]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/sparc64/mm/init.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6.25
[mirror_ubuntu-bionic-kernel.git] / arch / sparc64 / mm / init.c
1 /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27
28 #include <asm/head.h>
29 #include <asm/system.h>
30 #include <asm/page.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
33 #include <asm/oplib.h>
34 #include <asm/iommu.h>
35 #include <asm/io.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/dma.h>
40 #include <asm/starfire.h>
41 #include <asm/tlb.h>
42 #include <asm/spitfire.h>
43 #include <asm/sections.h>
44 #include <asm/tsb.h>
45 #include <asm/hypervisor.h>
46 #include <asm/prom.h>
47 #include <asm/sstate.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50
51 #define MAX_PHYS_ADDRESS (1UL << 42UL)
52 #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
53 #define KPTE_BITMAP_BYTES \
54 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
55
56 unsigned long kern_linear_pte_xor[2] __read_mostly;
57
58 /* A bitmap, one bit for every 256MB of physical memory. If the bit
59 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
60 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
61 */
62 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
63
64 #ifndef CONFIG_DEBUG_PAGEALLOC
65 /* A special kernel TSB for 4MB and 256MB linear mappings.
66 * Space is allocated for this right after the trap table
67 * in arch/sparc64/kernel/head.S
68 */
69 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
70 #endif
71
72 #define MAX_BANKS 32
73
74 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
75 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
76 static int pavail_ents __initdata;
77 static int pavail_rescan_ents __initdata;
78
79 static int cmp_p64(const void *a, const void *b)
80 {
81 const struct linux_prom64_registers *x = a, *y = b;
82
83 if (x->phys_addr > y->phys_addr)
84 return 1;
85 if (x->phys_addr < y->phys_addr)
86 return -1;
87 return 0;
88 }
89
90 static void __init read_obp_memory(const char *property,
91 struct linux_prom64_registers *regs,
92 int *num_ents)
93 {
94 int node = prom_finddevice("/memory");
95 int prop_size = prom_getproplen(node, property);
96 int ents, ret, i;
97
98 ents = prop_size / sizeof(struct linux_prom64_registers);
99 if (ents > MAX_BANKS) {
100 prom_printf("The machine has more %s property entries than "
101 "this kernel can support (%d).\n",
102 property, MAX_BANKS);
103 prom_halt();
104 }
105
106 ret = prom_getproperty(node, property, (char *) regs, prop_size);
107 if (ret == -1) {
108 prom_printf("Couldn't get %s property from /memory.\n");
109 prom_halt();
110 }
111
112 /* Sanitize what we got from the firmware, by page aligning
113 * everything.
114 */
115 for (i = 0; i < ents; i++) {
116 unsigned long base, size;
117
118 base = regs[i].phys_addr;
119 size = regs[i].reg_size;
120
121 size &= PAGE_MASK;
122 if (base & ~PAGE_MASK) {
123 unsigned long new_base = PAGE_ALIGN(base);
124
125 size -= new_base - base;
126 if ((long) size < 0L)
127 size = 0UL;
128 base = new_base;
129 }
130 if (size == 0UL) {
131 /* If it is empty, simply get rid of it.
132 * This simplifies the logic of the other
133 * functions that process these arrays.
134 */
135 memmove(&regs[i], &regs[i + 1],
136 (ents - i - 1) * sizeof(regs[0]));
137 i--;
138 ents--;
139 continue;
140 }
141 regs[i].phys_addr = base;
142 regs[i].reg_size = size;
143 }
144
145 *num_ents = ents;
146
147 sort(regs, ents, sizeof(struct linux_prom64_registers),
148 cmp_p64, NULL);
149 }
150
151 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
152
153 /* Kernel physical address base and size in bytes. */
154 unsigned long kern_base __read_mostly;
155 unsigned long kern_size __read_mostly;
156
157 /* Initial ramdisk setup */
158 extern unsigned long sparc_ramdisk_image64;
159 extern unsigned int sparc_ramdisk_image;
160 extern unsigned int sparc_ramdisk_size;
161
162 struct page *mem_map_zero __read_mostly;
163
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165
166 unsigned long sparc64_kern_pri_context __read_mostly;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168 unsigned long sparc64_kern_sec_context __read_mostly;
169
170 int num_kernel_image_mappings;
171
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes = ATOMIC_INIT(0);
174 #ifdef CONFIG_SMP
175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176 #endif
177 #endif
178
179 inline void flush_dcache_page_impl(struct page *page)
180 {
181 BUG_ON(tlb_type == hypervisor);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183 atomic_inc(&dcpage_flushes);
184 #endif
185
186 #ifdef DCACHE_ALIASING_POSSIBLE
187 __flush_dcache_page(page_address(page),
188 ((tlb_type == spitfire) &&
189 page_mapping(page) != NULL));
190 #else
191 if (page_mapping(page) != NULL &&
192 tlb_type == spitfire)
193 __flush_icache_page(__pa(page_address(page)));
194 #endif
195 }
196
197 #define PG_dcache_dirty PG_arch_1
198 #define PG_dcache_cpu_shift 32UL
199 #define PG_dcache_cpu_mask \
200 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201
202 #define dcache_dirty_cpu(page) \
203 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204
205 static inline void set_dcache_dirty(struct page *page, int this_cpu)
206 {
207 unsigned long mask = this_cpu;
208 unsigned long non_cpu_bits;
209
210 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212
213 __asm__ __volatile__("1:\n\t"
214 "ldx [%2], %%g7\n\t"
215 "and %%g7, %1, %%g1\n\t"
216 "or %%g1, %0, %%g1\n\t"
217 "casx [%2], %%g7, %%g1\n\t"
218 "cmp %%g7, %%g1\n\t"
219 "membar #StoreLoad | #StoreStore\n\t"
220 "bne,pn %%xcc, 1b\n\t"
221 " nop"
222 : /* no outputs */
223 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
224 : "g1", "g7");
225 }
226
227 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
228 {
229 unsigned long mask = (1UL << PG_dcache_dirty);
230
231 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
232 "1:\n\t"
233 "ldx [%2], %%g7\n\t"
234 "srlx %%g7, %4, %%g1\n\t"
235 "and %%g1, %3, %%g1\n\t"
236 "cmp %%g1, %0\n\t"
237 "bne,pn %%icc, 2f\n\t"
238 " andn %%g7, %1, %%g1\n\t"
239 "casx [%2], %%g7, %%g1\n\t"
240 "cmp %%g7, %%g1\n\t"
241 "membar #StoreLoad | #StoreStore\n\t"
242 "bne,pn %%xcc, 1b\n\t"
243 " nop\n"
244 "2:"
245 : /* no outputs */
246 : "r" (cpu), "r" (mask), "r" (&page->flags),
247 "i" (PG_dcache_cpu_mask),
248 "i" (PG_dcache_cpu_shift)
249 : "g1", "g7");
250 }
251
252 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
253 {
254 unsigned long tsb_addr = (unsigned long) ent;
255
256 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
257 tsb_addr = __pa(tsb_addr);
258
259 __tsb_insert(tsb_addr, tag, pte);
260 }
261
262 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
263 unsigned long _PAGE_SZBITS __read_mostly;
264
265 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
266 {
267 struct mm_struct *mm;
268 struct tsb *tsb;
269 unsigned long tag, flags;
270 unsigned long tsb_index, tsb_hash_shift;
271
272 if (tlb_type != hypervisor) {
273 unsigned long pfn = pte_pfn(pte);
274 unsigned long pg_flags;
275 struct page *page;
276
277 if (pfn_valid(pfn) &&
278 (page = pfn_to_page(pfn), page_mapping(page)) &&
279 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
280 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
281 PG_dcache_cpu_mask);
282 int this_cpu = get_cpu();
283
284 /* This is just to optimize away some function calls
285 * in the SMP case.
