]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/sparc64/mm/init.c
[SPARC64]: Remove most limitations to kernel image size.
[mirror_ubuntu-bionic-kernel.git] / arch / sparc64 / mm / init.c
1 /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27
28 #include <asm/head.h>
29 #include <asm/system.h>
30 #include <asm/page.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
33 #include <asm/oplib.h>
34 #include <asm/iommu.h>
35 #include <asm/io.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/dma.h>
40 #include <asm/starfire.h>
41 #include <asm/tlb.h>
42 #include <asm/spitfire.h>
43 #include <asm/sections.h>
44 #include <asm/tsb.h>
45 #include <asm/hypervisor.h>
46 #include <asm/prom.h>
47 #include <asm/sstate.h>
48 #include <asm/mdesc.h>
49
50 #define MAX_PHYS_ADDRESS (1UL << 42UL)
51 #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
52 #define KPTE_BITMAP_BYTES \
53 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
54
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57 /* A bitmap, one bit for every 256MB of physical memory. If the bit
58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60 */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65 * Space is allocated for this right after the trap table
66 * in arch/sparc64/kernel/head.S
67 */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70
71 #define MAX_BANKS 32
72
73 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
74 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
75 static int pavail_ents __initdata;
76 static int pavail_rescan_ents __initdata;
77
78 static int cmp_p64(const void *a, const void *b)
79 {
80 const struct linux_prom64_registers *x = a, *y = b;
81
82 if (x->phys_addr > y->phys_addr)
83 return 1;
84 if (x->phys_addr < y->phys_addr)
85 return -1;
86 return 0;
87 }
88
89 static void __init read_obp_memory(const char *property,
90 struct linux_prom64_registers *regs,
91 int *num_ents)
92 {
93 int node = prom_finddevice("/memory");
94 int prop_size = prom_getproplen(node, property);
95 int ents, ret, i;
96
97 ents = prop_size / sizeof(struct linux_prom64_registers);
98 if (ents > MAX_BANKS) {
99 prom_printf("The machine has more %s property entries than "
100 "this kernel can support (%d).\n",
101 property, MAX_BANKS);
102 prom_halt();
103 }
104
105 ret = prom_getproperty(node, property, (char *) regs, prop_size);
106 if (ret == -1) {
107 prom_printf("Couldn't get %s property from /memory.\n");
108 prom_halt();
109 }
110
111 /* Sanitize what we got from the firmware, by page aligning
112 * everything.
113 */
114 for (i = 0; i < ents; i++) {
115 unsigned long base, size;
116
117 base = regs[i].phys_addr;
118 size = regs[i].reg_size;
119
120 size &= PAGE_MASK;
121 if (base & ~PAGE_MASK) {
122 unsigned long new_base = PAGE_ALIGN(base);
123
124 size -= new_base - base;
125 if ((long) size < 0L)
126 size = 0UL;
127 base = new_base;
128 }
129 if (size == 0UL) {
130 /* If it is empty, simply get rid of it.
131 * This simplifies the logic of the other
132 * functions that process these arrays.
133 */
134 memmove(&regs[i], &regs[i + 1],
135 (ents - i - 1) * sizeof(regs[0]));
136 i--;
137 ents--;
138 continue;
139 }
140 regs[i].phys_addr = base;
141 regs[i].reg_size = size;
142 }
143
144 *num_ents = ents;
145
146 sort(regs, ents, sizeof(struct linux_prom64_registers),
147 cmp_p64, NULL);
148 }
149
150 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
151
152 /* Kernel physical address base and size in bytes. */
153 unsigned long kern_base __read_mostly;
154 unsigned long kern_size __read_mostly;
155
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64;
158 extern unsigned int sparc_ramdisk_image;
159 extern unsigned int sparc_ramdisk_size;
160
161 struct page *mem_map_zero __read_mostly;
162
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
164
165 unsigned long sparc64_kern_pri_context __read_mostly;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
167 unsigned long sparc64_kern_sec_context __read_mostly;
168
169 int num_kernel_image_mappings;
170
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes = ATOMIC_INIT(0);
173 #ifdef CONFIG_SMP
174 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
175 #endif
176 #endif
177
178 inline void flush_dcache_page_impl(struct page *page)
179 {
180 BUG_ON(tlb_type == hypervisor);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182 atomic_inc(&dcpage_flushes);
183 #endif
184
185 #ifdef DCACHE_ALIASING_POSSIBLE
186 __flush_dcache_page(page_address(page),
187 ((tlb_type == spitfire) &&
188 page_mapping(page) != NULL));
189 #else
190 if (page_mapping(page) != NULL &&
191 tlb_type == spitfire)
192 __flush_icache_page(__pa(page_address(page)));
193 #endif
194 }
195
196 #define PG_dcache_dirty PG_arch_1
197 #define PG_dcache_cpu_shift 32UL
198 #define PG_dcache_cpu_mask \
199 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
200
201 #define dcache_dirty_cpu(page) \
202 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
203
204 static inline void set_dcache_dirty(struct page *page, int this_cpu)
205 {
206 unsigned long mask = this_cpu;
207 unsigned long non_cpu_bits;
208
209 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
210 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
211
212 __asm__ __volatile__("1:\n\t"
213 "ldx [%2], %%g7\n\t"
214 "and %%g7, %1, %%g1\n\t"
215 "or %%g1, %0, %%g1\n\t"
216 "casx [%2], %%g7, %%g1\n\t"
217 "cmp %%g7, %%g1\n\t"
218 "membar #StoreLoad | #StoreStore\n\t"
219 "bne,pn %%xcc, 1b\n\t"
220 " nop"
221 : /* no outputs */
222 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223 : "g1", "g7");
224 }
225
226 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227 {
228 unsigned long mask = (1UL << PG_dcache_dirty);
229
230 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231 "1:\n\t"
232 "ldx [%2], %%g7\n\t"
233 "srlx %%g7, %4, %%g1\n\t"
234 "and %%g1, %3, %%g1\n\t"
235 "cmp %%g1, %0\n\t"
236 "bne,pn %%icc, 2f\n\t"
237 " andn %%g7, %1, %%g1\n\t"
238 "casx [%2], %%g7, %%g1\n\t"
239 "cmp %%g7, %%g1\n\t"
240 "membar #StoreLoad | #StoreStore\n\t"
241 "bne,pn %%xcc, 1b\n\t"
242 " nop\n"
243 "2:"
244 : /* no outputs */
245 : "r" (cpu), "r" (mask), "r" (&page->flags),
246 "i" (PG_dcache_cpu_mask),
247 "i" (PG_dcache_cpu_shift)
248 : "g1", "g7");
249 }
250
251 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
252 {
253 unsigned long tsb_addr = (unsigned long) ent;
254
255 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
256 tsb_addr = __pa(tsb_addr);
257
258 __tsb_insert(tsb_addr, tag, pte);
259 }
260
261 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
262 unsigned long _PAGE_SZBITS __read_mostly;
263
264 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
265 {
266 struct mm_struct *mm;
267 struct tsb *tsb;
268 unsigned long tag, flags;
269 unsigned long tsb_index, tsb_hash_shift;
270
271 if (tlb_type != hypervisor) {
272 unsigned long pfn = pte_pfn(pte);
273 unsigned long pg_flags;
274 struct page *page;
275
276 if (pfn_valid(pfn) &&
277 (page = pfn_to_page(pfn), page_mapping(page)) &&
278 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
279 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
280 PG_dcache_cpu_mask);
281 int this_cpu = get_cpu();
282
283 /* This is just to optimize away some function calls
284 * in the SMP case.
