]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sparc64/mm/init.c
[SPARC64]: Add 'hypervisor' to ultra_tlb_type enumeration.
[mirror_ubuntu-artful-kernel.git] / arch / sparc64 / mm / init.c
1 /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/config.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25
26 #include <asm/head.h>
27 #include <asm/system.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/iommu.h>
33 #include <asm/io.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/dma.h>
38 #include <asm/starfire.h>
39 #include <asm/tlb.h>
40 #include <asm/spitfire.h>
41 #include <asm/sections.h>
42 #include <asm/tsb.h>
43
44 extern void device_scan(void);
45
46 #define MAX_BANKS 32
47
48 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
49 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
50 static int pavail_ents __initdata;
51 static int pavail_rescan_ents __initdata;
52
53 static int cmp_p64(const void *a, const void *b)
54 {
55 const struct linux_prom64_registers *x = a, *y = b;
56
57 if (x->phys_addr > y->phys_addr)
58 return 1;
59 if (x->phys_addr < y->phys_addr)
60 return -1;
61 return 0;
62 }
63
64 static void __init read_obp_memory(const char *property,
65 struct linux_prom64_registers *regs,
66 int *num_ents)
67 {
68 int node = prom_finddevice("/memory");
69 int prop_size = prom_getproplen(node, property);
70 int ents, ret, i;
71
72 ents = prop_size / sizeof(struct linux_prom64_registers);
73 if (ents > MAX_BANKS) {
74 prom_printf("The machine has more %s property entries than "
75 "this kernel can support (%d).\n",
76 property, MAX_BANKS);
77 prom_halt();
78 }
79
80 ret = prom_getproperty(node, property, (char *) regs, prop_size);
81 if (ret == -1) {
82 prom_printf("Couldn't get %s property from /memory.\n");
83 prom_halt();
84 }
85
86 *num_ents = ents;
87
88 /* Sanitize what we got from the firmware, by page aligning
89 * everything.
90 */
91 for (i = 0; i < ents; i++) {
92 unsigned long base, size;
93
94 base = regs[i].phys_addr;
95 size = regs[i].reg_size;
96
97 size &= PAGE_MASK;
98 if (base & ~PAGE_MASK) {
99 unsigned long new_base = PAGE_ALIGN(base);
100
101 size -= new_base - base;
102 if ((long) size < 0L)
103 size = 0UL;
104 base = new_base;
105 }
106 regs[i].phys_addr = base;
107 regs[i].reg_size = size;
108 }
109 sort(regs, ents, sizeof(struct linux_prom64_registers),
110 cmp_p64, NULL);
111 }
112
113 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
114
115 /* Ugly, but necessary... -DaveM */
116 unsigned long phys_base __read_mostly;
117 unsigned long kern_base __read_mostly;
118 unsigned long kern_size __read_mostly;
119 unsigned long pfn_base __read_mostly;
120
121 /* get_new_mmu_context() uses "cache + 1". */
122 DEFINE_SPINLOCK(ctx_alloc_lock);
123 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
124 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
125 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
126
127 /* References to special section boundaries */
128 extern char _start[], _end[];
129
130 /* Initial ramdisk setup */
131 extern unsigned long sparc_ramdisk_image64;
132 extern unsigned int sparc_ramdisk_image;
133 extern unsigned int sparc_ramdisk_size;
134
135 struct page *mem_map_zero __read_mostly;
136
137 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
138
139 unsigned long sparc64_kern_pri_context __read_mostly;
140 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
141 unsigned long sparc64_kern_sec_context __read_mostly;
142
143 int bigkernel = 0;
144
145 kmem_cache_t *pgtable_cache __read_mostly;
146
147 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
148 {
149 clear_page(addr);
150 }
151
152 void pgtable_cache_init(void)
153 {
154 pgtable_cache = kmem_cache_create("pgtable_cache",
155 PAGE_SIZE, PAGE_SIZE,
156 SLAB_HWCACHE_ALIGN |
157 SLAB_MUST_HWCACHE_ALIGN,
158 zero_ctor,
159 NULL);
160 if (!pgtable_cache) {
161 prom_printf("pgtable_cache_init(): Could not create!\n");
162 prom_halt();
163 }
164 }
165
166 #ifdef CONFIG_DEBUG_DCFLUSH
167 atomic_t dcpage_flushes = ATOMIC_INIT(0);
168 #ifdef CONFIG_SMP
169 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
170 #endif
171 #endif
172
173 __inline__ void flush_dcache_page_impl(struct page *page)