286 */
287 if (cpu == this_cpu)
288 flush_dcache_page_impl(page);
289 else
290 smp_flush_dcache_page_impl(page, cpu);
291
292 clear_dcache_dirty_cpu(page, cpu);
293
294 put_cpu();
295 }
296 }
297
298 mm = vma->vm_mm;
299
300 tsb_index = MM_TSB_BASE;
301 tsb_hash_shift = PAGE_SHIFT;
302
303 spin_lock_irqsave(&mm->context.lock, flags);
304
305 #ifdef CONFIG_HUGETLB_PAGE
306 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
307 if ((tlb_type == hypervisor &&
308 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
309 (tlb_type != hypervisor &&
310 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
311 tsb_index = MM_TSB_HUGE;
312 tsb_hash_shift = HPAGE_SHIFT;
313 }
314 }
315 #endif
316
317 tsb = mm->context.tsb_block[tsb_index].tsb;
318 tsb += ((address >> tsb_hash_shift) &
319 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
320 tag = (address >> 22UL);
321 tsb_insert(tsb, tag, pte_val(pte));
322
323 spin_unlock_irqrestore(&mm->context.lock, flags);
324 }
325
326 void flush_dcache_page(struct page *page)
327 {
328 struct address_space *mapping;
329 int this_cpu;
330
331 if (tlb_type == hypervisor)
332 return;
333
334 /* Do not bother with the expensive D-cache flush if it
335 * is merely the zero page. The 'bigcore' testcase in GDB
336 * causes this case to run millions of times.
337 */
338 if (page == ZERO_PAGE(0))
339 return;
340
341 this_cpu = get_cpu();
342
343 mapping = page_mapping(page);
344 if (mapping && !mapping_mapped(mapping)) {
345 int dirty = test_bit(PG_dcache_dirty, &page->flags);
346 if (dirty) {
347 int dirty_cpu = dcache_dirty_cpu(page);
348
349 if (dirty_cpu == this_cpu)
350 goto out;
351 smp_flush_dcache_page_impl(page, dirty_cpu);
352 }
353 set_dcache_dirty(page, this_cpu);
354 } else {
355 /* We could delay the flush for the !page_mapping
356 * case too. But that case is for exec env/arg
357 * pages and those are %99 certainly going to get
358 * faulted into the tlb (and thus flushed) anyways.
359 */
360 flush_dcache_page_impl(page);
361 }
362
363 out:
364 put_cpu();
365 }
366
367 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
368 {
369 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
370 if (tlb_type == spitfire) {
371 unsigned long kaddr;
372
373 /* This code only runs on Spitfire cpus so this is
374 * why we can assume _PAGE_PADDR_4U.
375 */
376 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
377 unsigned long paddr, mask = _PAGE_PADDR_4U;
378
379 if (kaddr >= PAGE_OFFSET)
380 paddr = kaddr & mask;
381 else {
382 pgd_t *pgdp = pgd_offset_k(kaddr);
383 pud_t *pudp = pud_offset(pgdp, kaddr);
384 pmd_t *pmdp = pmd_offset(pudp, kaddr);
385 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
386
387 paddr = pte_val(*ptep) & mask;
388 }
389 __flush_icache_page(paddr);
390 }
391 }
392 }
393
394 void show_mem(void)
395 {
396 unsigned long total = 0, reserved = 0;
397 unsigned long shared = 0, cached = 0;
398 pg_data_t *pgdat;
399
400 printk(KERN_INFO "Mem-info:\n");
401 show_free_areas();
402 printk(KERN_INFO "Free swap: %6ldkB\n",
403 nr_swap_pages << (PAGE_SHIFT-10));
404 for_each_online_pgdat(pgdat) {
405 unsigned long i, flags;
406
407 pgdat_resize_lock(pgdat, &flags);
408 for (i = 0; i < pgdat->node_spanned_pages; i++) {
409 struct page *page = pgdat_page_nr(pgdat, i);
410 total++;
411 if (PageReserved(page))
412 reserved++;
413 else if (PageSwapCache(page))
414 cached++;
415 else if (page_count(page))
416 shared += page_count(page) - 1;
417 }
418 pgdat_resize_unlock(pgdat, &flags);
419 }
420
421 printk(KERN_INFO "%lu pages of RAM\n", total);
422 printk(KERN_INFO "%lu reserved pages\n", reserved);
423 printk(KERN_INFO "%lu pages shared\n", shared);
424 printk(KERN_INFO "%lu pages swap cached\n", cached);
425
426 printk(KERN_INFO "%lu pages dirty\n",
427 global_page_state(NR_FILE_DIRTY));
428 printk(KERN_INFO "%lu pages writeback\n",
429 global_page_state(NR_WRITEBACK));
430 printk(KERN_INFO "%lu pages mapped\n",
431 global_page_state(NR_FILE_MAPPED));
432 printk(KERN_INFO "%lu pages slab\n",
433 global_page_state(NR_SLAB_RECLAIMABLE) +
434 global_page_state(NR_SLAB_UNRECLAIMABLE));
435 printk(KERN_INFO "%lu pages pagetables\n",
436 global_page_state(NR_PAGETABLE));
437 }
438
439 void mmu_info(struct seq_file *m)
440 {
441 if (tlb_type == cheetah)
442 seq_printf(m, "MMU Type\t: Cheetah\n");
443 else if (tlb_type == cheetah_plus)
444 seq_printf(m, "MMU Type\t: Cheetah+\n");
445 else if (tlb_type == spitfire)
446 seq_printf(m, "MMU Type\t: Spitfire\n");
447 else if (tlb_type == hypervisor)
448 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
449 else
450 seq_printf(m, "MMU Type\t: ???\n");
451
452 #ifdef CONFIG_DEBUG_DCFLUSH
453 seq_printf(m, "DCPageFlushes\t: %d\n",
454 atomic_read(&dcpage_flushes));
455 #ifdef CONFIG_SMP
456 seq_printf(m, "DCPageFlushesXC\t: %d\n",
457 atomic_read(&dcpage_flushes_xcall));
458 #endif /* CONFIG_SMP */
459 #endif /* CONFIG_DEBUG_DCFLUSH */
460 }
461
462 struct linux_prom_translation {
463 unsigned long virt;
464 unsigned long size;
465 unsigned long data;
466 };
467
468 /* Exported for kernel TLB miss handling in ktlb.S */
469 struct linux_prom_translation prom_trans[512] __read_mostly;
470 unsigned int prom_trans_ents __read_mostly;
471
472 /* Exported for SMP bootup purposes. */
473 unsigned long kern_locked_tte_data;
474
475 /* The obp translations are saved based on 8k pagesize, since obp can
476 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
477 * HI_OBP_ADDRESS range are handled in ktlb.S.