285 */
286 if (cpu == this_cpu)
287 flush_dcache_page_impl(page);
288 else
289 smp_flush_dcache_page_impl(page, cpu);
290
291 clear_dcache_dirty_cpu(page, cpu);
292
293 put_cpu();
294 }
295 }
296
297 mm = vma->vm_mm;
298
299 tsb_index = MM_TSB_BASE;
300 tsb_hash_shift = PAGE_SHIFT;
301
302 spin_lock_irqsave(&mm->context.lock, flags);
303
304 #ifdef CONFIG_HUGETLB_PAGE
305 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
306 if ((tlb_type == hypervisor &&
307 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
308 (tlb_type != hypervisor &&
309 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
310 tsb_index = MM_TSB_HUGE;
311 tsb_hash_shift = HPAGE_SHIFT;
312 }
313 }
314 #endif
315
316 tsb = mm->context.tsb_block[tsb_index].tsb;
317 tsb += ((address >> tsb_hash_shift) &
318 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
319 tag = (address >> 22UL);
320 tsb_insert(tsb, tag, pte_val(pte));
321
322 spin_unlock_irqrestore(&mm->context.lock, flags);
323 }
324
325 void flush_dcache_page(struct page *page)
326 {
327 struct address_space *mapping;
328 int this_cpu;
329
330 if (tlb_type == hypervisor)
331 return;
332
333 /* Do not bother with the expensive D-cache flush if it
334 * is merely the zero page. The 'bigcore' testcase in GDB
335 * causes this case to run millions of times.
336 */
337 if (page == ZERO_PAGE(0))
338 return;
339
340 this_cpu = get_cpu();
341
342 mapping = page_mapping(page);
343 if (mapping && !mapping_mapped(mapping)) {
344 int dirty = test_bit(PG_dcache_dirty, &page->flags);
345 if (dirty) {
346 int dirty_cpu = dcache_dirty_cpu(page);
347
348 if (dirty_cpu == this_cpu)
349 goto out;
350 smp_flush_dcache_page_impl(page, dirty_cpu);
351 }
352 set_dcache_dirty(page, this_cpu);
353 } else {
354 /* We could delay the flush for the !page_mapping
355 * case too. But that case is for exec env/arg
356 * pages and those are %99 certainly going to get
357 * faulted into the tlb (and thus flushed) anyways.
358 */
359 flush_dcache_page_impl(page);
360 }
361
362 out:
363 put_cpu();
364 }
365
366 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
367 {
368 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
369 if (tlb_type == spitfire) {
370 unsigned long kaddr;
371
372 /* This code only runs on Spitfire cpus so this is
373 * why we can assume _PAGE_PADDR_4U.
374 */
375 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
376 unsigned long paddr, mask = _PAGE_PADDR_4U;
377
378 if (kaddr >= PAGE_OFFSET)
379 paddr = kaddr & mask;
380 else {
381 pgd_t *pgdp = pgd_offset_k(kaddr);
382 pud_t *pudp = pud_offset(pgdp, kaddr);
383 pmd_t *pmdp = pmd_offset(pudp, kaddr);
384 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
385
386 paddr = pte_val(*ptep) & mask;
387 }
388 __flush_icache_page(paddr);
389 }
390 }
391 }
392
393 void show_mem(void)
394 {
395 unsigned long total = 0, reserved = 0;
396 unsigned long shared = 0, cached = 0;
397 pg_data_t *pgdat;
398
399 printk(KERN_INFO "Mem-info:\n");
400 show_free_areas();
401 printk(KERN_INFO "Free swap: %6ldkB\n",
402 nr_swap_pages << (PAGE_SHIFT-10));
403 for_each_online_pgdat(pgdat) {
404 unsigned long i, flags;
405
406 pgdat_resize_lock(pgdat, &flags);
407 for (i = 0; i < pgdat->node_spanned_pages; i++) {
408 struct page *page = pgdat_page_nr(pgdat, i);
409 total++;
410 if (PageReserved(page))
411 reserved++;
412 else if (PageSwapCache(page))
413 cached++;
414 else if (page_count(page))
415 shared += page_count(page) - 1;
416 }
417 pgdat_resize_unlock(pgdat, &flags);
418 }
419
420 printk(KERN_INFO "%lu pages of RAM\n", total);
421 printk(KERN_INFO "%lu reserved pages\n", reserved);
422 printk(KERN_INFO "%lu pages shared\n", shared);
423 printk(KERN_INFO "%lu pages swap cached\n", cached);
424
425 printk(KERN_INFO "%lu pages dirty\n",
426 global_page_state(NR_FILE_DIRTY));
427 printk(KERN_INFO "%lu pages writeback\n",
428 global_page_state(NR_WRITEBACK));
429 printk(KERN_INFO "%lu pages mapped\n",
430 global_page_state(NR_FILE_MAPPED));
431 printk(KERN_INFO "%lu pages slab\n",
432 global_page_state(NR_SLAB_RECLAIMABLE) +
433 global_page_state(NR_SLAB_UNRECLAIMABLE));
434 printk(KERN_INFO "%lu pages pagetables\n",
435 global_page_state(NR_PAGETABLE));
436 }
437
438 void mmu_info(struct seq_file *m)
439 {
440 if (tlb_type == cheetah)
441 seq_printf(m, "MMU Type\t: Cheetah\n");
442 else if (tlb_type == cheetah_plus)
443 seq_printf(m, "MMU Type\t: Cheetah+\n");
444 else if (tlb_type == spitfire)
445 seq_printf(m, "MMU Type\t: Spitfire\n");
446 else if (tlb_type == hypervisor)
447 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
448 else
449 seq_printf(m, "MMU Type\t: ???\n");
450
451 #ifdef CONFIG_DEBUG_DCFLUSH
452 seq_printf(m, "DCPageFlushes\t: %d\n",
453 atomic_read(&dcpage_flushes));
454 #ifdef CONFIG_SMP
455 seq_printf(m, "DCPageFlushesXC\t: %d\n",
456 atomic_read(&dcpage_flushes_xcall));
457 #endif /* CONFIG_SMP */
458 #endif /* CONFIG_DEBUG_DCFLUSH */
459 }
460
461 struct linux_prom_translation {
462 unsigned long virt;
463 unsigned long size;
464 unsigned long data;
465 };
466
467 /* Exported for kernel TLB miss handling in ktlb.S */
468 struct linux_prom_translation prom_trans[512] __read_mostly;
469 unsigned int prom_trans_ents __read_mostly;
470
471 /* Exported for SMP bootup purposes. */
472 unsigned long kern_locked_tte_data;
