned long paddr;
991 int count = 0;
992 u64 node;
993
994 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
995 count++;
996 if (!count)
997 return -ENOENT;
998
999 paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1000 SMP_CACHE_BYTES);
1001 if (!paddr)
1002 return -ENOMEM;
1003
1004 mlgroups = __va(paddr);
1005 num_mlgroups = count;
1006
1007 count = 0;
1008 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1009 struct mdesc_mlgroup *m = &mlgroups[count++];
1010 const u64 *val;
1011
1012 m->node = node;
1013
1014 val = mdesc_get_property(md, node, "latency", NULL);
1015 m->latency = *val;
1016 val = mdesc_get_property(md, node, "address-match", NULL);
1017 m->match = *val;
1018 val = mdesc_get_property(md, node, "address-mask", NULL);
1019 m->mask = *val;
1020
1021 numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
1022 "match[%lx] mask[%lx]\n",
1023 count - 1, m->node, m->latency, m->match, m->mask);
1024 }
1025
1026 return 0;
1027 }
1028
1029 static int __init grab_mblocks(struct mdesc_handle *md)
1030 {
1031 unsigned long paddr;
1032 int count = 0;
1033 u64 node;
1034
1035 mdesc_for_each_node_by_name(md, node, "mblock")
1036 count++;
1037 if (!count)
1038 return -ENOENT;
1039
1040 paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1041 SMP_CACHE_BYTES);
1042 if (!paddr)
1043 return -ENOMEM;
1044
1045 mblocks = __va(paddr);
1046 num_mblocks = count;
1047
1048 count = 0;
1049 mdesc_for_each_node_by_name(md, node, "mblock") {
1050 struct mdesc_mblock *m = &mblocks[count++];
1051 const u64 *val;
1052
1053 val = mdesc_get_property(md, node, "base", NULL);
1054 m->base = *val;
1055 val = mdesc_get_property(md, node, "size", NULL);
1056 m->size = *val;
1057 val = mdesc_get_property(md, node,
1058 "address-congruence-offset", NULL);
1059 m->offset = *val;
1060
1061 numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
1062 count - 1, m->base, m->size, m->offset);
1063 }
1064
1065 return 0;
1066 }
1067
1068 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1069 u64 grp, cpumask_t *mask)
1070 {
1071 u64 arc;
1072
1073 cpus_clear(*mask);
1074
1075 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1076 u64 target = mdesc_arc_target(md, arc);
1077 const char *name = mdesc_node_name(md, target);
1078 const u64 *id;
1079
1080 if (strcmp(name, "cpu"))
1081 continue;
1082 id = mdesc_get_property(md, target, "id", NULL);
1083 if (*id < NR_CPUS)
1084 cpu_set(*id, *mask);
1085 }
1086 }
1087
1088 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1089 {
1090 int i;
1091
1092 for (i = 0; i < num_mlgroups; i++) {
1093 struct mdesc_mlgroup *m = &mlgroups[i];
1094 if (m->node == node)
1095 return m;
1096 }
1097 return NULL;
1098 }
1099
1100 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1101 int index)
1102 {
1103 struct mdesc_mlgroup *candidate = NULL;
1104 u64 arc, best_latency = ~(u64)0;
1105 struct node_mem_mask *n;
1106
1107 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1108 u64 target = mdesc_arc_target(md, arc);
1109 struct mdesc_mlgroup *m = find_mlgroup(target);
1110 if (!m)
1111 continue;
1112 if (m->latency < best_latency) {
1113 candidate = m;
1114 best_latency = m->latency;
1115 }
1116 }
1117 if (!candidate)
1118 return -ENOENT;
1119
1120 if (num_node_masks != index) {
1121 printk(KERN_ERR "Inconsistent NUMA state, "
1122 "index[%d] != num_node_masks[%d]\n",
1123 index, num_node_masks);
1124 return -EINVAL;
1125 }
1126
1127 n = &node_masks[num_node_masks++];
1128
1129 n->mask = candidate->mask;
1130 n->val = candidate->match;
1131
1132 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
1133 index, n->mask, n->val, candidate->latency);
1134
1135 return 0;
1136 }
1137
1138 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1139 int index)
1140 {
1141 cpumask_t mask;
1142 int cpu;
1143
1144 numa_parse_mdesc_group_cpus(md, grp, &mask);
1145
1146 for_each_cpu_mask(cpu, mask)
1147 numa_cpu_lookup_table[cpu] = index;
1148 numa_cpumask_lookup_table[index] = mask;
1149
1150 if (numa_debug) {
1151 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1152 for_each_cpu_mask(cpu, mask)
1153 printk("%d ", cpu);
1154 printk("]\n");
1155 }
1156
1157 return numa_attach_mlgroup(md, grp, index);
1158 }
1159
1160 static int __init numa_parse_mdesc(void)
1161 {
1162 struct mdesc_handle *md = mdesc_grab();
1163 int i, err, count;
1164 u64 node;
1165
1166 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1167 if (node == MDESC_NODE_NULL) {
1168 mdesc_release(md);
1169 return -ENOENT;
1170 }
1171
1172 err = grab_mblocks(md);