478 */
479 static inline int in_obp_range(unsigned long vaddr)
480 {
481 return (vaddr >= LOW_OBP_ADDRESS &&
482 vaddr < HI_OBP_ADDRESS);
483 }
484
485 static int cmp_ptrans(const void *a, const void *b)
486 {
487 const struct linux_prom_translation *x = a, *y = b;
488
489 if (x->virt > y->virt)
490 return 1;
491 if (x->virt < y->virt)
492 return -1;
493 return 0;
494 }
495
496 /* Read OBP translations property into 'prom_trans[]'. */
497 static void __init read_obp_translations(void)
498 {
499 int n, node, ents, first, last, i;
500
501 node = prom_finddevice("/virtual-memory");
502 n = prom_getproplen(node, "translations");
503 if (unlikely(n == 0 || n == -1)) {
504 prom_printf("prom_mappings: Couldn't get size.\n");
505 prom_halt();
506 }
507 if (unlikely(n > sizeof(prom_trans))) {
508 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
509 prom_halt();
510 }
511
512 if ((n = prom_getproperty(node, "translations",
513 (char *)&prom_trans[0],
514 sizeof(prom_trans))) == -1) {
515 prom_printf("prom_mappings: Couldn't get property.\n");
516 prom_halt();
517 }
518
519 n = n / sizeof(struct linux_prom_translation);
520
521 ents = n;
522
523 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
524 cmp_ptrans, NULL);
525
526 /* Now kick out all the non-OBP entries. */
527 for (i = 0; i < ents; i++) {
528 if (in_obp_range(prom_trans[i].virt))
529 break;
530 }
531 first = i;
532 for (; i < ents; i++) {
533 if (!in_obp_range(prom_trans[i].virt))
534 break;
535 }
536 last = i;
537
538 for (i = 0; i < (last - first); i++) {
539 struct linux_prom_translation *src = &prom_trans[i + first];
540 struct linux_prom_translation *dest = &prom_trans[i];
541
542 *dest = *src;
543 }
544 for (; i < ents; i++) {
545 struct linux_prom_translation *dest = &prom_trans[i];
546 dest->virt = dest->size = dest->data = 0x0UL;
547 }
548
549 prom_trans_ents = last - first;
550
551 if (tlb_type == spitfire) {
552 /* Clear diag TTE bits. */
553 for (i = 0; i < prom_trans_ents; i++)
554 prom_trans[i].data &= ~0x0003fe0000000000UL;
555 }
556 }
557
558 static void __init hypervisor_tlb_lock(unsigned long vaddr,
559 unsigned long pte,
560 unsigned long mmu)
561 {
562 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
563
564 if (ret != 0) {
565 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
566 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
567 prom_halt();
568 }
569 }
570
571 static unsigned long kern_large_tte(unsigned long paddr);
572
573 static void __init remap_kernel(void)
574 {
575 unsigned long phys_page, tte_vaddr, tte_data;
576 int i, tlb_ent = sparc64_highest_locked_tlbent();
577
578 tte_vaddr = (unsigned long) KERNBASE;
579 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
580 tte_data = kern_large_tte(phys_page);
581
582 kern_locked_tte_data = tte_data;
583
584 /* Now lock us into the TLBs via Hypervisor or OBP. */
585 if (tlb_type == hypervisor) {
586 for (i = 0; i < num_kernel_image_mappings; i++) {
587 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
588 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
589 tte_vaddr += 0x400000;
590 tte_data += 0x400000;
591 }
592 } else {
593 for (i = 0; i < num_kernel_image_mappings; i++) {
594 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
595 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
596 tte_vaddr += 0x400000;
597 tte_data += 0x400000;
598 }
599 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
600 }
601 if (tlb_type == cheetah_plus) {
602 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
603 CTX_CHEETAH_PLUS_NUC);
604 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
605 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
606 }
607 }
608
609
610 static void __init inherit_prom_mappings(void)
611 {
612 read_obp_translations();
613
614 /* Now fixup OBP's idea about where we really are mapped. */
615 printk("Remapping the kernel... ");
616 remap_kernel();
617 printk("done.\n");
618 }
619
620 void prom_world(int enter)
621 {
622 if (!enter)
623 set_fs((mm_segment_t) { get_thread_current_ds() });
624
625 __asm__ __volatile__("flushw");
626 }
627
628 void __flush_dcache_range(unsigned long start, unsigned long end)
629 {
630 unsigned long va;
631
632 if (tlb_type == spitfire) {
633 int n = 0;
634
635 for (va = start; va < end; va += 32) {
636 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
637 if (++n >= 512)
638 break;
639 }
640 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
641 start = __pa(start);
642 end = __pa(end);
643 for (va = start; va < end; va += 32)
644 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
645 "membar #Sync"
646 : /* no outputs */
647 : "r" (va),
648 "i" (ASI_DCACHE_INVALIDATE));
649 }
650 }
651
652 /* get_new_mmu_context() uses "cache + 1". */
653 DEFINE_SPINLOCK(ctx_alloc_lock);
654 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
655 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
656 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
657 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
658
659 /* Caller does TLB context flushing on local CPU if necessary.
660 * The caller also ensures that CTX_VALID(mm->context) is false.
661 *
662 * We must be careful about boundary cases so that we never
663 * let the user have CTX 0 (nucleus) or we ever use a CTX
664 * version of zero (and thus NO_CONTEXT would not be caught
665 * by version mis-match tests in mmu_context.h).
666 *
667 * Always invoked with interrupts disabled.
668 */
669 void get_new_mmu_context(struct mm_struct *mm)
670 {
671 unsigned long ctx, new_ctx;
672 unsigned long orig_pgsz_bits;
673 unsigned long flags;
674 int new_version;
675
676 spin_lock_irqsave(&ctx_alloc_lock, flags);
677 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
678 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
679 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
680 new_version = 0;
681 if (new_ctx >= (1 << CTX_NR_BITS)) {
682 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
683 if (new_ctx >= ctx) {
684 int i;
685 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
686 CTX_FIRST_VERSION;
687 if (new_ctx == 1)
688 new_ctx = CTX_FIRST_VERSION;
689
690 /* Don't call memset, for 16 entries that's just
691 * plain silly...
692 */
693 mmu_context_bmap[0] = 3;
694 mmu_context_bmap[1] = 0;
695 mmu_context_bmap[2] = 0;
696 mmu_context_bmap[3] = 0;
697 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
698 mmu_context_bmap[i + 0] = 0;
699 mmu_context_bmap[i + 1] = 0;
700 mmu_context_bmap[i + 2] = 0;
701 mmu_context_bmap[i + 3] = 0;
702 }
703 new_version = 1;
704 goto out;
705 }
706 }
707 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
708 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
709 out:
710 tlb_context_cache = new_ctx;
711 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
712 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
713
714 if (unlikely(new_version))
715 smp_new_mmu_context_version();
716 }
717
718 /* Find a free area for the bootmem map, avoiding the kernel image
719 * and the initial ramdisk.