174 {
175 #ifdef CONFIG_DEBUG_DCFLUSH
176 atomic_inc(&dcpage_flushes);
177 #endif
178
179 #ifdef DCACHE_ALIASING_POSSIBLE
180 __flush_dcache_page(page_address(page),
181 ((tlb_type == spitfire) &&
182 page_mapping(page) != NULL));
183 #else
184 if (page_mapping(page) != NULL &&
185 tlb_type == spitfire)
186 __flush_icache_page(__pa(page_address(page)));
187 #endif
188 }
189
190 #define PG_dcache_dirty PG_arch_1
191 #define PG_dcache_cpu_shift 24
192 #define PG_dcache_cpu_mask (256 - 1)
193
194 #if NR_CPUS > 256
195 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
196 #endif
197
198 #define dcache_dirty_cpu(page) \
199 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
200
201 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
202 {
203 unsigned long mask = this_cpu;
204 unsigned long non_cpu_bits;
205
206 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
207 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
208
209 __asm__ __volatile__("1:\n\t"
210 "ldx [%2], %%g7\n\t"
211 "and %%g7, %1, %%g1\n\t"
212 "or %%g1, %0, %%g1\n\t"
213 "casx [%2], %%g7, %%g1\n\t"
214 "cmp %%g7, %%g1\n\t"
215 "membar #StoreLoad | #StoreStore\n\t"
216 "bne,pn %%xcc, 1b\n\t"
217 " nop"
218 : /* no outputs */
219 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
220 : "g1", "g7");
221 }
222
223 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
224 {
225 unsigned long mask = (1UL << PG_dcache_dirty);
226
227 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
228 "1:\n\t"
229 "ldx [%2], %%g7\n\t"
230 "srlx %%g7, %4, %%g1\n\t"
231 "and %%g1, %3, %%g1\n\t"
232 "cmp %%g1, %0\n\t"
233 "bne,pn %%icc, 2f\n\t"
234 " andn %%g7, %1, %%g1\n\t"
235 "casx [%2], %%g7, %%g1\n\t"
236 "cmp %%g7, %%g1\n\t"
237 "membar #StoreLoad | #StoreStore\n\t"
238 "bne,pn %%xcc, 1b\n\t"
239 " nop\n"
240 "2:"
241 : /* no outputs */
242 : "r" (cpu), "r" (mask), "r" (&page->flags),
243 "i" (PG_dcache_cpu_mask),
244 "i" (PG_dcache_cpu_shift)
245 : "g1", "g7");
246 }
247
248 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
249 {
250 unsigned long tsb_addr = (unsigned long) ent;
251
252 if (tlb_type == cheetah_plus)
253 tsb_addr = __pa(tsb_addr);
254
255 __tsb_insert(tsb_addr, tag, pte);
256 }
257
258 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
259 {
260 struct mm_struct *mm;
261 struct page *page;
262 unsigned long pfn;
263 unsigned long pg_flags;
264
265 pfn = pte_pfn(pte);
266 if (pfn_valid(pfn) &&
267 (page = pfn_to_page(pfn), page_mapping(page)) &&
268 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
269 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
270 PG_dcache_cpu_mask);
271 int this_cpu = get_cpu();
272
273 /* This is just to optimize away some function calls
274 * in the SMP case.
275 */
276 if (cpu == this_cpu)
277 flush_dcache_page_impl(page);
278 else
279 smp_flush_dcache_page_impl(page, cpu);
280
281 clear_dcache_dirty_cpu(page, cpu);
282
283 put_cpu();
284 }
285
286 mm = vma->vm_mm;
287 if ((pte_val(pte) & _PAGE_ALL_SZ_BITS) == _PAGE_SZBITS) {
288 struct tsb *tsb;
289 unsigned long tag;
290
291 tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
292 (mm->context.tsb_nentries - 1UL)];
293 tag = (address >> 22UL) | CTX_HWBITS(mm->context) << 48UL;
294 tsb_insert(tsb, tag, pte_val(pte));
295 }
296 }
297
298 void flush_dcache_page(struct page *page)
299 {
300 struct address_space *mapping;
301 int this_cpu;
302
303 /* Do not bother with the expensive D-cache flush if it
304 * is merely the zero page. The 'bigcore' testcase in GDB
305 * causes this case to run millions of times.
306 */
307 if (page == ZERO_PAGE(0))
308 return;
309
310 this_cpu = get_cpu();
311
312 mapping = page_mapping(page);
313 if (mapping && !mapping_mapped(mapping)) {
314 int dirty = test_bit(PG_dcache_dirty, &page->flags);
315 if (dirty) {
316 int dirty_cpu = dcache_dirty_cpu(page);
317
318 if (dirty_cpu == this_cpu)
319 goto out;
320 smp_flush_dcache_page_impl(page, dirty_cpu);
321 }
322 set_dcache_dirty(page, this_cpu);
323 } else {
324 /* We could delay the flush for the !page_mapping
325 * case too. But that case is for exec env/arg
326 * pages and those are %99 certainly going to get
327 * faulted into the tlb (and thus flushed) anyways.