473
474 /* The obp translations are saved based on 8k pagesize, since obp can
475 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
476 * HI_OBP_ADDRESS range are handled in ktlb.S.
477 */
478 static inline int in_obp_range(unsigned long vaddr)
479 {
480 return (vaddr >= LOW_OBP_ADDRESS &&
481 vaddr < HI_OBP_ADDRESS);
482 }
483
484 static int cmp_ptrans(const void *a, const void *b)
485 {
486 const struct linux_prom_translation *x = a, *y = b;
487
488 if (x->virt > y->virt)
489 return 1;
490 if (x->virt < y->virt)
491 return -1;
492 return 0;
493 }
494
495 /* Read OBP translations property into 'prom_trans[]'. */
496 static void __init read_obp_translations(void)
497 {
498 int n, node, ents, first, last, i;
499
500 node = prom_finddevice("/virtual-memory");
501 n = prom_getproplen(node, "translations");
502 if (unlikely(n == 0 || n == -1)) {
503 prom_printf("prom_mappings: Couldn't get size.\n");
504 prom_halt();
505 }
506 if (unlikely(n > sizeof(prom_trans))) {
507 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
508 prom_halt();
509 }
510
511 if ((n = prom_getproperty(node, "translations",
512 (char *)&prom_trans[0],
513 sizeof(prom_trans))) == -1) {
514 prom_printf("prom_mappings: Couldn't get property.\n");
515 prom_halt();
516 }
517
518 n = n / sizeof(struct linux_prom_translation);
519
520 ents = n;
521
522 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
523 cmp_ptrans, NULL);
524
525 /* Now kick out all the non-OBP entries. */
526 for (i = 0; i < ents; i++) {
527 if (in_obp_range(prom_trans[i].virt))
528 break;
529 }
530 first = i;
531 for (; i < ents; i++) {
532 if (!in_obp_range(prom_trans[i].virt))
533 break;
534 }
535 last = i;
536
537 for (i = 0; i < (last - first); i++) {
538 struct linux_prom_translation *src = &prom_trans[i + first];
539 struct linux_prom_translation *dest = &prom_trans[i];
540
541 *dest = *src;
542 }
543 for (; i < ents; i++) {
544 struct linux_prom_translation *dest = &prom_trans[i];
545 dest->virt = dest->size = dest->data = 0x0UL;
546 }
547
548 prom_trans_ents = last - first;
549
550 if (tlb_type == spitfire) {
551 /* Clear diag TTE bits. */
552 for (i = 0; i < prom_trans_ents; i++)
553 prom_trans[i].data &= ~0x0003fe0000000000UL;
554 }
555 }
556
557 static void __init hypervisor_tlb_lock(unsigned long vaddr,
558 unsigned long pte,
559 unsigned long mmu)
560 {
561 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
562
563 if (ret != 0) {
564 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
565 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
566 prom_halt();
567 }
568 }
569
570 static unsigned long kern_large_tte(unsigned long paddr);
571
572 static void __init remap_kernel(void)
573 {
574 unsigned long phys_page, tte_vaddr, tte_data;
575 int i, tlb_ent = sparc64_highest_locked_tlbent();
576
577 tte_vaddr = (unsigned long) KERNBASE;
578 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
579 tte_data = kern_large_tte(phys_page);
580
581 kern_locked_tte_data = tte_data;
582
583 /* Now lock us into the TLBs via Hypervisor or OBP. */
584 if (tlb_type == hypervisor) {
585 for (i = 0; i < num_kernel_image_mappings; i++) {
586 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
587 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
588 tte_vaddr += 0x400000;
589 tte_data += 0x400000;
590 }
591 } else {
592 for (i = 0; i < num_kernel_image_mappings; i++) {
593 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
594 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
595 tte_vaddr += 0x400000;
596 tte_data += 0x400000;
597 }
598 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
599 }
600 if (tlb_type == cheetah_plus) {
601 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
602 CTX_CHEETAH_PLUS_NUC);
603 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
604 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
605 }
606 }
607
608
609 static void __init inherit_prom_mappings(void)
610 {
611 read_obp_translations();
612
613 /* Now fixup OBP's idea about where we really are mapped. */
614 printk("Remapping the kernel... ");
615 remap_kernel();
616 printk("done.\n");
617 }
618
619 void prom_world(int enter)
620 {
621 if (!enter)
622 set_fs((mm_segment_t) { get_thread_current_ds() });
623
624 __asm__ __volatile__("flushw");
625 }
626
627 void __flush_dcache_range(unsigned long start, unsigned long end)
628 {
629 unsigned long va;
630
631 if (tlb_type == spitfire) {
632 int n = 0;
633
634 for (va = start; va < end; va += 32) {
635 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
636 if (++n >= 512)
637 break;
638 }
639 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
640 start = __pa(start);
641 end = __pa(end);
642 for (va = start; va < end; va += 32)
643 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
644 "membar #Sync"
645 : /* no outputs */
646 : "r" (va),
647 "i" (ASI_DCACHE_INVALIDATE));
648 }
649 }
650
651 /* get_new_mmu_context() uses "cache + 1". */
652 DEFINE_SPINLOCK(ctx_alloc_lock);
653 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
654 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
655 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
656 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
657
658 /* Caller does TLB context flushing on local CPU if necessary.