720 */
721 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
722 unsigned long end_pfn)
723 {
724 unsigned long avoid_start, avoid_end, bootmap_size;
725 int i;
726
727 bootmap_size = bootmem_bootmap_pages(end_pfn - start_pfn);
728 bootmap_size <<= PAGE_SHIFT;
729
730 avoid_start = avoid_end = 0;
731 #ifdef CONFIG_BLK_DEV_INITRD
732 avoid_start = initrd_start;
733 avoid_end = PAGE_ALIGN(initrd_end);
734 #endif
735
736 for (i = 0; i < pavail_ents; i++) {
737 unsigned long start, end;
738
739 start = pavail[i].phys_addr;
740 end = start + pavail[i].reg_size;
741
742 while (start < end) {
743 if (start >= kern_base &&
744 start < PAGE_ALIGN(kern_base + kern_size)) {
745 start = PAGE_ALIGN(kern_base + kern_size);
746 continue;
747 }
748 if (start >= avoid_start && start < avoid_end) {
749 start = avoid_end;
750 continue;
751 }
752
753 if ((end - start) < bootmap_size)
754 break;
755
756 if (start < kern_base &&
757 (start + bootmap_size) > kern_base) {
758 start = PAGE_ALIGN(kern_base + kern_size);
759 continue;
760 }
761
762 if (start < avoid_start &&
763 (start + bootmap_size) > avoid_start) {
764 start = avoid_end;
765 continue;
766 }
767
768 /* OK, it doesn't overlap anything, use it. */
769 return start >> PAGE_SHIFT;
770 }
771 }
772
773 prom_printf("Cannot find free area for bootmap, aborting.\n");
774 prom_halt();
775 }
776
777 static void __init trim_pavail(unsigned long *cur_size_p,
778 unsigned long *end_of_phys_p)
779 {
780 unsigned long to_trim = *cur_size_p - cmdline_memory_size;
781 unsigned long avoid_start, avoid_end;
782 int i;
783
784 to_trim = PAGE_ALIGN(to_trim);
785
786 avoid_start = avoid_end = 0;
787 #ifdef CONFIG_BLK_DEV_INITRD
788 avoid_start = initrd_start;
789 avoid_end = PAGE_ALIGN(initrd_end);
790 #endif
791
792 /* Trim some pavail[] entries in order to satisfy the
793 * requested "mem=xxx" kernel command line specification.
794 *
795 * We must not trim off the kernel image area nor the
796 * initial ramdisk range (if any). Also, we must not trim
797 * any pavail[] entry down to zero in order to preserve
798 * the invariant that all pavail[] entries have a non-zero
799 * size which is assumed by all of the code in here.
800 */
801 for (i = 0; i < pavail_ents; i++) {
802 unsigned long start, end, kern_end;
803 unsigned long trim_low, trim_high, n;
804
805 kern_end = PAGE_ALIGN(kern_base + kern_size);
806
807 trim_low = start = pavail[i].phys_addr;
808 trim_high = end = start + pavail[i].reg_size;
809
810 if (kern_base >= start &&
811 kern_base < end) {
812 trim_low = kern_base;
813 if (kern_end >= end)
814 continue;
815 }
816 if (kern_end >= start &&
817 kern_end < end) {
818 trim_high = kern_end;
819 }
820 if (avoid_start &&
821 avoid_start >= start &&
822 avoid_start < end) {
823 if (trim_low > avoid_start)
824 trim_low = avoid_start;
825 if (avoid_end >= end)
826 continue;
827 }
828 if (avoid_end &&
829 avoid_end >= start &&
830 avoid_end < end) {
831 if (trim_high < avoid_end)
832 trim_high = avoid_end;
833 }
834
835 if (trim_high <= trim_low)
836 continue;
837
838 if (trim_low == start && trim_high == end) {
839 /* Whole chunk is available for trimming.
840 * Trim all except one page, in order to keep
841 * entry non-empty.
842 */
843 n = (end - start) - PAGE_SIZE;
844 if (n > to_trim)
845 n = to_trim;
846
847 if (n) {
848 pavail[i].phys_addr += n;
849 pavail[i].reg_size -= n;
850 to_trim -= n;
851 }
852 } else {
853 n = (trim_low - start);
854 if (n > to_trim)
855 n = to_trim;
856
857 if (n) {
858 pavail[i].phys_addr += n;
859 pavail[i].reg_size -= n;
860 to_trim -= n;
861 }
862 if (to_trim) {
863 n = end - trim_high;
864 if (n > to_trim)
865 n = to_trim;
866 if (n) {
867 pavail[i].reg_size -= n;
868 to_trim -= n;
869 }
870 }
871 }
872
873 if (!to_trim)
874 break;
875 }
876
877 /* Recalculate. */
878 *cur_size_p = 0UL;
879 for (i = 0; i < pavail_ents; i++) {
880 *end_of_phys_p = pavail[i].phys_addr +
881 pavail[i].reg_size;
882 *cur_size_p += pavail[i].reg_size;
883 }
884 }
885
886 /* About pages_avail, this is the value we will use to calculate
887 * the zholes_size[] argument given to free_area_init_node(). The
888 * page allocator uses this to calculate nr_kernel_pages,
889 * nr_all_pages and zone->present_pages. On NUMA it is used
890 * to calculate zone->min_unmapped_pages and zone->min_slab_pages.
891 *
892 * So this number should really be set to what the page allocator
893 * actually ends up with. This means:
894 * 1) It should include bootmem map pages, we'll release those.
895 * 2) It should not include the kernel image, except for the
896 * __init sections which we will also release.
897 * 3) It should include the initrd image, since we'll release
898 * that too.
899 */
900 static unsigned long __init bootmem_init(unsigned long *pages_avail,
901 unsigned long phys_base)
902 {
903 unsigned long bootmap_size, end_pfn;
904 unsigned long end_of_phys_memory = 0UL;
905 unsigned long bootmap_pfn, bytes_avail, size;
906 int i;
907
908 bytes_avail = 0UL;
909 for (i = 0; i < pavail_ents; i++) {
910 end_of_phys_memory = pavail[i].phys_addr +
911 pavail[i].reg_size;
912 bytes_avail += pavail[i].reg_size;
913 }
914
915 /* Determine the location of the initial ramdisk before trying
916 * to honor the "mem=xxx" command line argument. We must know
917 * where the kernel image and the ramdisk image are so that we
918 * do not trim those two areas from the physical memory map.
919 */
920
921 #ifdef CONFIG_BLK_DEV_INITRD
922 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
923 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
924 unsigned long ramdisk_image = sparc_ramdisk_image ?
925 sparc_ramdisk_image : sparc_ramdisk_image64;
926 ramdisk_image -= KERNBASE;
927 initrd_start = ramdisk_image + phys_base;
928 initrd_end = initrd_start + sparc_ramdisk_size;
929 if (initrd_end > end_of_phys_memory) {
930 printk(KERN_CRIT "initrd extends beyond end of memory "
931 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
932 initrd_end, end_of_phys_memory);
933 initrd_start = 0;
934 initrd_end = 0;
935 }
936 }
937 #endif
938
939 if (cmdline_memory_size &&
940 bytes_avail > cmdline_memory_size)
941 trim_pavail(&bytes_avail,
942 &end_of_phys_memory);
943
944 *pages_avail = bytes_avail >> PAGE_SHIFT;
945
946 end_pfn = end_of_phys_memory >> PAGE_SHIFT;
947
948 /* Initialize the boot-time allocator. */
949 max_pfn = max_low_pfn = end_pfn;
950 min_low_pfn = (phys_base >> PAGE_SHIFT);
951
952 bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
953
954 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
955 min_low_pfn, end_pfn);
956
957 /* Now register the available physical memory with the
958 * allocator.