328 */
329 flush_dcache_page_impl(page);
330 }
331
332 out:
333 put_cpu();
334 }
335
336 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
337 {
338 /* Cheetah has coherent I-cache. */
339 if (tlb_type == spitfire) {
340 unsigned long kaddr;
341
342 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
343 __flush_icache_page(__get_phys(kaddr));
344 }
345 }
346
347 unsigned long page_to_pfn(struct page *page)
348 {
349 return (unsigned long) ((page - mem_map) + pfn_base);
350 }
351
352 struct page *pfn_to_page(unsigned long pfn)
353 {
354 return (mem_map + (pfn - pfn_base));
355 }
356
357 void show_mem(void)
358 {
359 printk("Mem-info:\n");
360 show_free_areas();
361 printk("Free swap: %6ldkB\n",
362 nr_swap_pages << (PAGE_SHIFT-10));
363 printk("%ld pages of RAM\n", num_physpages);
364 printk("%d free pages\n", nr_free_pages());
365 }
366
367 void mmu_info(struct seq_file *m)
368 {
369 if (tlb_type == cheetah)
370 seq_printf(m, "MMU Type\t: Cheetah\n");
371 else if (tlb_type == cheetah_plus)
372 seq_printf(m, "MMU Type\t: Cheetah+\n");
373 else if (tlb_type == spitfire)
374 seq_printf(m, "MMU Type\t: Spitfire\n");
375 else
376 seq_printf(m, "MMU Type\t: ???\n");
377
378 #ifdef CONFIG_DEBUG_DCFLUSH
379 seq_printf(m, "DCPageFlushes\t: %d\n",
380 atomic_read(&dcpage_flushes));
381 #ifdef CONFIG_SMP
382 seq_printf(m, "DCPageFlushesXC\t: %d\n",
383 atomic_read(&dcpage_flushes_xcall));
384 #endif /* CONFIG_SMP */
385 #endif /* CONFIG_DEBUG_DCFLUSH */
386 }
387
388 struct linux_prom_translation {
389 unsigned long virt;
390 unsigned long size;
391 unsigned long data;
392 };
393
394 /* Exported for kernel TLB miss handling in ktlb.S */
395 struct linux_prom_translation prom_trans[512] __read_mostly;
396 unsigned int prom_trans_ents __read_mostly;
397
398 extern unsigned long prom_boot_page;
399 extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
400 extern int prom_get_mmu_ihandle(void);
401 extern void register_prom_callbacks(void);
402
403 /* Exported for SMP bootup purposes. */
404 unsigned long kern_locked_tte_data;
405
406 /*
407 * Translate PROM's mapping we capture at boot time into physical address.
408 * The second parameter is only set from prom_callback() invocations.
409 */
410 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
411 {
412 int i;
413
414 for (i = 0; i < prom_trans_ents; i++) {
415 struct linux_prom_translation *p = &prom_trans[i];
416
417 if (promva >= p->virt &&
418 promva < (p->virt + p->size)) {
419 unsigned long base = p->data & _PAGE_PADDR;
420
421 if (error)
422 *error = 0;
423 return base + (promva & (8192 - 1));
424 }
425 }
426 if (error)
427 *error = 1;
428 return 0UL;
429 }
430
431 /* The obp translations are saved based on 8k pagesize, since obp can
432 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
433 * HI_OBP_ADDRESS range are handled in ktlb.S.