1173 if (err < 0)
1174 goto out;
1175
1176 err = grab_mlgroups(md);
1177 if (err < 0)
1178 goto out;
1179
1180 count = 0;
1181 mdesc_for_each_node_by_name(md, node, "group") {
1182 err = numa_parse_mdesc_group(md, node, count);
1183 if (err < 0)
1184 break;
1185 count++;
1186 }
1187
1188 add_node_ranges();
1189
1190 for (i = 0; i < num_node_masks; i++) {
1191 allocate_node_data(i);
1192 node_set_online(i);
1193 }
1194
1195 err = 0;
1196 out:
1197 mdesc_release(md);
1198 return err;
1199 }
1200
1201 static int __init numa_parse_jbus(void)
1202 {
1203 unsigned long cpu, index;
1204
1205 /* NUMA node id is encoded in bits 36 and higher, and there is
1206 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1207 */
1208 index = 0;
1209 for_each_present_cpu(cpu) {
1210 numa_cpu_lookup_table[cpu] = index;
1211 numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
1212 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1213 node_masks[index].val = cpu << 36UL;
1214
1215 index++;
1216 }
1217 num_node_masks = index;
1218
1219 add_node_ranges();
1220
1221 for (index = 0; index < num_node_masks; index++) {
1222 allocate_node_data(index);
1223 node_set_online(index);
1224 }
1225
1226 return 0;
1227 }
1228
1229 static int __init numa_parse_sun4u(void)
1230 {
1231 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1232 unsigned long ver;
1233
1234 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1235 if ((ver >> 32UL) == __JALAPENO_ID ||
1236 (ver >> 32UL) == __SERRANO_ID)
1237 return numa_parse_jbus();
1238 }
1239 return -1;
1240 }
1241
1242 static int __init bootmem_init_numa(void)
1243 {
1244 int err = -1;
1245
1246 numadbg("bootmem_init_numa()\n");
1247
1248 if (numa_enabled) {
1249 if (tlb_type == hypervisor)
1250 err = numa_parse_mdesc();
1251 else
1252 err = numa_parse_sun4u();
1253 }
1254 return err;
1255 }
1256
1257 #else
1258
1259 static int bootmem_init_numa(void)
1260 {
1261 return -1;
1262 }
1263
1264 #endif
1265
1266 static void __init bootmem_init_nonnuma(void)
1267 {
1268 unsigned long top_of_ram = lmb_end_of_DRAM();
1269 unsigned long total_ram = lmb_phys_mem_size();
1270 unsigned int i;
1271
1272 numadbg("bootmem_init_nonnuma()\n");
1273
1274 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1275 top_of_ram, total_ram);
1276 printk(KERN_INFO "Memory hole size: %ldMB\n",
1277 (top_of_ram - total_ram) >> 20);
1278
1279 init_node_masks_nonnuma();
1280
1281 for (i = 0; i < lmb.memory.cnt; i++) {
1282 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1283 unsigned long start_pfn, end_pfn;
1284
1285 if (!size)
1286 continue;
1287
1288 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1289 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1290 add_active_range(0, start_pfn, end_pfn);
1291 }
1292
1293 allocate_node_data(0);
1294
1295 node_set_online(0);
1296 }
1297
1298 static void __init reserve_range_in_node(int nid, unsigned long start,
1299 unsigned long end)
1300 {
1301 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1302 nid, start, end);
1303 while (start < end) {
1304 unsigned long this_end;
1305 int n;
1306
1307 this_end = nid_range(start, end, &n);
1308 if (n == nid) {
1309 numadbg(" MATCH reserving range [%lx:%lx]\n",
1310 start, this_end);
1311 reserve_bootmem_node(NODE_DATA(nid), start,
1312 (this_end - start), BOOTMEM_DEFAULT);
1313 } else
1314 numadbg(" NO MATCH, advancing start to %lx\n",
1315 this_end);
1316
1317 start = this_end;
1318 }
1319 }
1320
1321 static void __init trim_reserved_in_node(int nid)
1322 {
1323 int i;
1324
1325 numadbg(" trim_reserved_in_node(%d)\n", nid);
1326
1327 for (i = 0; i < lmb.reserved.cnt; i++) {
1328 unsigned long start = lmb.reserved.region[i].base;
1329 unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1330 unsigned long end = start + size;
1331
1332 reserve_range_in_node(nid, start, end);
1333 }
1334 }
1335
1336 static void __init bootmem_init_one_node(int nid)
1337 {
1338 struct pglist_data *p;
1339
1340 numadbg("bootmem_init_one_node(%d)\n", nid);
1341
1342 p = NODE_DATA(nid);
1343
1344 if (p->node_spanned_pages) {
1345 unsigned long paddr = node_masks[nid].bootmem_paddr;
1346 unsigned long end_pfn;
1347
1348 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1349
1350 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1351 nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1352
1353 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1354 p->node_start_pfn, end_pfn);
1355
1356 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1357 nid, end_pfn);