959 */
960 for (i = 0; i < pavail_ents; i++)
961 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
962
963 #ifdef CONFIG_BLK_DEV_INITRD
964 if (initrd_start) {
965 size = initrd_end - initrd_start;
966
967 /* Reserve the initrd image area. */
968 reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT);
969
970 initrd_start += PAGE_OFFSET;
971 initrd_end += PAGE_OFFSET;
972 }
973 #endif
974 /* Reserve the kernel text/data/bss. */
975 reserve_bootmem(kern_base, kern_size, BOOTMEM_DEFAULT);
976 *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
977
978 /* Add back in the initmem pages. */
979 size = ((unsigned long)(__init_end) & PAGE_MASK) -
980 PAGE_ALIGN((unsigned long)__init_begin);
981 *pages_avail += size >> PAGE_SHIFT;
982
983 /* Reserve the bootmem map. We do not account for it
984 * in pages_avail because we will release that memory
985 * in free_all_bootmem.
986 */
987 size = bootmap_size;
988 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT);
989
990 for (i = 0; i < pavail_ents; i++) {
991 unsigned long start_pfn, end_pfn;
992
993 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
994 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
995 memory_present(0, start_pfn, end_pfn);
996 }
997
998 sparse_init();
999
1000 return end_pfn;
1001 }
1002
1003 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1004 static int pall_ents __initdata;
1005
1006 #ifdef CONFIG_DEBUG_PAGEALLOC
1007 static unsigned long __ref kernel_map_range(unsigned long pstart,
1008 unsigned long pend, pgprot_t prot)
1009 {
1010 unsigned long vstart = PAGE_OFFSET + pstart;
1011 unsigned long vend = PAGE_OFFSET + pend;
1012 unsigned long alloc_bytes = 0UL;
1013
1014 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1015 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1016 vstart, vend);
1017 prom_halt();
1018 }
1019
1020 while (vstart < vend) {
1021 unsigned long this_end, paddr = __pa(vstart);
1022 pgd_t *pgd = pgd_offset_k(vstart);
1023 pud_t *pud;
1024 pmd_t *pmd;
1025 pte_t *pte;
1026
1027 pud = pud_offset(pgd, vstart);
1028 if (pud_none(*pud)) {
1029 pmd_t *new;
1030
1031 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1032 alloc_bytes += PAGE_SIZE;
1033 pud_populate(&init_mm, pud, new);
1034 }
1035
1036 pmd = pmd_offset(pud, vstart);
1037 if (!pmd_present(*pmd)) {
1038 pte_t *new;
1039
1040 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1041 alloc_bytes += PAGE_SIZE;
1042 pmd_populate_kernel(&init_mm, pmd, new);
1043 }
1044
1045 pte = pte_offset_kernel(pmd, vstart);
1046 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1047 if (this_end > vend)
1048 this_end = vend;
1049
1050 while (vstart < this_end) {
1051 pte_val(*pte) = (paddr | pgprot_val(prot));
1052
1053 vstart += PAGE_SIZE;
1054 paddr += PAGE_SIZE;
1055 pte++;
1056 }
1057 }
1058
1059 return alloc_bytes;
1060 }
1061
1062 extern unsigned int kvmap_linear_patch[1];
1063 #endif /* CONFIG_DEBUG_PAGEALLOC */
1064
1065 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1066 {
1067 const unsigned long shift_256MB = 28;
1068 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1069 const unsigned long size_256MB = (1UL << shift_256MB);
1070
1071 while (start < end) {
1072 long remains;
1073
1074 remains = end - start;
1075 if (remains < size_256MB)
1076 break;
1077
1078 if (start & mask_256MB) {
1079 start = (start + size_256MB) & ~mask_256MB;
1080 continue;
1081 }
1082
1083 while (remains >= size_256MB) {
1084 unsigned long index = start >> shift_256MB;
1085
1086 __set_bit(index, kpte_linear_bitmap);
1087
1088 start += size_256MB;
1089 remains -= size_256MB;
1090 }
1091 }
1092 }
1093
1094 static void __init init_kpte_bitmap(void)
1095 {
1096 unsigned long i;
1097
1098 for (i = 0; i < pall_ents; i++) {
1099 unsigned long phys_start, phys_end;
1100
1101 phys_start = pall[i].phys_addr;
1102 phys_end = phys_start + pall[i].reg_size;
1103
1104 mark_kpte_bitmap(phys_start, phys_end);
1105 }
1106 }
1107
1108 static void __init kernel_physical_mapping_init(void)
1109 {
1110 #ifdef CONFIG_DEBUG_PAGEALLOC
1111 unsigned long i, mem_alloced = 0UL;
1112
1113 for (i = 0; i < pall_ents; i++) {
1114 unsigned long phys_start, phys_end;
1115
1116 phys_start = pall[i].phys_addr;
1117 phys_end = phys_start + pall[i].reg_size;
1118
1119 mem_alloced += kernel_map_range(phys_start, phys_end,
1120 PAGE_KERNEL);
1121 }
1122
1123 printk("Allocated %ld bytes for kernel page tables.\n",
1124 mem_alloced);
1125
1126 kvmap_linear_patch[0] = 0x01000000; /* nop */
1127 flushi(&kvmap_linear_patch[0]);
1128
1129 __flush_tlb_all();
1130 #endif
1131 }
1132
1133 #ifdef CONFIG_DEBUG_PAGEALLOC
1134 void kernel_map_pages(struct page *page, int numpages, int enable)
1135 {
1136 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1137 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1138
1139 kernel_map_range(phys_start, phys_end,
1140 (enable ? PAGE_KERNEL : __pgprot(0)));
1141
1142 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1143 PAGE_OFFSET + phys_end);
1144
1145 /* we should perform an IPI and flush all tlbs,
1146 * but that can deadlock->flush only current cpu.