434 */
435 static inline int in_obp_range(unsigned long vaddr)
436 {
437 return (vaddr >= LOW_OBP_ADDRESS &&
438 vaddr < HI_OBP_ADDRESS);
439 }
440
441 static int cmp_ptrans(const void *a, const void *b)
442 {
443 const struct linux_prom_translation *x = a, *y = b;
444
445 if (x->virt > y->virt)
446 return 1;
447 if (x->virt < y->virt)
448 return -1;
449 return 0;
450 }
451
452 /* Read OBP translations property into 'prom_trans[]'. */
453 static void __init read_obp_translations(void)
454 {
455 int n, node, ents, first, last, i;
456
457 node = prom_finddevice("/virtual-memory");
458 n = prom_getproplen(node, "translations");
459 if (unlikely(n == 0 || n == -1)) {
460 prom_printf("prom_mappings: Couldn't get size.\n");
461 prom_halt();
462 }
463 if (unlikely(n > sizeof(prom_trans))) {
464 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
465 prom_halt();
466 }
467
468 if ((n = prom_getproperty(node, "translations",
469 (char *)&prom_trans[0],
470 sizeof(prom_trans))) == -1) {
471 prom_printf("prom_mappings: Couldn't get property.\n");
472 prom_halt();
473 }
474
475 n = n / sizeof(struct linux_prom_translation);
476
477 ents = n;
478
479 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
480 cmp_ptrans, NULL);
481
482 /* Now kick out all the non-OBP entries. */
483 for (i = 0; i < ents; i++) {
484 if (in_obp_range(prom_trans[i].virt))
485 break;
486 }
487 first = i;
488 for (; i < ents; i++) {
489 if (!in_obp_range(prom_trans[i].virt))
490 break;
491 }
492 last = i;
493
494 for (i = 0; i < (last - first); i++) {
495 struct linux_prom_translation *src = &prom_trans[i + first];
496 struct linux_prom_translation *dest = &prom_trans[i];
497
498 *dest = *src;
499 }
500 for (; i < ents; i++) {
501 struct linux_prom_translation *dest = &prom_trans[i];
502 dest->virt = dest->size = dest->data = 0x0UL;
503 }
504
505 prom_trans_ents = last - first;
506
507 if (tlb_type == spitfire) {
508 /* Clear diag TTE bits. */
509 for (i = 0; i < prom_trans_ents; i++)
510 prom_trans[i].data &= ~0x0003fe0000000000UL;
511 }
512 }
513
514 static void __init remap_kernel(void)
515 {
516 unsigned long phys_page, tte_vaddr, tte_data;
517 int tlb_ent = sparc64_highest_locked_tlbent();
518
519 tte_vaddr = (unsigned long) KERNBASE;
520 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
521 tte_data = (phys_page | (_PAGE_VALID | _PAGE_SZ4MB |
522 _PAGE_CP | _PAGE_CV | _PAGE_P |
523 _PAGE_L | _PAGE_W));
524
525 kern_locked_tte_data = tte_data;
526
527 /* Now lock us into the TLBs via OBP. */
528 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
529 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
530 if (bigkernel) {
531 tlb_ent -= 1;
532 prom_dtlb_load(tlb_ent,
533 tte_data + 0x400000,
534 tte_vaddr + 0x400000);
535 prom_itlb_load(tlb_ent,
536 tte_data + 0x400000,
537 tte_vaddr + 0x400000);
538 }
539 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
540 if (tlb_type == cheetah_plus) {
541 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
542 CTX_CHEETAH_PLUS_NUC);
543 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
544 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
545 }
546 }
547
548
549 static void __init inherit_prom_mappings(void)
550 {
551 read_obp_translations();
552
553 /* Now fixup OBP's idea about where we really are mapped. */
554 prom_printf("Remapping the kernel... ");
555 remap_kernel();
556 prom_printf("done.\n");
557
558 prom_printf("Registering callbacks... ");
559 register_prom_callbacks();
560 prom_printf("done.\n");
561 }
562
563 void prom_world(int enter)
564 {
565 if (!enter)
566 set_fs((mm_segment_t) { get_thread_current_ds() });
567
568 __asm__ __volatile__("flushw");
569 }
570
571 #ifdef DCACHE_ALIASING_POSSIBLE
572 void __flush_dcache_range(unsigned long start, unsigned long end)
573 {
574 unsigned long va;
575
576 if (tlb_type == spitfire) {
577 int n = 0;
578
579 for (va = start; va < end; va += 32) {
580 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
581 if (++n >= 512)
582 break;
583 }
584 } else {
585 start = __pa(start);
586 end = __pa(end);
587 for (va = start; va < end; va += 32)
588 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
589 "membar #Sync"
590 : /* no outputs */
591 : "r" (va),
592 "i" (ASI_DCACHE_INVALIDATE));
593 }
594 }
595 #endif /* DCACHE_ALIASING_POSSIBLE */
596
597 /* If not locked, zap it. */
598 void __flush_tlb_all(void)
599 {
600 unsigned long pstate;
601 int i;
602
603 __asm__ __volatile__("flushw\n\t"
604 "rdpr %%pstate, %0\n\t"
605 "wrpr %0, %1, %%pstate"
606 : "=r" (pstate)
607 : "i" (PSTATE_IE));
608 if (tlb_type == spitfire) {
609 for (i = 0; i < 64; i++) {
610 /* Spitfire Errata #32 workaround */
611 /* NOTE: Always runs on spitfire, so no
612 * cheetah+ page size encodings.
613 */
614 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
615 "flush %%g6"
616 : /* No outputs */
617 : "r" (0),
618 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
619
620 if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
621 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
622 "membar #Sync"
623 : /* no outputs */
624 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
625 spitfire_put_dtlb_data(i, 0x0UL);
626 }
627
628 /* Spitfire Errata #32 workaround */
629 /* NOTE: Always runs on spitfire, so no
630 * cheetah+ page size encodings.