1358 free_bootmem_with_active_regions(nid, end_pfn);
1359
1360 trim_reserved_in_node(nid);
1361
1362 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1363 nid);
1364 sparse_memory_present_with_active_regions(nid);
1365 }
1366 }
1367
1368 static unsigned long __init bootmem_init(unsigned long phys_base)
1369 {
1370 unsigned long end_pfn;
1371 int nid;
1372
1373 end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1374 max_pfn = max_low_pfn = end_pfn;
1375 min_low_pfn = (phys_base >> PAGE_SHIFT);
1376
1377 if (bootmem_init_numa() < 0)
1378 bootmem_init_nonnuma();
1379
1380 /* XXX cpu notifier XXX */
1381
1382 for_each_online_node(nid)
1383 bootmem_init_one_node(nid);
1384
1385 sparse_init();
1386
1387 return end_pfn;
1388 }
1389
1390 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1391 static int pall_ents __initdata;
1392
1393 #ifdef CONFIG_DEBUG_PAGEALLOC
1394 static unsigned long __ref kernel_map_range(unsigned long pstart,
1395 unsigned long pend, pgprot_t prot)
1396 {
1397 unsigned long vstart = PAGE_OFFSET + pstart;
1398 unsigned long vend = PAGE_OFFSET + pend;
1399 unsigned long alloc_bytes = 0UL;
1400
1401 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1402 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1403 vstart, vend);
1404 prom_halt();
1405 }
1406
1407 while (vstart < vend) {
1408 unsigned long this_end, paddr = __pa(vstart);
1409 pgd_t *pgd = pgd_offset_k(vstart);
1410 pud_t *pud;
1411 pmd_t *pmd;
1412 pte_t *pte;
1413
1414 pud = pud_offset(pgd, vstart);
1415 if (pud_none(*pud)) {
1416 pmd_t *new;
1417
1418 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1419 alloc_bytes += PAGE_SIZE;
1420 pud_populate(&init_mm, pud, new);
1421 }
1422
1423 pmd = pmd_offset(pud, vstart);
1424 if (!pmd_present(*pmd)) {
1425 pte_t *new;
1426
1427 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1428 alloc_bytes += PAGE_SIZE;
1429 pmd_populate_kernel(&init_mm, pmd, new);
1430 }
1431
1432 pte = pte_offset_kernel(pmd, vstart);
1433 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1434 if (this_end > vend)
1435 this_end = vend;
1436
1437 while (vstart < this_end) {
1438 pte_val(*pte) = (paddr | pgprot_val(prot));
1439
1440 vstart += PAGE_SIZE;
1441 paddr += PAGE_SIZE;
1442 pte++;
1443 }
1444 }
1445
1446 return alloc_bytes;
1447 }
1448
1449 extern unsigned int kvmap_linear_patch[1];
1450 #endif /* CONFIG_DEBUG_PAGEALLOC */
1451
1452 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1453 {
1454 const unsigned long shift_256MB = 28;
1455 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1456 const unsigned long size_256MB = (1UL << shift_256MB);
1457
1458 while (start < end) {
1459 long remains;
1460
1461 remains = end - start;
1462 if (remains < size_256MB)
1463 break;
1464
1465 if (start & mask_256MB) {
1466 start = (start + size_256MB) & ~mask_256MB;
1467 continue;
1468 }
1469
1470 while (remains >= size_256MB) {
1471 unsigned long index = start >> shift_256MB;
1472
1473 __set_bit(index, kpte_linear_bitmap);
1474
1475 start += size_256MB;
1476 remains -= size_256MB;
1477 }
1478 }
1479 }
1480
1481 static void __init init_kpte_bitmap(void)
1482 {
1483 unsigned long i;
1484
1485 for (i = 0; i < pall_ents; i++) {
1486 unsigned long phys_start, phys_end;
1487
1488 phys_start = pall[i].phys_addr;
1489 phys_end = phys_start + pall[i].reg_size;
1490
1491 mark_kpte_bitmap(phys_start, phys_end);
1492 }
1493 }
1494
1495 static void __init kernel_physical_mapping_init(void)
1496 {
1497 #ifdef CONFIG_DEBUG_PAGEALLOC
1498 unsigned long i, mem_alloced = 0UL;
1499
1500 for (i = 0; i < pall_ents; i++) {
1501 unsigned long phys_start, phys_end;
1502
1503 phys_start = pall[i].phys_addr;
1504 phys_end = phys_start + pall[i].reg_size;
1505
1506 mem_alloced += kernel_map_range(phys_start, phys_end,
1507 PAGE_KERNEL);
1508 }
1509
1510 printk("Allocated %ld bytes for kernel page tables.\n",
1511 mem_alloced);
1512
1513 kvmap_linear_patch[0] = 0x01000000; /* nop */
1514 flushi(&kvmap_linear_patch[0]);
1515
1516 __flush_tlb_all();
1517 #endif
1518 }
1519
1520 #ifdef CONFIG_DEBUG_PAGEALLOC
1521 void kernel_map_pages(struct page *page, int numpages, int enable)
1522 {
1523 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1524 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1525
1526 kernel_map_range(phys_start, phys_end,
1527 (enable ? PAGE_KERNEL : __pgprot(0)));
1528
1529 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1530 PAGE_OFFSET + phys_end);
1531
1532 /* we should perform an IPI and flush all tlbs,
1533 * but that can deadlock->flush only current cpu.