1147 */
1148 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1149 PAGE_OFFSET + phys_end);
1150 }
1151 #endif
1152
1153 unsigned long __init find_ecache_flush_span(unsigned long size)
1154 {
1155 int i;
1156
1157 for (i = 0; i < pavail_ents; i++) {
1158 if (pavail[i].reg_size >= size)
1159 return pavail[i].phys_addr;
1160 }
1161
1162 return ~0UL;
1163 }
1164
1165 static void __init tsb_phys_patch(void)
1166 {
1167 struct tsb_ldquad_phys_patch_entry *pquad;
1168 struct tsb_phys_patch_entry *p;
1169
1170 pquad = &__tsb_ldquad_phys_patch;
1171 while (pquad < &__tsb_ldquad_phys_patch_end) {
1172 unsigned long addr = pquad->addr;
1173
1174 if (tlb_type == hypervisor)
1175 *(unsigned int *) addr = pquad->sun4v_insn;
1176 else
1177 *(unsigned int *) addr = pquad->sun4u_insn;
1178 wmb();
1179 __asm__ __volatile__("flush %0"
1180 : /* no outputs */
1181 : "r" (addr));
1182
1183 pquad++;
1184 }
1185
1186 p = &__tsb_phys_patch;
1187 while (p < &__tsb_phys_patch_end) {
1188 unsigned long addr = p->addr;
1189
1190 *(unsigned int *) addr = p->insn;
1191 wmb();
1192 __asm__ __volatile__("flush %0"
1193 : /* no outputs */
1194 : "r" (addr));
1195
1196 p++;
1197 }
1198 }
1199
1200 /* Don't mark as init, we give this to the Hypervisor. */
1201 #ifndef CONFIG_DEBUG_PAGEALLOC
1202 #define NUM_KTSB_DESCR 2
1203 #else
1204 #define NUM_KTSB_DESCR 1
1205 #endif
1206 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1207 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1208
1209 static void __init sun4v_ktsb_init(void)
1210 {
1211 unsigned long ktsb_pa;
1212
1213 /* First KTSB for PAGE_SIZE mappings. */
1214 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1215
1216 switch (PAGE_SIZE) {
1217 case 8 * 1024:
1218 default:
1219 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1220 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1221 break;
1222
1223 case 64 * 1024:
1224 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1225 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1226 break;
1227
1228 case 512 * 1024:
1229 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1230 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1231 break;
1232
1233 case 4 * 1024 * 1024:
1234 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1235 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1236 break;
1237 };
1238
1239 ktsb_descr[0].assoc = 1;
1240 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1241 ktsb_descr[0].ctx_idx = 0;
1242 ktsb_descr[0].tsb_base = ktsb_pa;
1243 ktsb_descr[0].resv = 0;
1244
1245 #ifndef CONFIG_DEBUG_PAGEALLOC
1246 /* Second KTSB for 4MB/256MB mappings. */
1247 ktsb_pa = (kern_base +
1248 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1249
1250 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1251 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1252 HV_PGSZ_MASK_256MB);
1253 ktsb_descr[1].assoc = 1;
1254 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1255 ktsb_descr[1].ctx_idx = 0;
1256 ktsb_descr[1].tsb_base = ktsb_pa;
1257 ktsb_descr[1].resv = 0;
1258 #endif
1259 }
1260
1261 void __cpuinit sun4v_ktsb_register(void)
1262 {
1263 unsigned long pa, ret;
1264
1265 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1266
1267 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1268 if (ret != 0) {
1269 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1270 "errors with %lx\n", pa, ret);
1271 prom_halt();
1272 }
1273 }
1274
1275 /* paging_init() sets up the page tables */
1276
1277 extern void central_probe(void);
1278
1279 static unsigned long last_valid_pfn;
1280 pgd_t swapper_pg_dir[2048];
1281
1282 static void sun4u_pgprot_init(void);
1283 static void sun4v_pgprot_init(void);
1284
1285 /* Dummy function */
1286 void __init setup_per_cpu_areas(void)
1287 {
1288 }
1289
1290 void __init paging_init(void)
1291 {
1292 unsigned long end_pfn, pages_avail, shift, phys_base;
1293 unsigned long real_end, i;
1294
1295 /* These build time checkes make sure that the dcache_dirty_cpu()
1296 * page->flags usage will work.
1297 *
1298 * When a page gets marked as dcache-dirty, we store the
1299 * cpu number starting at bit 32 in the page->flags. Also,
1300 * functions like clear_dcache_dirty_cpu use the cpu mask
1301 * in 13-bit signed-immediate instruction fields.
1302 */
1303 BUILD_BUG_ON(FLAGS_RESERVED != 32);
1304 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1305 ilog2(roundup_pow_of_two(NR_CPUS)) > FLAGS_RESERVED);
1306 BUILD_BUG_ON(NR_CPUS > 4096);
1307
1308 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1309 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1310
1311 sstate_booting();
1312
1313 /* Invalidate both kernel TSBs. */
1314 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1315 #ifndef CONFIG_DEBUG_PAGEALLOC
1316 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1317 #endif
1318
1319 if (tlb_type == hypervisor)
1320 sun4v_pgprot_init();
1321 else
1322 sun4u_pgprot_init();
1323
1324 if (tlb_type == cheetah_plus ||
1325 tlb_type == hypervisor)
1326 tsb_phys_patch();
1327
1328 if (tlb_type == hypervisor) {
1329 sun4v_patch_tlb_handlers();
1330 sun4v_ktsb_init();
1331 }
1332
1333 /* Find available physical memory... */
1334 read_obp_memory("available", &pavail[0], &pavail_ents);
1335
1336 phys_base = 0xffffffffffffffffUL;
1337 for (i = 0; i < pavail_ents; i++)
1338 phys_base = min(phys_base, pavail[i].phys_addr);
1339
1340 set_bit(0, mmu_context_bmap);
1341
1342 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1343
1344 real_end = (unsigned long)_end;
1345 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1346 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1347 num_kernel_image_mappings);
1348
1349 /* Set kernel pgd to upper alias so physical page computations
1350 * work.
1351 */
1352 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1353
1354 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1355
1356 /* Now can init the kernel/bad page tables. */
1357 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1358 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1359
1360 inherit_prom_mappings();
1361
1362 read_obp_memory("reg", &pall[0], &pall_ents);
1363
1364 init_kpte_bitmap();
1365
1366 /* Ok, we can use our TLB miss and window trap handlers safely. */
1367 setup_tba();
1368
1369 __flush_tlb_all();
1370
1371 if (tlb_type == hypervisor)
1372 sun4v_ktsb_register();
1373
1374 /* Setup bootmem... */
1375 pages_avail = 0;
1376 last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1377
1378 max_mapnr = last_valid_pfn;
1379
1380 kernel_physical_mapping_init();
1381
1382 real_setup_per_cpu_areas();
1383
1384 prom_build_devicetree();
1385
1386 if (tlb_type == hypervisor)
1387 sun4v_mdesc_init();
1388
1389 {
1390 unsigned long zones_size[MAX_NR_ZONES];
1391 unsigned long zholes_size[MAX_NR_ZONES];
1392 int znum;
1393
1394 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1395 zones_size[znum] = zholes_size[znum] = 0;
1396
1397 zones_size[ZONE_NORMAL] = end_pfn;
1398 zholes_size[ZONE_NORMAL] = end_pfn - pages_avail;
1399
1400 free_area_init_node(0, &contig_page_data, zones_size,
1401 __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1402 zholes_size);
1403 }
1404
1405 printk("Booting Linux...\n");
1406
1407 central_probe();
1408 cpu_probe();
1409 }
1410
1411 static void __init taint_real_pages(void)
1412 {
1413 int i;
1414
1415 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1416
1417 /* Find changes discovered in the physmem available rescan and
1418 * reserve the lost portions in the bootmem maps.