631 */
632 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
633 "flush %%g6"
634 : /* No outputs */
635 : "r" (0),
636 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
637
638 if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
639 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
640 "membar #Sync"
641 : /* no outputs */
642 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
643 spitfire_put_itlb_data(i, 0x0UL);
644 }
645 }
646 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
647 cheetah_flush_dtlb_all();
648 cheetah_flush_itlb_all();
649 }
650 __asm__ __volatile__("wrpr %0, 0, %%pstate"
651 : : "r" (pstate));
652 }
653
654 /* Caller does TLB context flushing on local CPU if necessary.
655 * The caller also ensures that CTX_VALID(mm->context) is false.
656 *
657 * We must be careful about boundary cases so that we never
658 * let the user have CTX 0 (nucleus) or we ever use a CTX
659 * version of zero (and thus NO_CONTEXT would not be caught
660 * by version mis-match tests in mmu_context.h).
661 */
662 void get_new_mmu_context(struct mm_struct *mm)
663 {
664 unsigned long ctx, new_ctx;
665 unsigned long orig_pgsz_bits;
666
667
668 spin_lock(&ctx_alloc_lock);
669 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
670 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
671 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
672 if (new_ctx >= (1 << CTX_NR_BITS)) {
673 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
674 if (new_ctx >= ctx) {
675 int i;
676 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
677 CTX_FIRST_VERSION;
678 if (new_ctx == 1)
679 new_ctx = CTX_FIRST_VERSION;
680
681 /* Don't call memset, for 16 entries that's just
682 * plain silly...
683 */
684 mmu_context_bmap[0] = 3;
685 mmu_context_bmap[1] = 0;
686 mmu_context_bmap[2] = 0;
687 mmu_context_bmap[3] = 0;
688 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
689 mmu_context_bmap[i + 0] = 0;
690 mmu_context_bmap[i + 1] = 0;
691 mmu_context_bmap[i + 2] = 0;
692 mmu_context_bmap[i + 3] = 0;
693 }
694 goto out;
695 }
696 }
697 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
698 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
699 out:
700 tlb_context_cache = new_ctx;
701 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
702 spin_unlock(&ctx_alloc_lock);
703 }
704
705 void sparc_ultra_dump_itlb(void)
706 {
707 int slot;
708
709 if (tlb_type == spitfire) {
710 printk ("Contents of itlb: ");
711 for (slot = 0; slot < 14; slot++) printk (" ");
712 printk ("%2x:%016lx,%016lx\n",
713 0,
714 spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
715 for (slot = 1; slot < 64; slot+=3) {
716 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
717 slot,
718 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
719 slot+1,
720 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
721 slot+2,
722 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
723 }
724 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
725 printk ("Contents of itlb0:\n");
726 for (slot = 0; slot < 16; slot+=2) {
727 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
728 slot,
729 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
730 slot+1,
731 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
732 }
733 printk ("Contents of itlb2:\n");
734 for (slot = 0; slot < 128; slot+=2) {
735 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
736 slot,
737 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
738 slot+1,
739 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
740 }
741 }
742 }
743
744 void sparc_ultra_dump_dtlb(void)
745 {
746 int slot;
747
748 if (tlb_type == spitfire) {
749 printk ("Contents of dtlb: ");
750 for (slot = 0; slot < 14; slot++) printk (" ");
751 printk ("%2x:%016lx,%016lx\n", 0,
752 spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
753 for (slot = 1; slot < 64; slot+=3) {
754 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
755 slot,
756 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
757 slot+1,
758 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
759 slot+2,
760 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
761 }
762 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
763 printk ("Contents of dtlb0:\n");
764 for (slot = 0; slot < 16; slot+=2) {
765 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
766 slot,
767 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
768 slot+1,
769 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
770 }
771 printk ("Contents of dtlb2:\n");
772 for (slot = 0; slot < 512; slot+=2) {
773 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
774 slot,
775 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
776 slot+1,
777 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
778 }
779 if (tlb_type == cheetah_plus) {
780 printk ("Contents of dtlb3:\n");
781 for (slot = 0; slot < 512; slot+=2) {
782 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
783 slot,
784 cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
785 slot+1,
786 cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
787 }
788 }
789 }
790 }
791
792 static inline void spitfire_errata32(void)
793 {
794 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
795 "flush %%g6"
796 : /* No outputs */
797 : "r" (0),
798 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
799 }
800
801 extern unsigned long cmdline_memory_size;
802
803 unsigned long __init bootmem_init(unsigned long *pages_avail)
804 {
805 unsigned long bootmap_size, start_pfn, end_pfn;
806 unsigned long end_of_phys_memory = 0UL;
807 unsigned long bootmap_pfn, bytes_avail, size;
808 int i;
809
810 #ifdef CONFIG_DEBUG_BOOTMEM
811 prom_printf("bootmem_init: Scan pavail, ");
812 #endif
813
814 bytes_avail = 0UL;
815 for (i = 0; i < pavail_ents; i++) {
816 end_of_phys_memory = pavail[i].phys_addr +
817 pavail[i].reg_size;
818 bytes_avail += pavail[i].reg_size;
819 if (cmdline_memory_size) {
820 if (bytes_avail > cmdline_memory_size) {
821 unsigned long slack = bytes_avail - cmdline_memory_size;
822
823 bytes_avail -= slack;
824 end_of_phys_memory -= slack;
825
826 pavail[i].reg_size -= slack;
827 if ((long)pavail[i].reg_size <= 0L) {
828 pavail[i].phys_addr = 0xdeadbeefUL;
829 pavail[i].reg_size = 0UL;
830 pavail_ents = i;
831 } else {
832 pavail[i+1].reg_size = 0Ul;
833 pavail[i+1].phys_addr = 0xdeadbeefUL;
834 pavail_ents = i + 1;
835 }
836 break;
837 }
838 }
839 }
840
841 *pages_avail = bytes_avail >> PAGE_SHIFT;
842
843 /* Start with page aligned address of last symbol in kernel
844 * image. The kernel is hard mapped below PAGE_OFFSET in a
845 * 4MB locked TLB translation.