1534 */
1535 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1536 PAGE_OFFSET + phys_end);
1537 }
1538 #endif
1539
1540 unsigned long __init find_ecache_flush_span(unsigned long size)
1541 {
1542 int i;
1543
1544 for (i = 0; i < pavail_ents; i++) {
1545 if (pavail[i].reg_size >= size)
1546 return pavail[i].phys_addr;
1547 }
1548
1549 return ~0UL;
1550 }
1551
1552 static void __init tsb_phys_patch(void)
1553 {
1554 struct tsb_ldquad_phys_patch_entry *pquad;
1555 struct tsb_phys_patch_entry *p;
1556
1557 pquad = &__tsb_ldquad_phys_patch;
1558 while (pquad < &__tsb_ldquad_phys_patch_end) {
1559 unsigned long addr = pquad->addr;
1560
1561 if (tlb_type == hypervisor)
1562 *(unsigned int *) addr = pquad->sun4v_insn;
1563 else
1564 *(unsigned int *) addr = pquad->sun4u_insn;
1565 wmb();
1566 __asm__ __volatile__("flush %0"
1567 : /* no outputs */
1568 : "r" (addr));
1569
1570 pquad++;
1571 }
1572
1573 p = &__tsb_phys_patch;
1574 while (p < &__tsb_phys_patch_end) {
1575 unsigned long addr = p->addr;
1576
1577 *(unsigned int *) addr = p->insn;
1578 wmb();
1579 __asm__ __volatile__("flush %0"
1580 : /* no outputs */
1581 : "r" (addr));
1582
1583 p++;
1584 }
1585 }
1586
1587 /* Don't mark as init, we give this to the Hypervisor. */
1588 #ifndef CONFIG_DEBUG_PAGEALLOC
1589 #define NUM_KTSB_DESCR 2
1590 #else
1591 #define NUM_KTSB_DESCR 1
1592 #endif
1593 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1594 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1595
1596 static void __init sun4v_ktsb_init(void)
1597 {
1598 unsigned long ktsb_pa;
1599
1600 /* First KTSB for PAGE_SIZE mappings. */
1601 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1602
1603 switch (PAGE_SIZE) {
1604 case 8 * 1024:
1605 default:
1606 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1607 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1608 break;
1609
1610 case 64 * 1024:
1611 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1612 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1613 break;
1614
1615 case 512 * 1024:
1616 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1617 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1618 break;
1619
1620 case 4 * 1024 * 1024:
1621 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1622 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1623 break;
1624 };
1625
1626 ktsb_descr[0].assoc = 1;
1627 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1628 ktsb_descr[0].ctx_idx = 0;
1629 ktsb_descr[0].tsb_base = ktsb_pa;
1630 ktsb_descr[0].resv = 0;
1631
1632 #ifndef CONFIG_DEBUG_PAGEALLOC
1633 /* Second KTSB for 4MB/256MB mappings. */
1634 ktsb_pa = (kern_base +
1635 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1636
1637 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1638 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1639 HV_PGSZ_MASK_256MB);
1640 ktsb_descr[1].assoc = 1;
1641 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1642 ktsb_descr[1].ctx_idx = 0;
1643 ktsb_descr[1].tsb_base = ktsb_pa;
1644 ktsb_descr[1].resv = 0;
1645 #endif
1646 }
1647
1648 void __cpuinit sun4v_ktsb_register(void)
1649 {
1650 unsigned long pa, ret;
1651
1652 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1653
1654 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1655 if (ret != 0) {
1656 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1657 "errors with %lx\n", pa, ret);
1658 prom_halt();
1659 }
1660 }
1661
1662 /* paging_init() sets up the page tables */
1663
1664 static unsigned long last_valid_pfn;
1665 pgd_t swapper_pg_dir[2048];
1666
1667 static void sun4u_pgprot_init(void);
1668 static void sun4v_pgprot_init(void);
1669
1670 /* Dummy function */
1671 void __init setup_per_cpu_areas(void)
1672 {
1673 }
1674
1675 void __init paging_init(void)
1676 {
1677 unsigned long end_pfn, shift, phys_base;
1678 unsigned long real_end, i;
1679
1680 /* These build time checkes make sure that the dcache_dirty_cpu()
1681 * page->flags usage will work.
1682 *
1683 * When a page gets marked as dcache-dirty, we store the
1684 * cpu number starting at bit 32 in the page->flags. Also,
1685 * functions like clear_dcache_dirty_cpu use the cpu mask
1686 * in 13-bit signed-immediate instruction fields.