1419 */
1420 for (i = 0; i < pavail_ents; i++) {
1421 unsigned long old_start, old_end;
1422
1423 old_start = pavail[i].phys_addr;
1424 old_end = old_start +
1425 pavail[i].reg_size;
1426 while (old_start < old_end) {
1427 int n;
1428
1429 for (n = 0; n < pavail_rescan_ents; n++) {
1430 unsigned long new_start, new_end;
1431
1432 new_start = pavail_rescan[n].phys_addr;
1433 new_end = new_start +
1434 pavail_rescan[n].reg_size;
1435
1436 if (new_start <= old_start &&
1437 new_end >= (old_start + PAGE_SIZE)) {
1438 set_bit(old_start >> 22,
1439 sparc64_valid_addr_bitmap);
1440 goto do_next_page;
1441 }
1442 }
1443 reserve_bootmem(old_start, PAGE_SIZE, BOOTMEM_DEFAULT);
1444
1445 do_next_page:
1446 old_start += PAGE_SIZE;
1447 }
1448 }
1449 }
1450
1451 int __init page_in_phys_avail(unsigned long paddr)
1452 {
1453 int i;
1454
1455 paddr &= PAGE_MASK;
1456
1457 for (i = 0; i < pavail_rescan_ents; i++) {
1458 unsigned long start, end;
1459
1460 start = pavail_rescan[i].phys_addr;
1461 end = start + pavail_rescan[i].reg_size;
1462
1463 if (paddr >= start && paddr < end)
1464 return 1;
1465 }
1466 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1467 return 1;
1468 #ifdef CONFIG_BLK_DEV_INITRD
1469 if (paddr >= __pa(initrd_start) &&
1470 paddr < __pa(PAGE_ALIGN(initrd_end)))
1471 return 1;
1472 #endif
1473
1474 return 0;
1475 }
1476
1477 void __init mem_init(void)
1478 {
1479 unsigned long codepages, datapages, initpages;
1480 unsigned long addr, last;
1481 int i;
1482
1483 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1484 i += 1;
1485 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1486 if (sparc64_valid_addr_bitmap == NULL) {
1487 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1488 prom_halt();
1489 }
1490 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1491
1492 addr = PAGE_OFFSET + kern_base;
1493 last = PAGE_ALIGN(kern_size) + addr;
1494 while (addr < last) {
1495 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1496 addr += PAGE_SIZE;
1497 }
1498
1499 taint_real_pages();
1500
1501 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1502
1503 /* We subtract one to account for the mem_map_zero page
1504 * allocated below.
1505 */
1506 totalram_pages = num_physpages = free_all_bootmem() - 1;
1507
1508 /*
1509 * Set up the zero page, mark it reserved, so that page count
1510 * is not manipulated when freeing the page from user ptes.
1511 */
1512 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1513 if (mem_map_zero == NULL) {
1514 prom_printf("paging_init: Cannot alloc zero page.\n");
1515 prom_halt();
1516 }
1517 SetPageReserved(mem_map_zero);
1518
1519 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1520 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1521 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1522 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1523 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1524 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1525
1526 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1527 nr_free_pages() << (PAGE_SHIFT-10),
1528 codepages << (PAGE_SHIFT-10),
1529 datapages << (PAGE_SHIFT-10),
1530 initpages << (PAGE_SHIFT-10),
1531 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1532
1533 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1534 cheetah_ecache_flush_init();
1535 }
1536
1537 void free_initmem(void)
1538 {
1539 unsigned long addr, initend;
1540
1541 /*
1542 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1543 */
1544 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1545 initend = (unsigned long)(__init_end) & PAGE_MASK;
1546 for (; addr < initend; addr += PAGE_SIZE) {
1547 unsigned long page;
1548 struct page *p;
1549
1550 page = (addr +
1551 ((unsigned long) __va(kern_base)) -
1552 ((unsigned long) KERNBASE));
1553 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1554 p = virt_to_page(page);
1555
1556 ClearPageReserved(p);
1557 init_page_count(p);
1558 __free_page(p);
1559 num_physpages++;
1560 totalram_pages++;
1561 }
1562 }
1563
1564 #ifdef CONFIG_BLK_DEV_INITRD
1565 void free_initrd_mem(unsigned long start, unsigned long end)
1566 {
1567 if (start < end)
1568 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1569 for (; start < end; start += PAGE_SIZE) {
1570 struct page *p = virt_to_page(start);
1571
1572 ClearPageReserved(p);
1573 init_page_count(p);
1574 __free_page(p);
1575 num_physpages++;
1576 totalram_pages++;
1577 }
1578 }
1579 #endif
1580
1581 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1582 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1583 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1584 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1585 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1586 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1587
1588 pgprot_t PAGE_KERNEL __read_mostly;
1589 EXPORT_SYMBOL(PAGE_KERNEL);
1590
1591 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1592 pgprot_t PAGE_COPY __read_mostly;
1593
1594 pgprot_t PAGE_SHARED __read_mostly;
1595 EXPORT_SYMBOL(PAGE_SHARED);
1596
1597 pgprot_t PAGE_EXEC __read_mostly;
1598 unsigned long pg_iobits __read_mostly;
1599
1600 unsigned long _PAGE_IE __read_mostly;
1601 EXPORT_SYMBOL(_PAGE_IE);
1602
1603 unsigned long _PAGE_E __read_mostly;
1604 EXPORT_SYMBOL(_PAGE_E);
1605
1606 unsigned long _PAGE_CACHE __read_mostly;
1607 EXPORT_SYMBOL(_PAGE_CACHE);
1608
1609 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1610
1611 #define VMEMMAP_CHUNK_SHIFT 22
1612 #define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
1613 #define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
1614 #define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
1615
1616 #define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
1617 sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
1618 unsigned long vmemmap_table[VMEMMAP_SIZE];
1619
1620 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
1621 {
1622 unsigned long vstart = (unsigned long) start;
1623 unsigned long vend = (unsigned long) (start + nr);
1624 unsigned long phys_start = (vstart - VMEMMAP_BASE);
1625 unsigned long phys_end = (vend - VMEMMAP_BASE);
1626 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
1627 unsigned long end = VMEMMAP_ALIGN(phys_end);
1628 unsigned long pte_base;
1629
1630 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1631 _PAGE_CP_4U | _PAGE_CV_4U |
1632 _PAGE_P_4U | _PAGE_W_4U);
1633 if (tlb_type == hypervisor)
1634 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1635 _PAGE_CP_4V | _PAGE_CV_4V |
1636 _PAGE_P_4V | _PAGE_W_4V);
1637
1638 for (; addr < end; addr += VMEMMAP_CHUNK) {
1639 unsigned long *vmem_pp =
1640 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
1641 void *block;
1642
1643 if (!(*vmem_pp & _PAGE_VALID)) {
1644 block = vmemmap_alloc_block(1UL << 22, node);
1645 if (!block)
1646 return -ENOMEM;
1647
1648 *vmem_pp = pte_base | __pa(block);
1649
1650 printk(KERN_INFO "[%p-%p] page_structs=%lu "
1651 "node=%d entry=%lu/%lu\n", start, block, nr,
1652 node,
1653 addr >> VMEMMAP_CHUNK_SHIFT,
1654 VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
1655 }
1656 }
1657 return 0;
1658 }
1659 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
1660
1661 static void prot_init_common(unsigned long page_none,
1662 unsigned long page_shared,
1663 unsigned long page_copy,
1664 unsigned long page_readonly,
1665 unsigned long page_exec_bit)
1666 {
1667 PAGE_COPY = __pgprot(page_copy);
1668 PAGE_SHARED = __pgprot(page_shared);
1669
1670 protection_map[0x0] = __pgprot(page_none);
1671 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1672 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1673 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1674 protection_map[0x4] = __pgprot(page_readonly);
1675 protection_map[0x5] = __pgprot(page_readonly);
1676 protection_map[0x6] = __pgprot(page_copy);
1677 protection_map[0x7] = __pgprot(page_copy);