846 */
847 start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
848
849 bootmap_pfn = start_pfn;
850
851 end_pfn = end_of_phys_memory >> PAGE_SHIFT;
852
853 #ifdef CONFIG_BLK_DEV_INITRD
854 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
855 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
856 unsigned long ramdisk_image = sparc_ramdisk_image ?
857 sparc_ramdisk_image : sparc_ramdisk_image64;
858 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
859 ramdisk_image -= KERNBASE;
860 initrd_start = ramdisk_image + phys_base;
861 initrd_end = initrd_start + sparc_ramdisk_size;
862 if (initrd_end > end_of_phys_memory) {
863 printk(KERN_CRIT "initrd extends beyond end of memory "
864 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
865 initrd_end, end_of_phys_memory);
866 initrd_start = 0;
867 }
868 if (initrd_start) {
869 if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
870 initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
871 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
872 }
873 }
874 #endif
875 /* Initialize the boot-time allocator. */
876 max_pfn = max_low_pfn = end_pfn;
877 min_low_pfn = pfn_base;
878
879 #ifdef CONFIG_DEBUG_BOOTMEM
880 prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
881 min_low_pfn, bootmap_pfn, max_low_pfn);
882 #endif
883 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
884
885 /* Now register the available physical memory with the
886 * allocator.
887 */
888 for (i = 0; i < pavail_ents; i++) {
889 #ifdef CONFIG_DEBUG_BOOTMEM
890 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
891 i, pavail[i].phys_addr, pavail[i].reg_size);
892 #endif
893 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
894 }
895
896 #ifdef CONFIG_BLK_DEV_INITRD
897 if (initrd_start) {
898 size = initrd_end - initrd_start;
899
900 /* Resert the initrd image area. */
901 #ifdef CONFIG_DEBUG_BOOTMEM
902 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
903 initrd_start, initrd_end);
904 #endif
905 reserve_bootmem(initrd_start, size);
906 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
907
908 initrd_start += PAGE_OFFSET;
909 initrd_end += PAGE_OFFSET;
910 }
911 #endif
912 /* Reserve the kernel text/data/bss. */
913 #ifdef CONFIG_DEBUG_BOOTMEM
914 prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
915 #endif
916 reserve_bootmem(kern_base, kern_size);
917 *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
918
919 /* Reserve the bootmem map. We do not account for it
920 * in pages_avail because we will release that memory
921 * in free_all_bootmem.