1687 */
1688
1689 /*
1690 * Page flags must not reach into upper 32 bits that are used
1691 * for the cpu number
1692 */
1693 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1694
1695 /*
1696 * The bit fields placed in the high range must not reach below
1697 * the 32 bit boundary. Otherwise we cannot place the cpu field
1698 * at the 32 bit boundary.
1699 */
1700 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1701 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1702
1703 BUILD_BUG_ON(NR_CPUS > 4096);
1704
1705 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1706 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1707
1708 /* Invalidate both kernel TSBs. */
1709 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1710 #ifndef CONFIG_DEBUG_PAGEALLOC
1711 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1712 #endif
1713
1714 if (tlb_type == hypervisor)
1715 sun4v_pgprot_init();
1716 else
1717 sun4u_pgprot_init();
1718
1719 if (tlb_type == cheetah_plus ||
1720 tlb_type == hypervisor)
1721 tsb_phys_patch();
1722
1723 if (tlb_type == hypervisor) {
1724 sun4v_patch_tlb_handlers();
1725 sun4v_ktsb_init();
1726 }
1727
1728 lmb_init();
1729
1730 /* Find available physical memory...
1731 *
1732 * Read it twice in order to work around a bug in openfirmware.
1733 * The call to grab this table itself can cause openfirmware to
1734 * allocate memory, which in turn can take away some space from
1735 * the list of available memory. Reading it twice makes sure
1736 * we really do get the final value.
1737 */
1738 read_obp_translations();
1739 read_obp_memory("reg", &pall[0], &pall_ents);
1740 read_obp_memory("available", &pavail[0], &pavail_ents);
1741 read_obp_memory("available", &pavail[0], &pavail_ents);
1742
1743 phys_base = 0xffffffffffffffffUL;
1744 for (i = 0; i < pavail_ents; i++) {
1745 phys_base = min(phys_base, pavail[i].phys_addr);
1746 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1747 }
1748
1749 lmb_reserve(kern_base, kern_size);
1750
1751 find_ramdisk(phys_base);
1752
1753 lmb_enforce_memory_limit(cmdline_memory_size);
1754
1755 lmb_analyze();
1756 lmb_dump_all();
1757
1758 set_bit(0, mmu_context_bmap);
1759
1760 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1761
1762 real_end = (unsigned long)_end;
1763 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1764 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1765 num_kernel_image_mappings);
1766
1767 /* Set kernel pgd to upper alias so physical page computations
1768 * work.
1769 */
1770 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1771
1772 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1773
1774 /* Now can init the kernel/bad page tables. */
1775 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1776 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1777
1778 inherit_prom_mappings();
1779
1780 init_kpte_bitmap();
1781
1782 /* Ok, we can use our TLB miss and window trap handlers safely. */
1783 setup_tba();
1784
1785 __flush_tlb_all();
1786
1787 if (tlb_type == hypervisor)
1788 sun4v_ktsb_register();
1789
1790 /* We must setup the per-cpu areas before we pull in the
1791 * PROM and the MDESC. The code there fills in cpu and
1792 * other information into per-cpu data structures.
1793 */
1794 real_setup_per_cpu_areas();
1795
1796 prom_build_devicetree();
1797
1798 if (tlb_type == hypervisor)
1799 sun4v_mdesc_init();
1800
1801 /* Once the OF device tree and MDESC have been setup, we know
1802 * the list of possible cpus. Therefore we can allocate the
1803 * IRQ stacks.
1804 */
1805 for_each_possible_cpu(i) {
1806 /* XXX Use node local allocations... XXX */
1807 softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1808 hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1809 }
1810
1811 /* Setup bootmem... */
1812 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1813
1814 #ifndef CONFIG_NEED_MULTIPLE_NODES
1815 max_mapnr = last_valid_pfn;
1816 #endif
1817 kernel_physical_mapping_init();
1818
1819 {
1820 unsigned long max_zone_pfns[MAX_NR_ZONES];
1821
1822 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1823
1824 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1825
1826 free_area_init_nodes(max_zone_pfns);
1827 }
1828
1829 printk("Booting Linux...\n");
1830 }
1831
1832 int __init page_in_phys_avail(unsigned long paddr)
1833 {
1834 int i;
1835
1836 paddr &= PAGE_MASK;
1837
1838 for (i = 0; i < pavail_ents; i++) {
1839 unsigned long start, end;
1840
1841 start = pavail[i].phys_addr;
1842 end = start + pavail[i].reg_size;
1843
1844 if (paddr >= start && paddr < end)
1845 return 1;
1846 }
1847 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1848 return 1;
1849 #ifdef CONFIG_BLK_DEV_INITRD
1850 if (paddr >= __pa(initrd_start) &&
1851 paddr < __pa(PAGE_ALIGN(initrd_end)))
1852 return 1;
1853 #endif
1854
1855 return 0;
1856 }
1857
1858 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1859 static int pavail_rescan_ents __initdata;
1860
1861 /* Certain OBP calls, such as fetching "available" properties, can
1862 * claim physical memory. So, along with initializing the valid
1863 * address bitmap, what we do here is refetch the physical available
1864 * memory list again, and make sure it provides at least as much
1865 * memory as 'pavail' does.