659 * The caller also ensures that CTX_VALID(mm->context) is false.
660 *
661 * We must be careful about boundary cases so that we never
662 * let the user have CTX 0 (nucleus) or we ever use a CTX
663 * version of zero (and thus NO_CONTEXT would not be caught
664 * by version mis-match tests in mmu_context.h).
665 *
666 * Always invoked with interrupts disabled.
667 */
668 void get_new_mmu_context(struct mm_struct *mm)
669 {
670 unsigned long ctx, new_ctx;
671 unsigned long orig_pgsz_bits;
672 unsigned long flags;
673 int new_version;
674
675 spin_lock_irqsave(&ctx_alloc_lock, flags);
676 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
677 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
678 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
679 new_version = 0;
680 if (new_ctx >= (1 << CTX_NR_BITS)) {
681 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
682 if (new_ctx >= ctx) {
683 int i;
684 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
685 CTX_FIRST_VERSION;
686 if (new_ctx == 1)
687 new_ctx = CTX_FIRST_VERSION;
688
689 /* Don't call memset, for 16 entries that's just
690 * plain silly...
691 */
692 mmu_context_bmap[0] = 3;
693 mmu_context_bmap[1] = 0;
694 mmu_context_bmap[2] = 0;
695 mmu_context_bmap[3] = 0;
696 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
697 mmu_context_bmap[i + 0] = 0;
698 mmu_context_bmap[i + 1] = 0;
699 mmu_context_bmap[i + 2] = 0;
700 mmu_context_bmap[i + 3] = 0;
701 }
702 new_version = 1;
703 goto out;
704 }
705 }
706 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
707 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
708 out:
709 tlb_context_cache = new_ctx;
710 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
711 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
712
713 if (unlikely(new_version))
714 smp_new_mmu_context_version();
715 }
716
717 /* Find a free area for the bootmem map, avoiding the kernel image
718 * and the initial ramdisk.
719 */
720 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
721 unsigned long end_pfn)
722 {
723 unsigned long avoid_start, avoid_end, bootmap_size;
724 int i;
725
726 bootmap_size = bootmem_bootmap_pages(end_pfn - start_pfn);
727 bootmap_size <<= PAGE_SHIFT;
728
729 avoid_start = avoid_end = 0;
730 #ifdef CONFIG_BLK_DEV_INITRD
731 avoid_start = initrd_start;
732 avoid_end = PAGE_ALIGN(initrd_end);
733 #endif
734
735 for (i = 0; i < pavail_ents; i++) {
736 unsigned long start, end;
737
738 start = pavail[i].phys_addr;
739 end = start + pavail[i].reg_size;
740
741 while (start < end) {
742 if (start >= kern_base &&
743 start < PAGE_ALIGN(kern_base + kern_size)) {
744 start = PAGE_ALIGN(kern_base + kern_size);
745 continue;
746 }
747 if (start >= avoid_start && start < avoid_end) {
748 start = avoid_end;
749 continue;
750 }
751
752 if ((end - start) < bootmap_size)
753 break;
754
755 if (start < kern_base &&
756 (start + bootmap_size) > kern_base) {
757 start = PAGE_ALIGN(kern_base + kern_size);
758 continue;
759 }
760
761 if (start < avoid_start &&
762 (start + bootmap_size) > avoid_start) {
763 start = avoid_end;
764 continue;
765 }
766
767 /* OK, it doesn't overlap anything, use it. */
768 return start >> PAGE_SHIFT;
769 }
770 }
771
772 prom_printf("Cannot find free area for bootmap, aborting.\n");
773 prom_halt();
774 }
775
776 static void __init trim_pavail(unsigned long *cur_size_p,
777 unsigned long *end_of_phys_p)
778 {
779 unsigned long to_trim = *cur_size_p - cmdline_memory_size;
780 unsigned long avoid_start, avoid_end;
781 int i;
782
783 to_trim = PAGE_ALIGN(to_trim);
784
785 avoid_start = avoid_end = 0;
786 #ifdef CONFIG_BLK_DEV_INITRD
787 avoid_start = initrd_start;
788 avoid_end = PAGE_ALIGN(initrd_end);
789 #endif
790
791 /* Trim some pavail[] entries in order to satisfy the
792 * requested "mem=xxx" kernel command line specification.
793 *
794 * We must not trim off the kernel image area nor the
795 * initial ramdisk range (if any). Also, we must not trim
796 * any pavail[] entry down to zero in order to preserve
797 * the invariant that all pavail[] entries have a non-zero
798 * size which is assumed by all of the code in here.
799 */
800 for (i = 0; i < pavail_ents; i++) {
801 unsigned long start, end, kern_end;
802 unsigned long trim_low, trim_high, n;
803
804 kern_end = PAGE_ALIGN(kern_base + kern_size);
805
806 trim_low = start = pavail[i].phys_addr;
807 trim_high = end = start + pavail[i].reg_size;
808
809 if (kern_base >= start &&
810 kern_base < end) {
811 trim_low = kern_base;
812 if (kern_end >= end)
813 continue;
814 }
815 if (kern_end >= start &&
816 kern_end < end) {
817 trim_high = kern_end;
818 }
819 if (avoid_start &&
820 avoid_start >= start &&
821 avoid_start < end) {
822 if (trim_low > avoid_start)
823 trim_low = avoid_start;
824 if (avoid_end >= end)
825 continue;
826 }
827 if (avoid_end &&
828 avoid_end >= start &&
829 avoid_end < end) {
830 if (trim_high < avoid_end)
831 trim_high = avoid_end;
832 }
833
834 if (trim_high <= trim_low)
835 continue;
836
837 if (trim_low == start && trim_high == end) {
838 /* Whole chunk is available for trimming.