922 */
923 size = bootmap_size;
924 #ifdef CONFIG_DEBUG_BOOTMEM
925 prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
926 (bootmap_pfn << PAGE_SHIFT), size);
927 #endif
928 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
929 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
930
931 return end_pfn;
932 }
933
934 #ifdef CONFIG_DEBUG_PAGEALLOC
935 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
936 {
937 unsigned long vstart = PAGE_OFFSET + pstart;
938 unsigned long vend = PAGE_OFFSET + pend;
939 unsigned long alloc_bytes = 0UL;
940
941 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
942 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
943 vstart, vend);
944 prom_halt();
945 }
946
947 while (vstart < vend) {
948 unsigned long this_end, paddr = __pa(vstart);
949 pgd_t *pgd = pgd_offset_k(vstart);
950 pud_t *pud;
951 pmd_t *pmd;
952 pte_t *pte;
953
954 pud = pud_offset(pgd, vstart);
955 if (pud_none(*pud)) {
956 pmd_t *new;
957
958 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
959 alloc_bytes += PAGE_SIZE;
960 pud_populate(&init_mm, pud, new);
961 }
962
963 pmd = pmd_offset(pud, vstart);
964 if (!pmd_present(*pmd)) {
965 pte_t *new;
966
967 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
968 alloc_bytes += PAGE_SIZE;
969 pmd_populate_kernel(&init_mm, pmd, new);
970 }
971
972 pte = pte_offset_kernel(pmd, vstart);
973 this_end = (vstart + PMD_SIZE) & PMD_MASK;
974 if (this_end > vend)
975 this_end = vend;
976
977 while (vstart < this_end) {
978 pte_val(*pte) = (paddr | pgprot_val(prot));
979
980 vstart += PAGE_SIZE;
981 paddr += PAGE_SIZE;
982 pte++;
983 }
984 }
985
986 return alloc_bytes;
987 }
988
989 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
990 static int pall_ents __initdata;
991
992 extern unsigned int kvmap_linear_patch[1];
993
994 static void __init kernel_physical_mapping_init(void)
995 {
996 unsigned long i, mem_alloced = 0UL;
997
998 read_obp_memory("reg", &pall[0], &pall_ents);
999
1000 for (i = 0; i < pall_ents; i++) {
1001 unsigned long phys_start, phys_end;
1002
1003 phys_start = pall[i].phys_addr;
1004 phys_end = phys_start + pall[i].reg_size;
1005 mem_alloced += kernel_map_range(phys_start, phys_end,
1006 PAGE_KERNEL);
1007 }
1008
1009 printk("Allocated %ld bytes for kernel page tables.\n",
1010 mem_alloced);
1011
1012 kvmap_linear_patch[0] = 0x01000000; /* nop */
1013 flushi(&kvmap_linear_patch[0]);
1014
1015 __flush_tlb_all();
1016 }
1017
1018 void kernel_map_pages(struct page *page, int numpages, int enable)
1019 {
1020 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1021 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1022
1023 kernel_map_range(phys_start, phys_end,
1024 (enable ? PAGE_KERNEL : __pgprot(0)));
1025
1026 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1027 PAGE_OFFSET + phys_end);
1028
1029 /* we should perform an IPI and flush all tlbs,
1030 * but that can deadlock->flush only current cpu.
1031 */
1032 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1033 PAGE_OFFSET + phys_end);
1034 }
1035 #endif
1036
1037 unsigned long __init find_ecache_flush_span(unsigned long size)
1038 {
1039 int i;
1040
1041 for (i = 0; i < pavail_ents; i++) {
1042 if (pavail[i].reg_size >= size)
1043 return pavail[i].phys_addr;
1044 }
1045
1046 return ~0UL;
1047 }
1048
1049 static void __init tsb_phys_patch(void)
1050 {
1051 struct tsb_phys_patch_entry *p;
1052
1053 p = &__tsb_phys_patch;
1054 while (p < &__tsb_phys_patch_end) {
1055 unsigned long addr = p->addr;
1056
1057 *(unsigned int *) addr = p->insn;
1058 wmb();
1059 __asm__ __volatile__("flush %0"
1060 : /* no outputs */
1061 : "r" (addr));
1062
1063 p++;
1064 }
1065 }
1066
1067 /* paging_init() sets up the page tables */
1068
1069 extern void cheetah_ecache_flush_init(void);
1070
1071 static unsigned long last_valid_pfn;
1072 pgd_t swapper_pg_dir[2048];
1073
1074 void __init paging_init(void)
1075 {
1076 unsigned long end_pfn, pages_avail, shift;
1077 unsigned long real_end, i;
1078
1079 if (tlb_type == cheetah_plus)
1080 tsb_phys_patch();
1081
1082 /* Find available physical memory... */
1083 read_obp_memory("available", &pavail[0], &pavail_ents);
1084
1085 phys_base = 0xffffffffffffffffUL;
1086 for (i = 0; i < pavail_ents; i++)
1087 phys_base = min(phys_base, pavail[i].phys_addr);
1088
1089 pfn_base = phys_base >> PAGE_SHIFT;
1090
1091 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1092 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1093
1094 set_bit(0, mmu_context_bmap);
1095
1096 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1097
1098 real_end = (unsigned long)_end;
1099 if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1100 bigkernel = 1;
1101 if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1102 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1103 prom_halt();
1104 }
1105
1106 /* Set kernel pgd to upper alias so physical page computations
1107 * work.