1866 */
1867 static void __init setup_valid_addr_bitmap_from_pavail(void)
1868 {
1869 int i;
1870
1871 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1872
1873 for (i = 0; i < pavail_ents; i++) {
1874 unsigned long old_start, old_end;
1875
1876 old_start = pavail[i].phys_addr;
1877 old_end = old_start + pavail[i].reg_size;
1878 while (old_start < old_end) {
1879 int n;
1880
1881 for (n = 0; n < pavail_rescan_ents; n++) {
1882 unsigned long new_start, new_end;
1883
1884 new_start = pavail_rescan[n].phys_addr;
1885 new_end = new_start +
1886 pavail_rescan[n].reg_size;
1887
1888 if (new_start <= old_start &&
1889 new_end >= (old_start + PAGE_SIZE)) {
1890 set_bit(old_start >> 22,
1891 sparc64_valid_addr_bitmap);
1892 goto do_next_page;
1893 }
1894 }
1895
1896 prom_printf("mem_init: Lost memory in pavail\n");
1897 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1898 pavail[i].phys_addr,
1899 pavail[i].reg_size);
1900 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1901 pavail_rescan[i].phys_addr,
1902 pavail_rescan[i].reg_size);
1903 prom_printf("mem_init: Cannot continue, aborting.\n");
1904 prom_halt();
1905
1906 do_next_page:
1907 old_start += PAGE_SIZE;
1908 }
1909 }
1910 }
1911
1912 void __init mem_init(void)
1913 {
1914 unsigned long codepages, datapages, initpages;
1915 unsigned long addr, last;
1916 int i;
1917
1918 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1919 i += 1;
1920 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1921 if (sparc64_valid_addr_bitmap == NULL) {
1922 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1923 prom_halt();
1924 }
1925 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1926
1927 addr = PAGE_OFFSET + kern_base;
1928 last = PAGE_ALIGN(kern_size) + addr;
1929 while (addr < last) {
1930 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1931 addr += PAGE_SIZE;
1932 }
1933
1934 setup_valid_addr_bitmap_from_pavail();
1935
1936 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1937
1938 #ifdef CONFIG_NEED_MULTIPLE_NODES
1939 for_each_online_node(i) {
1940 if (NODE_DATA(i)->node_spanned_pages != 0) {
1941 totalram_pages +=
1942 free_all_bootmem_node(NODE_DATA(i));
1943 }
1944 }
1945 #else
1946 totalram_pages = free_all_bootmem();
1947 #endif
1948
1949 /* We subtract one to account for the mem_map_zero page
1950 * allocated below.
1951 */
1952 totalram_pages -= 1;
1953 num_physpages = totalram_pages;
1954
1955 /*
1956 * Set up the zero page, mark it reserved, so that page count
1957 * is not manipulated when freeing the page from user ptes.
1958 */
1959 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1960 if (mem_map_zero == NULL) {
1961 prom_printf("paging_init: Cannot alloc zero page.\n");
1962 prom_halt();
1963 }
1964 SetPageReserved(mem_map_zero);
1965
1966 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1967 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1968 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1969 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1970 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1971 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1972
1973 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1974 nr_free_pages() << (PAGE_SHIFT-10),
1975 codepages << (PAGE_SHIFT-10),
1976 datapages << (PAGE_SHIFT-10),
1977 initpages << (PAGE_SHIFT-10),
1978 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1979
1980 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1981 cheetah_ecache_flush_init();
1982 }
1983
1984 void free_initmem(void)
1985 {
1986 unsigned long addr, initend;
1987 int do_free = 1;
1988
1989 /* If the physical memory maps were trimmed by kernel command
1990 * line options, don't even try freeing this initmem stuff up.
1991 * The kernel image could have been in the trimmed out region
1992 * and if so the freeing below will free invalid page structs.