839 * Trim all except one page, in order to keep
840 * entry non-empty.
841 */
842 n = (end - start) - PAGE_SIZE;
843 if (n > to_trim)
844 n = to_trim;
845
846 if (n) {
847 pavail[i].phys_addr += n;
848 pavail[i].reg_size -= n;
849 to_trim -= n;
850 }
851 } else {
852 n = (trim_low - start);
853 if (n > to_trim)
854 n = to_trim;
855
856 if (n) {
857 pavail[i].phys_addr += n;
858 pavail[i].reg_size -= n;
859 to_trim -= n;
860 }
861 if (to_trim) {
862 n = end - trim_high;
863 if (n > to_trim)
864 n = to_trim;
865 if (n) {
866 pavail[i].reg_size -= n;
867 to_trim -= n;
868 }
869 }
870 }
871
872 if (!to_trim)
873 break;
874 }
875
876 /* Recalculate. */
877 *cur_size_p = 0UL;
878 for (i = 0; i < pavail_ents; i++) {
879 *end_of_phys_p = pavail[i].phys_addr +
880 pavail[i].reg_size;
881 *cur_size_p += pavail[i].reg_size;
882 }
883 }
884
885 /* About pages_avail, this is the value we will use to calculate
886 * the zholes_size[] argument given to free_area_init_node(). The
887 * page allocator uses this to calculate nr_kernel_pages,
888 * nr_all_pages and zone->present_pages. On NUMA it is used
889 * to calculate zone->min_unmapped_pages and zone->min_slab_pages.
890 *
891 * So this number should really be set to what the page allocator
892 * actually ends up with. This means:
893 * 1) It should include bootmem map pages, we'll release those.
894 * 2) It should not include the kernel image, except for the
895 * __init sections which we will also release.
896 * 3) It should include the initrd image, since we'll release
897 * that too.
898 */
899 static unsigned long __init bootmem_init(unsigned long *pages_avail,
900 unsigned long phys_base)
901 {
902 unsigned long bootmap_size, end_pfn;
903 unsigned long end_of_phys_memory = 0UL;
904 unsigned long bootmap_pfn, bytes_avail, size;
905 int i;
906
907 bytes_avail = 0UL;
908 for (i = 0; i < pavail_ents; i++) {
909 end_of_phys_memory = pavail[i].phys_addr +
910 pavail[i].reg_size;
911 bytes_avail += pavail[i].reg_size;
912 }
913
914 /* Determine the location of the initial ramdisk before trying
915 * to honor the "mem=xxx" command line argument. We must know
916 * where the kernel image and the ramdisk image are so that we
917 * do not trim those two areas from the physical memory map.
918 */
919
920 #ifdef CONFIG_BLK_DEV_INITRD
921 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
922 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
923 unsigned long ramdisk_image = sparc_ramdisk_image ?
924 sparc_ramdisk_image : sparc_ramdisk_image64;
925 ramdisk_image -= KERNBASE;
926 initrd_start = ramdisk_image + phys_base;
927 initrd_end = initrd_start + sparc_ramdisk_size;
928 if (initrd_end > end_of_phys_memory) {
929 printk(KERN_CRIT "initrd extends beyond end of memory "
930 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
931 initrd_end, end_of_phys_memory);
932 initrd_start = 0;
933 initrd_end = 0;
934 }
935 }
936 #endif
937
938 if (cmdline_memory_size &&
939 bytes_avail > cmdline_memory_size)
940 trim_pavail(&bytes_avail,
941 &end_of_phys_memory);
942
943 *pages_avail = bytes_avail >> PAGE_SHIFT;
944
945 end_pfn = end_of_phys_memory >> PAGE_SHIFT;
946
947 /* Initialize the boot-time allocator. */
948 max_pfn = max_low_pfn = end_pfn;
949 min_low_pfn = (phys_base >> PAGE_SHIFT);
950
951 bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
952
953 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
954 min_low_pfn, end_pfn);
955
956 /* Now register the available physical memory with the
957 * allocator.
958 */
959 for (i = 0; i < pavail_ents; i++)
960 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
961
962 #ifdef CONFIG_BLK_DEV_INITRD
963 if (initrd_start) {
964 size = initrd_end - initrd_start;
965
966 /* Reserve the initrd image area. */
967 reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT);
968
969 initrd_start += PAGE_OFFSET;
970 initrd_end += PAGE_OFFSET;
971 }
972 #endif
973 /* Reserve the kernel text/data/bss. */
974 reserve_bootmem(kern_base, kern_size, BOOTMEM_DEFAULT);
975 *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
976
977 /* Add back in the initmem pages. */
978 size = ((unsigned long)(__init_end) & PAGE_MASK) -
979 PAGE_ALIGN((unsigned long)__init_begin);
980 *pages_avail += size >> PAGE_SHIFT;
981
982 /* Reserve the bootmem map. We do not account for it
983 * in pages_avail because we will release that memory
984 * in free_all_bootmem.