1678 protection_map[0x8] = __pgprot(page_none);
1679 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1680 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1681 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1682 protection_map[0xc] = __pgprot(page_readonly);
1683 protection_map[0xd] = __pgprot(page_readonly);
1684 protection_map[0xe] = __pgprot(page_shared);
1685 protection_map[0xf] = __pgprot(page_shared);
1686 }
1687
1688 static void __init sun4u_pgprot_init(void)
1689 {
1690 unsigned long page_none, page_shared, page_copy, page_readonly;
1691 unsigned long page_exec_bit;
1692
1693 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1694 _PAGE_CACHE_4U | _PAGE_P_4U |
1695 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1696 _PAGE_EXEC_4U);
1697 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1698 _PAGE_CACHE_4U | _PAGE_P_4U |
1699 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1700 _PAGE_EXEC_4U | _PAGE_L_4U);
1701 PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1702
1703 _PAGE_IE = _PAGE_IE_4U;
1704 _PAGE_E = _PAGE_E_4U;
1705 _PAGE_CACHE = _PAGE_CACHE_4U;
1706
1707 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1708 __ACCESS_BITS_4U | _PAGE_E_4U);
1709
1710 #ifdef CONFIG_DEBUG_PAGEALLOC
1711 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
1712 0xfffff80000000000;
1713 #else
1714 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1715 0xfffff80000000000;
1716 #endif
1717 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1718 _PAGE_P_4U | _PAGE_W_4U);
1719
1720 /* XXX Should use 256MB on Panther. XXX */
1721 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1722
1723 _PAGE_SZBITS = _PAGE_SZBITS_4U;
1724 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1725 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1726 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1727
1728
1729 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1730 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1731 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1732 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1733 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1734 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1735 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1736
1737 page_exec_bit = _PAGE_EXEC_4U;
1738
1739 prot_init_common(page_none, page_shared, page_copy, page_readonly,
1740 page_exec_bit);
1741 }
1742
1743 static void __init sun4v_pgprot_init(void)
1744 {
1745 unsigned long page_none, page_shared, page_copy, page_readonly;
1746 unsigned long page_exec_bit;
1747
1748 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1749 _PAGE_CACHE_4V | _PAGE_P_4V |
1750 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1751 _PAGE_EXEC_4V);
1752 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1753 PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1754
1755 _PAGE_IE = _PAGE_IE_4V;
1756 _PAGE_E = _PAGE_E_4V;
1757 _PAGE_CACHE = _PAGE_CACHE_4V;
1758
1759 #ifdef CONFIG_DEBUG_PAGEALLOC
1760 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1761 0xfffff80000000000;
1762 #else
1763 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1764 0xfffff80000000000;
1765 #endif
1766 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1767 _PAGE_P_4V | _PAGE_W_4V);
1768
1769 #ifdef CONFIG_DEBUG_PAGEALLOC
1770 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1771 0xfffff80000000000;
1772 #else
1773 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1774 0xfffff80000000000;
1775 #endif
1776 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1777 _PAGE_P_4V | _PAGE_W_4V);
1778
1779 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1780 __ACCESS_BITS_4V | _PAGE_E_4V);
1781
1782 _PAGE_SZBITS = _PAGE_SZBITS_4V;
1783 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1784 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1785 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1786 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1787
1788 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1789 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1790 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1791 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1792 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1793 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1794 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1795
1796 page_exec_bit = _PAGE_EXEC_4V;
1797
1798 prot_init_common(page_none, page_shared, page_copy, page_readonly,
1799 page_exec_bit);
1800 }
1801
1802 unsigned long pte_sz_bits(unsigned long sz)
1803 {
1804 if (tlb_type == hypervisor) {
1805 switch (sz) {
1806 case 8 * 1024:
1807 default:
1808 return _PAGE_SZ8K_4V;
1809 case 64 * 1024:
1810 return _PAGE_SZ64K_4V;
1811 case 512 * 1024:
1812 return _PAGE_SZ512K_4V;
1813 case 4 * 1024 * 1024:
1814 return _PAGE_SZ4MB_4V;
1815 };
1816 } else {
1817 switch (sz) {
1818 case 8 * 1024:
1819 default:
1820 return _PAGE_SZ8K_4U;
1821 case 64 * 1024:
1822 return _PAGE_SZ64K_4U;
1823 case 512 * 1024:
1824 return _PAGE_SZ512K_4U;
1825 case 4 * 1024 * 1024:
1826 return _PAGE_SZ4MB_4U;
1827 };
1828 }
1829 }
1830
1831 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1832 {
1833 pte_t pte;
1834
1835 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
1836 pte_val(pte) |= (((unsigned long)space) << 32);
1837 pte_val(pte) |= pte_sz_bits(page_size);
1838
1839 return pte;
1840 }
1841
1842 static unsigned long kern_large_tte(unsigned long paddr)
1843 {
1844 unsigned long val;
1845
1846 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1847 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1848 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1849 if (tlb_type == hypervisor)
1850 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1851 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1852 _PAGE_EXEC_4V | _PAGE_W_4V);
1853
1854 return val | paddr;
1855 }
1856
1857 /* If not locked, zap it. */
1858 void __flush_tlb_all(void)
1859 {
1860 unsigned long pstate;
1861 int i;
1862
1863 __asm__ __volatile__("flushw\n\t"
1864 "rdpr %%pstate, %0\n\t"
1865 "wrpr %0, %1, %%pstate"
1866 : "=r" (pstate)
1867 : "i" (PSTATE_IE));
1868 if (tlb_type == hypervisor) {
1869 sun4v_mmu_demap_all();
1870 } else if (tlb_type == spitfire) {
1871 for (i = 0; i < 64; i++) {
1872 /* Spitfire Errata #32 workaround */
1873 /* NOTE: Always runs on spitfire, so no
1874 * cheetah+ page size encodings.
1875 */
1876 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
1877 "flush %%g6"
1878 : /* No outputs */
1879 : "r" (0),
1880 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1881
1882 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1883 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1884 "membar #Sync"
1885 : /* no outputs */
1886 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1887 spitfire_put_dtlb_data(i, 0x0UL);
1888 }
1889
1890 /* Spitfire Errata #32 workaround */
1891 /* NOTE: Always runs on spitfire, so no
1892 * cheetah+ page size encodings.
1893 */
1894 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
1895 "flush %%g6"
1896 : /* No outputs */
1897 : "r" (0),
1898 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1899
1900 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1901 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1902 "membar #Sync"
1903 : /* no outputs */
1904 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1905 spitfire_put_itlb_data(i, 0x0UL);
1906 }
1907 }
1908 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1909 cheetah_flush_dtlb_all();
1910 cheetah_flush_itlb_all();
1911 }
1912 __asm__ __volatile__("wrpr %0, 0, %%pstate"
1913 : : "r" (pstate));
1914 }
1915
1916 #ifdef CONFIG_MEMORY_HOTPLUG
1917
1918 void online_page(struct page *page)
1919 {
1920 ClearPageReserved(page);
1921 init_page_count(page);
1922 __free_page(page);
1923 totalram_pages++;
1924 num_physpages++;
1925 }
1926
1927 #endif /* CONFIG_MEMORY_HOTPLUG */