1993 */
1994 if (cmdline_memory_size)
1995 do_free = 0;
1996
1997 /*
1998 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1999 */
2000 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2001 initend = (unsigned long)(__init_end) & PAGE_MASK;
2002 for (; addr < initend; addr += PAGE_SIZE) {
2003 unsigned long page;
2004 struct page *p;
2005
2006 page = (addr +
2007 ((unsigned long) __va(kern_base)) -
2008 ((unsigned long) KERNBASE));
2009 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2010
2011 if (do_free) {
2012 p = virt_to_page(page);
2013
2014 ClearPageReserved(p);
2015 init_page_count(p);
2016 __free_page(p);
2017 num_physpages++;
2018 totalram_pages++;
2019 }
2020 }
2021 }
2022
2023 #ifdef CONFIG_BLK_DEV_INITRD
2024 void free_initrd_mem(unsigned long start, unsigned long end)
2025 {
2026 if (start < end)
2027 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2028 for (; start < end; start += PAGE_SIZE) {
2029 struct page *p = virt_to_page(start);
2030
2031 ClearPageReserved(p);
2032 init_page_count(p);
2033 __free_page(p);
2034 num_physpages++;
2035 totalram_pages++;
2036 }
2037 }
2038 #endif
2039
2040 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2041 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2042 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2043 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2044 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2045 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2046
2047 pgprot_t PAGE_KERNEL __read_mostly;
2048 EXPORT_SYMBOL(PAGE_KERNEL);
2049
2050 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2051 pgprot_t PAGE_COPY __read_mostly;
2052
2053 pgprot_t PAGE_SHARED __read_mostly;
2054 EXPORT_SYMBOL(PAGE_SHARED);
2055
2056 unsigned long pg_iobits __read_mostly;
2057
2058 unsigned long _PAGE_IE __read_mostly;
2059 EXPORT_SYMBOL(_PAGE_IE);
2060
2061 unsigned long _PAGE_E __read_mostly;
2062 EXPORT_SYMBOL(_PAGE_E);
2063
2064 unsigned long _PAGE_CACHE __read_mostly;
2065 EXPORT_SYMBOL(_PAGE_CACHE);
2066
2067 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2068 unsigned long vmemmap_table[VMEMMAP_SIZE];
2069
2070 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2071 {
2072 unsigned long vstart = (unsigned long) start;
2073 unsigned long vend = (unsigned long) (start + nr);
2074 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2075 unsigned long phys_end = (vend - VMEMMAP_BASE);
2076 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2077 unsigned long end = VMEMMAP_ALIGN(phys_end);
2078 unsigned long pte_base;
2079
2080 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2081 _PAGE_CP_4U | _PAGE_CV_4U |
2082 _PAGE_P_4U | _PAGE_W_4U);
2083 if (tlb_type == hypervisor)
2084 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2085 _PAGE_CP_4V | _PAGE_CV_4V |
2086 _PAGE_P_4V | _PAGE_W_4V);
2087
2088 for (; addr < end; addr += VMEMMAP_CHUNK) {
2089 unsigned long *vmem_pp =
2090 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2091 void *block;
2092
2093 if (!(*vmem_pp & _PAGE_VALID)) {
2094 block = vmemmap_alloc_block(1UL << 22, node);
2095 if (!block)
2096 return -ENOMEM;
2097
2098 *vmem_pp = pte_base | __pa(block);
2099
2100 printk(KERN_INFO "[%p-%p] page_structs=%lu "
2101 "node=%d entry=%lu/%lu\n", start, block, nr,
2102 node,
2103 addr >> VMEMMAP_CHUNK_SHIFT,
2104 VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2105 }
2106 }
2107 return 0;
2108 }
2109 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2110
2111 static void prot_init_common(unsigned long page_none,
2112 unsigned long page_shared,
2113 unsigned long page_copy,
2114 unsigned long page_readonly,
2115 unsigned long page_exec_bit)
2116 {
2117 PAGE_COPY = __pgprot(page_copy);
2118 PAGE_SHARED = __pgprot(page_shared);
2119
2120 protection_map[0x0] = __pgprot(page_none);
2121 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2122 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2123 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2124 protection_map[0x4] = __pgprot(page_readonly);
2125 protection_map[0x5] = __pgprot(page_readonly);
2126 protection_map[0x6] = __pgprot(page_copy);
2127 protection_map[0x7] = __pgprot(page_copy);
2128 protection_map[0x8] = __pgprot(page_none);
2129 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2130 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2131 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2132 protection_map[0xc] = __pgprot(page_readonly);
2133 protection_map[0xd] = __pgprot(page_readonly);
2134 protection_map[0xe] = __pgprot(page_shared);
2135 protection_map[0xf] = __pgprot(page_shared);
2136 }
2137
2138 static void __init sun4u_pgprot_init(void)
2139 {
2140 unsigned long page_none, page_shared, page_copy, page_readonly;
2141 unsigned long page_exec_bit;
2142
2143 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2144 _PAGE_CACHE_4U | _PAGE_P_4U |
2145 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2146 _PAGE_EXEC_4U);
2147 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2148 _PAGE_CACHE_4U | _PAGE_P_4U |
2149 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2150 _PAGE_EXEC_4U | _PAGE_L_4U);
2151
2152 _PAGE_IE = _PAGE_IE_4U;
2153 _PAGE_E = _PAGE_E_4U;
2154 _PAGE_CACHE = _PAGE_CACHE_4U;
2155
2156 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2157 __ACCESS_BITS_4U | _PAGE_E_4U);
2158
2159 #ifdef CONFIG_DEBUG_PAGEALLOC
2160 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2161 0xfffff80000000000UL;
2162 #else
2163 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2164 0xfffff80000000000UL;
2165 #endif
2166 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2167 _PAGE_P_4U | _PAGE_W_4U);
2168
2169 /* XXX Should use 256MB on Panther. XXX */
2170 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2171