1108 */
1109 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1110
1111 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1112
1113 /* Now can init the kernel/bad page tables. */
1114 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1115 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1116
1117 inherit_prom_mappings();
1118
1119 /* Ok, we can use our TLB miss and window trap handlers safely. */
1120 setup_tba();
1121
1122 __flush_tlb_all();
1123
1124 /* Setup bootmem... */
1125 pages_avail = 0;
1126 last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
1127
1128 #ifdef CONFIG_DEBUG_PAGEALLOC
1129 kernel_physical_mapping_init();
1130 #endif
1131
1132 {
1133 unsigned long zones_size[MAX_NR_ZONES];
1134 unsigned long zholes_size[MAX_NR_ZONES];
1135 unsigned long npages;
1136 int znum;
1137
1138 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1139 zones_size[znum] = zholes_size[znum] = 0;
1140
1141 npages = end_pfn - pfn_base;
1142 zones_size[ZONE_DMA] = npages;
1143 zholes_size[ZONE_DMA] = npages - pages_avail;
1144
1145 free_area_init_node(0, &contig_page_data, zones_size,
1146 phys_base >> PAGE_SHIFT, zholes_size);
1147 }
1148
1149 device_scan();
1150 }
1151
1152 static void __init taint_real_pages(void)
1153 {
1154 int i;
1155
1156 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1157
1158 /* Find changes discovered in the physmem available rescan and
1159 * reserve the lost portions in the bootmem maps.
1160 */
1161 for (i = 0; i < pavail_ents; i++) {
1162 unsigned long old_start, old_end;
1163
1164 old_start = pavail[i].phys_addr;
1165 old_end = old_start +
1166 pavail[i].reg_size;
1167 while (old_start < old_end) {
1168 int n;
1169
1170 for (n = 0; pavail_rescan_ents; n++) {
1171 unsigned long new_start, new_end;
1172
1173 new_start = pavail_rescan[n].phys_addr;
1174 new_end = new_start +
1175 pavail_rescan[n].reg_size;
1176
1177 if (new_start <= old_start &&
1178 new_end >= (old_start + PAGE_SIZE)) {
1179 set_bit(old_start >> 22,
1180 sparc64_valid_addr_bitmap);
1181 goto do_next_page;
1182 }
1183 }
1184 reserve_bootmem(old_start, PAGE_SIZE);
1185
1186 do_next_page:
1187 old_start += PAGE_SIZE;
1188 }
1189 }
1190 }
1191
1192 void __init mem_init(void)
1193 {
1194 unsigned long codepages, datapages, initpages;
1195 unsigned long addr, last;
1196 int i;
1197
1198 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1199 i += 1;
1200 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1201 if (sparc64_valid_addr_bitmap == NULL) {
1202 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1203 prom_halt();
1204 }
1205 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1206
1207 addr = PAGE_OFFSET + kern_base;
1208 last = PAGE_ALIGN(kern_size) + addr;
1209 while (addr < last) {
1210 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1211 addr += PAGE_SIZE;
1212 }
1213
1214 taint_real_pages();
1215
1216 max_mapnr = last_valid_pfn - pfn_base;
1217 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1218
1219 #ifdef CONFIG_DEBUG_BOOTMEM
1220 prom_printf("mem_init: Calling free_all_bootmem().\n");
1221 #endif
1222 totalram_pages = num_physpages = free_all_bootmem() - 1;
1223
1224 /*
1225 * Set up the zero page, mark it reserved, so that page count
1226 * is not manipulated when freeing the page from user ptes.
1227 */
1228 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1229 if (mem_map_zero == NULL) {
1230 prom_printf("paging_init: Cannot alloc zero page.\n");
1231 prom_halt();
1232 }
1233 SetPageReserved(mem_map_zero);
1234
1235 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1236 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1237 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1238 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1239 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1240 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1241
1242 printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1243 nr_free_pages() << (PAGE_SHIFT-10),
1244 codepages << (PAGE_SHIFT-10),
1245 datapages << (PAGE_SHIFT-10),
1246 initpages << (PAGE_SHIFT-10),
1247 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1248
1249 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1250 cheetah_ecache_flush_init();
1251 }
1252
1253 void free_initmem(void)
1254 {
1255 unsigned long addr, initend;
1256
1257 /*
1258 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1259 */
1260 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1261 initend = (unsigned long)(__init_end) & PAGE_MASK;
1262 for (; addr < initend; addr += PAGE_SIZE) {
1263 unsigned long page;
1264 struct page *p;
1265
1266 page = (addr +
1267 ((unsigned long) __va(kern_base)) -
1268 ((unsigned long) KERNBASE));
1269 memset((void *)addr, 0xcc, PAGE_SIZE);
1270 p = virt_to_page(page);
1271
1272 ClearPageReserved(p);
1273 set_page_count(p, 1);
1274 __free_page(p);
1275 num_physpages++;
1276 totalram_pages++;
1277 }
1278 }
1279
1280 #ifdef CONFIG_BLK_DEV_INITRD
1281 void free_initrd_mem(unsigned long start, unsigned long end)
1282 {
1283 if (start < end)
1284 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1285 for (; start < end; start += PAGE_SIZE) {
1286 struct page *p = virt_to_page(start);
1287
1288 ClearPageReserved(p);
1289 set_page_count(p, 1);
1290 __free_page(p);
1291 num_physpages++;
1292 totalram_pages++;
1293 }
1294 }
1295 #endif