985 */
986 size = bootmap_size;
987 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT);
988
989 for (i = 0; i < pavail_ents; i++) {
990 unsigned long start_pfn, end_pfn;
991
992 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
993 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
994 memory_present(0, start_pfn, end_pfn);
995 }
996
997 sparse_init();
998
999 return end_pfn;
1000 }
1001
1002 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1003 static int pall_ents __initdata;
1004
1005 #ifdef CONFIG_DEBUG_PAGEALLOC
1006 static unsigned long __ref kernel_map_range(unsigned long pstart,
1007 unsigned long pend, pgprot_t prot)
1008 {
1009 unsigned long vstart = PAGE_OFFSET + pstart;
1010 unsigned long vend = PAGE_OFFSET + pend;
1011 unsigned long alloc_bytes = 0UL;
1012
1013 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1014 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1015 vstart, vend);
1016 prom_halt();
1017 }
1018
1019 while (vstart < vend) {
1020 unsigned long this_end, paddr = __pa(vstart);
1021 pgd_t *pgd = pgd_offset_k(vstart);
1022 pud_t *pud;
1023 pmd_t *pmd;
1024 pte_t *pte;
1025
1026 pud = pud_offset(pgd, vstart);
1027 if (pud_none(*pud)) {
1028 pmd_t *new;
1029
1030 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1031 alloc_bytes += PAGE_SIZE;
1032 pud_populate(&init_mm, pud, new);
1033 }
1034
1035 pmd = pmd_offset(pud, vstart);
1036 if (!pmd_present(*pmd)) {
1037 pte_t *new;
1038
1039 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1040 alloc_bytes += PAGE_SIZE;
1041 pmd_populate_kernel(&init_mm, pmd, new);
1042 }
1043
1044 pte = pte_offset_kernel(pmd, vstart);
1045 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1046 if (this_end > vend)
1047 this_end = vend;
1048
1049 while (vstart < this_end) {
1050 pte_val(*pte) = (paddr | pgprot_val(prot));
1051
1052 vstart += PAGE_SIZE;
1053 paddr += PAGE_SIZE;
1054 pte++;
1055 }
1056 }
1057
1058 return alloc_bytes;
1059 }
1060
1061 extern unsigned int kvmap_linear_patch[1];
1062 #endif /* CONFIG_DEBUG_PAGEALLOC */
1063
1064 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1065 {
1066 const unsigned long shift_256MB = 28;
1067 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1068 const unsigned long size_256MB = (1UL << shift_256MB);
1069
1070 while (start < end) {
1071 long remains;
1072
1073 remains = end - start;
1074 if (remains < size_256MB)
1075 break;
1076
1077 if (start & mask_256MB) {
1078 start = (start + size_256MB) & ~mask_256MB;
1079 continue;
1080 }
1081
1082 while (remains >= size_256MB) {
1083 unsigned long index = start >> shift_256MB;
1084
1085 __set_bit(index, kpte_linear_bitmap);
1086
1087 start += size_256MB;
1088 remains -= size_256MB;
1089 }
1090 }
1091 }
1092
1093 static void __init init_kpte_bitmap(void)
1094 {
1095 unsigned long i;
1096
1097 for (i = 0; i < pall_ents; i++) {
1098 unsigned long phys_start, phys_end;
1099
1100 phys_start = pall[i].phys_addr;
1101 phys_end = phys_start + pall[i].reg_size;
1102
1103 mark_kpte_bitmap(phys_start, phys_end);
1104 }
1105 }
1106
1107 static void __init kernel_physical_mapping_init(void)
1108 {
1109 #ifdef CONFIG_DEBUG_PAGEALLOC
1110 unsigned long i, mem_alloced = 0UL;
1111
1112 for (i = 0; i < pall_ents; i++) {
1113 unsigned long phys_start, phys_end;
1114
1115 phys_start = pall[i].phys_addr;
1116 phys_end = phys_start + pall[i].reg_size;
1117
1118 mem_alloced += kernel_map_range(phys_start, phys_end,
1119 PAGE_KERNEL);
1120 }
1121
1122 printk("Allocated %ld bytes for kernel page tables.\n",
1123 mem_alloced);
1124
1125 kvmap_linear_patch[0] = 0x01000000; /* nop */
1126 flushi(&kvmap_linear_patch[0]);
1127
1128 __flush_tlb_all();
1129 #endif
1130 }
1131
1132 #ifdef CONFIG_DEBUG_PAGEALLOC
1133 void kernel_map_pages(struct page *page, int numpages, int enable)
1134 {
1135 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1136 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1137
1138 kernel_map_range(phys_start, phys_end,
1139 (enable ? PAGE_KERNEL : __pgprot(0)));
1140
1141 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1142 PAGE_OFFSET + phys_end);
1143
1144 /* we should perform an IPI and flush all tlbs,
1145 * but that can deadlock->flush only current cpu.
1146 */
1147 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1148 PAGE_OFFSET + phys_end);
1149 }
1150 #endif
1151
1152 unsigned long __init find_ecache_flush_span(unsigned long size)
1153 {
1154 int i;
1155
1156 for (i = 0; i < pavail_ents; i++) {
1157 if (pavail[i].reg_size >= size)
1158 return pavail[i].phys_addr;
1159 }
1160
1161 return ~0UL;
1162 }
1163
1164 static void __init tsb_phys_patch(void)
1165 {
1166 struct tsb_ldquad_phys_patch_entry *pquad;
1167 struct tsb_phys_patch_entry *p;
1168
1169 pquad = &__tsb_ldquad_phys_patch;
1170 while (pquad < &__tsb_ldquad_phys_patch_end) {
1171 unsigned long addr = pquad->addr;
1172
1173 if (tlb_type == hypervisor)
1174 *(unsigned int *) addr = pquad->sun4v_insn;
1175 else
1176 *(unsigned int *) addr = pquad->sun4u_insn;
1177 wmb();
1178 __asm__ __volatile__("flush %0"
1179 : /* no outputs */
1180 : "r" (addr));
1181
1182 pquad++;
1183 }
1184
1185 p = &__tsb_phys_patch;
1186 while (p < &__tsb_phys_patch_end) {
1187 unsigned long addr = p->addr;
1188
1189 *(unsigned int *) addr = p->insn;
1190 wmb();
1191 __asm__ __volatile__("flush %0"
1192 : /* no outputs */
1193 : "r" (addr));
1194
1195 p++;
1196 }
1197 }
1198
1199 /* Don't mark as init, we give this to the Hypervisor. */
1200 #ifndef CONFIG_DEBUG_PAGEALLOC
1201 #define NUM_KTSB_DESCR 2
1202 #else
1203 #define NUM_KTSB_DESCR 1
1204 #endif
1205 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1206 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1207
1208 static void __init sun4v_ktsb_init(void)
1209 {
1210 unsigned long ktsb_pa;
1211
1212 /* First KTSB for PAGE_SIZE mappings. */
1213 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1214
1215 switch (PAGE_SIZE) {
1216 case 8 * 1024:
1217 default:
1218 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1219 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1220 break;
1221
1222 case 64 * 1024:
1223 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1224 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1225 break;
1226
1227 case 512 * 1024:
1228 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1229 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1230 break;
1231
1232 case 4 * 1024 * 1024:
1233 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1234 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1235 break;
1236 };
1237
1238 ktsb_descr[0].assoc = 1;
1239 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1240 ktsb_descr[0].ctx_idx = 0;
1241 ktsb_descr[0].tsb_base = ktsb_pa;
1242 ktsb_descr[0].resv = 0;
1243
1244 #ifndef CONFIG_DEBUG_PAGEALLOC
1245 /* Second KTSB for 4MB/256MB mappings. */
1246 ktsb_pa = (kern_base +
1247 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1248
1249 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1250 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1251 HV_PGSZ_MASK_256MB);
1252 ktsb_descr[1].assoc = 1;
1253 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1254 ktsb_descr[1].ctx_idx = 0;
1255 ktsb_descr[1].tsb_base = ktsb_pa;
1256 ktsb_descr[1].resv = 0;
1257 #endif
1258 }
1259
1260 void __cpuinit sun4v_ktsb_register(void)
1261 {
1262 unsigned long pa, ret;
1263
1264 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1265
1266 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1267 if (ret != 0) {
1268 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1269 "errors with %lx\n", pa, ret);
1270 prom_halt();
1271 }
1272 }
1273
1274 /* paging_init() sets up the page tables */
1275
1276 extern void cheetah_ecache_flush_init(void);
1277 extern void sun4v_patch_tlb_handlers(void);
1278
1279 extern void cpu_probe(void);
1280 extern void central_probe(void);
1281
1282 static unsigned long last_valid_pfn;
1283 pgd_t swapper_pg_dir[2048];
1284
1285 static void sun4u_pgprot_init(void);
1286 static void sun4v_pgprot_init(void);
1287
1288 /* Dummy function */
1289 void __init setup_per_cpu_areas(void)
1290 {
1291 }
1292
1293 void __init paging_init(void)
1294 {
1295 unsigned long end_pfn, pages_avail, shift, phys_base;
1296 unsigned long real_end, i;
1297
1298 /* These build time checkes make sure that the dcache_dirty_cpu()
1299 * page->flags usage will work.
1300 *
1301 * When a page gets marked as dcache-dirty, we store the
1302 * cpu number starting at bit 32 in the page->flags. Also,
1303 * functions like clear_dcache_dirty_cpu use the cpu mask
1304 * in 13-bit signed-immediate instruction fields.
1305 */
1306 BUILD_BUG_ON(FLAGS_RESERVED != 32);
1307 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1308 ilog2(roundup_pow_of_two(NR_CPUS)) > FLAGS_RESERVED);
1309 BUILD_BUG_ON(NR_CPUS > 4096);
1310
1311 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1312 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1313
1314 sstate_booting();
1315
1316 /* Invalidate both kernel TSBs. */
1317 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1318 #ifndef CONFIG_DEBUG_PAGEALLOC
1319 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1320 #endif
1321
1322 if (tlb_type == hypervisor)
1323 sun4v_pgprot_init();
1324 else
1325 sun4u_pgprot_init();
1326
1327 if (tlb_type == cheetah_plus ||
1328 tlb_type == hypervisor)
1329 tsb_phys_patch();
1330
1331 if (tlb_type == hypervisor) {
1332 sun4v_patch_tlb_handlers();
1333 sun4v_ktsb_init();
1334 }
1335
1336 /* Find available physical memory... */
1337 read_obp_memory("available", &pavail[0], &pavail_ents);
1338
1339 phys_base = 0xffffffffffffffffUL;
1340 for (i = 0; i < pavail_ents; i++)
1341 phys_base = min(phys_base, pavail[i].phys_addr);
1342
1343 set_bit(0, mmu_context_bmap);
1344
1345 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1346
1347 real_end = (unsigned long)_end;
1348 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1349 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1350 num_kernel_image_mappings);
1351
1352 /* Set kernel pgd to upper alias so physical page computations
1353 * work.
1354 */
1355 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1356
1357 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1358
1359 /* Now can init the kernel/bad page tables. */
1360 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1361 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1362
1363 inherit_prom_mappings();
1364
1365 read_obp_memory("reg", &pall[0], &pall_ents);
1366
1367 init_kpte_bitmap();
1368
1369 /* Ok, we can use our TLB miss and window trap handlers safely. */
1370 setup_tba();
1371
1372 __flush_tlb_all();
1373
1374 if (tlb_type == hypervisor)
1375 sun4v_ktsb_register();
1376
1377 /* Setup bootmem... */
1378 pages_avail = 0;
1379 last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1380
1381 max_mapnr = last_valid_pfn;
1382
1383 kernel_physical_mapping_init();
1384
1385 real_setup_per_cpu_areas();
1386
1387 prom_build_devicetree();
1388
1389 if (tlb_type == hypervisor)
1390 sun4v_mdesc_init();
1391
1392 {
1393 unsigned long zones_size[MAX_NR_ZONES];
1394 unsigned long zholes_size[MAX_NR_ZONES];
1395 int znum;
1396
1397 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1398 zones_size[znum] = zholes_size[znum] = 0;
1399
1400 zones_size[ZONE_NORMAL] = end_pfn;
1401 zholes_size[ZONE_NORMAL] = end_pfn - pages_avail;
1402
1403 free_area_init_node(0, &contig_page_data, zones_size,
1404 __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1405 zholes_size);
1406 }
1407
1408 printk("Booting Linux...\n");
1409
1410 central_probe();
1411 cpu_probe();
1412 }
1413
1414 static void __init taint_real_pages(void)
1415 {
1416 int i;
1417
1418 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1419
1420 /* Find changes discovered in the physmem available rescan and
1421 * reserve the lost portions in the bootmem maps.