2172 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2173 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2174 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2175 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2176
2177
2178 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2179 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2180 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2181 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2182 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2183 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2184 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2185
2186 page_exec_bit = _PAGE_EXEC_4U;
2187
2188 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2189 page_exec_bit);
2190 }
2191
2192 static void __init sun4v_pgprot_init(void)
2193 {
2194 unsigned long page_none, page_shared, page_copy, page_readonly;
2195 unsigned long page_exec_bit;
2196
2197 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2198 _PAGE_CACHE_4V | _PAGE_P_4V |
2199 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2200 _PAGE_EXEC_4V);
2201 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2202
2203 _PAGE_IE = _PAGE_IE_4V;
2204 _PAGE_E = _PAGE_E_4V;
2205 _PAGE_CACHE = _PAGE_CACHE_4V;
2206
2207 #ifdef CONFIG_DEBUG_PAGEALLOC
2208 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2209 0xfffff80000000000UL;
2210 #else
2211 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2212 0xfffff80000000000UL;
2213 #endif
2214 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2215 _PAGE_P_4V | _PAGE_W_4V);
2216
2217 #ifdef CONFIG_DEBUG_PAGEALLOC
2218 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2219 0xfffff80000000000UL;
2220 #else
2221 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2222 0xfffff80000000000UL;
2223 #endif
2224 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2225 _PAGE_P_4V | _PAGE_W_4V);
2226
2227 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2228 __ACCESS_BITS_4V | _PAGE_E_4V);
2229
2230 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2231 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2232 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2233 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2234 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2235
2236 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2237 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2238 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2239 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2240 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2241 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2242 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2243
2244 page_exec_bit = _PAGE_EXEC_4V;
2245
2246 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2247 page_exec_bit);
2248 }
2249
2250 unsigned long pte_sz_bits(unsigned long sz)
2251 {
2252 if (tlb_type == hypervisor) {
2253 switch (sz) {
2254 case 8 * 1024:
2255 default:
2256 return _PAGE_SZ8K_4V;
2257 case 64 * 1024:
2258 return _PAGE_SZ64K_4V;
2259 case 512 * 1024:
2260 return _PAGE_SZ512K_4V;
2261 case 4 * 1024 * 1024:
2262 return _PAGE_SZ4MB_4V;
2263 };
2264 } else {
2265 switch (sz) {
2266 case 8 * 1024:
2267 default:
2268 return _PAGE_SZ8K_4U;
2269 case 64 * 1024:
2270 return _PAGE_SZ64K_4U;
2271 case 512 * 1024:
2272 return _PAGE_SZ512K_4U;
2273 case 4 * 1024 * 1024:
2274 return _PAGE_SZ4MB_4U;
2275 };
2276 }
2277 }
2278
2279 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2280 {
2281 pte_t pte;
2282
2283 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2284 pte_val(pte) |= (((unsigned long)space) << 32);
2285 pte_val(pte) |= pte_sz_bits(page_size);
2286
2287 return pte;
2288 }
2289
2290 static unsigned long kern_large_tte(unsigned long paddr)
2291 {
2292 unsigned long val;
2293
2294 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2295 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2296 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2297 if (tlb_type == hypervisor)
2298 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2299 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2300 _PAGE_EXEC_4V | _PAGE_W_4V);
2301
2302 return val | paddr;
2303 }
2304
2305 /* If not locked, zap it. */
2306 void __flush_tlb_all(void)
2307 {
2308 unsigned long pstate;
2309 int i;
2310
2311 __asm__ __volatile__("flushw\n\t"
2312 "rdpr %%pstate, %0\n\t"
2313 "wrpr %0, %1, %%pstate"
2314 : "=r" (pstate)
2315 : "i" (PSTATE_IE));
2316 if (tlb_type == hypervisor) {
2317 sun4v_mmu_demap_all();
2318 } else if (tlb_type == spitfire) {
2319 for (i = 0; i < 64; i++) {
2320 /* Spitfire Errata #32 workaround */
2321 /* NOTE: Always runs on spitfire, so no
2322 * cheetah+ page size encodings.
2323 */
2324 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2325 "flush %%g6"
2326 : /* No outputs */
2327 : "r" (0),
2328 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2329
2330 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2331 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2332 "membar #Sync"
2333 : /* no outputs */
2334 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2335 spitfire_put_dtlb_data(i, 0x0UL);
2336 }
2337
2338 /* Spitfire Errata #32 workaround */
2339 /* NOTE: Always runs on spitfire, so no
2340 * cheetah+ page size encodings.
2341 */
2342 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2343 "flush %%g6"
2344 : /* No outputs */
2345 : "r" (0),
2346 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2347
2348 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2349 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2350 "membar #Sync"
2351 : /* no outputs */
2352 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2353 spitfire_put_itlb_data(i, 0x0UL);
2354 }
2355 }
2356 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2357 cheetah_flush_dtlb_all();
2358 cheetah_flush_itlb_all();
2359 }
2360 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2361 : : "r" (pstate));
2362 }