1422 */
1423 for (i = 0; i < pavail_ents; i++) {
1424 unsigned long old_start, old_end;
1425
1426 old_start = pavail[i].phys_addr;
1427 old_end = old_start +
1428 pavail[i].reg_size;
1429 while (old_start < old_end) {
1430 int n;
1431
1432 for (n = 0; n < pavail_rescan_ents; n++) {
1433 unsigned long new_start, new_end;
1434
1435 new_start = pavail_rescan[n].phys_addr;
1436 new_end = new_start +
1437 pavail_rescan[n].reg_size;
1438
1439 if (new_start <= old_start &&
1440 new_end >= (old_start + PAGE_SIZE)) {
1441 set_bit(old_start >> 22,
1442 sparc64_valid_addr_bitmap);
1443 goto do_next_page;
1444 }
1445 }
1446 reserve_bootmem(old_start, PAGE_SIZE, BOOTMEM_DEFAULT);
1447
1448 do_next_page:
1449 old_start += PAGE_SIZE;
1450 }
1451 }
1452 }
1453
1454 int __init page_in_phys_avail(unsigned long paddr)
1455 {
1456 int i;
1457
1458 paddr &= PAGE_MASK;
1459
1460 for (i = 0; i < pavail_rescan_ents; i++) {
1461 unsigned long start, end;
1462
1463 start = pavail_rescan[i].phys_addr;
1464 end = start + pavail_rescan[i].reg_size;
1465
1466 if (paddr >= start && paddr < end)
1467 return 1;
1468 }
1469 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1470 return 1;
1471 #ifdef CONFIG_BLK_DEV_INITRD
1472 if (paddr >= __pa(initrd_start) &&
1473 paddr < __pa(PAGE_ALIGN(initrd_end)))
1474 return 1;
1475 #endif
1476
1477 return 0;
1478 }
1479
1480 void __init mem_init(void)
1481 {
1482 unsigned long codepages, datapages, initpages;
1483 unsigned long addr, last;
1484 int i;
1485
1486 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1487 i += 1;
1488 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1489 if (sparc64_valid_addr_bitmap == NULL) {
1490 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1491 prom_halt();
1492 }
1493 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1494
1495 addr = PAGE_OFFSET + kern_base;
1496 last = PAGE_ALIGN(kern_size) + addr;
1497 while (addr < last) {
1498 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1499 addr += PAGE_SIZE;
1500 }
1501
1502 taint_real_pages();
1503
1504 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1505
1506 /* We subtract one to account for the mem_map_zero page
1507 * allocated below.
1508 */
1509 totalram_pages = num_physpages = free_all_bootmem() - 1;
1510
1511 /*
1512 * Set up the zero page, mark it reserved, so that page count
1513 * is not manipulated when freeing the page from user ptes.
1514 */
1515 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1516 if (mem_map_zero == NULL) {
1517 prom_printf("paging_init: Cannot alloc zero page.\n");
1518 prom_halt();
1519 }
1520 SetPageReserved(mem_map_zero);
1521
1522 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1523 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1524 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1525 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1526 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1527 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1528
1529 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1530 nr_free_pages() << (PAGE_SHIFT-10),
1531 codepages << (PAGE_SHIFT-10),
1532 datapages << (PAGE_SHIFT-10),
1533 initpages << (PAGE_SHIFT-10),
1534 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1535
1536 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1537 cheetah_ecache_flush_init();
1538 }
1539
1540 void free_initmem(void)
1541 {
1542 unsigned long addr, initend;
1543
1544 /*
1545 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1546 */
1547 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1548 initend = (unsigned long)(__init_end) & PAGE_MASK;
1549 for (; addr < initend; addr += PAGE_SIZE) {
1550 unsigned long page;
1551 struct page *p;
1552
1553 page = (addr +
1554 ((unsigned long) __va(kern_base)) -
1555 ((unsigned long) KERNBASE));
1556 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1557 p = virt_to_page(page);
1558
1559 ClearPageReserved(p);
1560 init_page_count(p);
1561 __free_page(p);
1562 num_physpages++;
1563 totalram_pages++;
1564 }
1565 }
1566
1567 #ifdef CONFIG_BLK_DEV_INITRD
1568 void free_initrd_mem(unsigned long start, unsigned long end)
1569 {
1570 if (start < end)
1571 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1572 for (; start < end; start += PAGE_SIZE) {
1573 struct page *p = virt_to_page(start);
1574
1575 ClearPageReserved(p);
1576 init_page_count(p);
1577 __free_page(p);
1578 num_physpages++;
1579 totalram_pages++;
1580 }
1581 }
1582 #endif
1583
1584 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1585 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1586 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1587 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1588 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1589 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1590
1591 pgprot_t PAGE_KERNEL __read_mostly;
1592 EXPORT_SYMBOL(PAGE_KERNEL);
1593
1594 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1595 pgprot_t PAGE_COPY __read_mostly;
1596
1597 pgprot_t PAGE_SHARED __read_mostly;
1598 EXPORT_SYMBOL(PAGE_SHARED);
1599
1600 pgprot_t PAGE_EXEC __read_mostly;
1601 unsigned long pg_iobits __read_mostly;
1602
1603 unsigned long _PAGE_IE __read_mostly;
1604 EXPORT_SYMBOL(_PAGE_IE);
1605
1606 unsigned long _PAGE_E __read_mostly;
1607 EXPORT_SYMBOL(_PAGE_E);
1608
1609 unsigned long _PAGE_CACHE __read_mostly;
1610 EXPORT_SYMBOL(_PAGE_CACHE);
1611
1612 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1613
1614 #define VMEMMAP_CHUNK_SHIFT 22
1615 #define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
1616 #define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
1617 #define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
1618
1619 #define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
1620 sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
1621 unsigned long vmemmap_table[VMEMMAP_SIZE];
1622
1623 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
1624 {
1625 unsigned long vstart = (unsigned long) start;
1626 unsigned long vend = (unsigned long) (start + nr);
1627 unsigned long phys_start = (vstart - VMEMMAP_BASE);
1628 unsigned long phys_end = (vend - VMEMMAP_BASE);
1629 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
1630 unsigned long end = VMEMMAP_ALIGN(phys_end);
1631 unsigned long pte_base;
1632
1633 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1634 _PAGE_CP_4U | _PAGE_CV_4U |
1635 _PAGE_P_4U | _PAGE_W_4U);
1636 if (tlb_type == hypervisor)
1637 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1638 _PAGE_CP_4V | _PAGE_CV_4V |
1639 _PAGE_P_4V | _PAGE_W_4V);
1640
1641 for (; addr < end; addr += VMEMMAP_CHUNK) {
1642 unsigned long *vmem_pp =
1643 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
1644 void *block;
1645
1646 if (!(*vmem_pp & _PAGE_VALID)) {
1647 block = vmemmap_alloc_block(1UL << 22, node);
1648 if (!block)
1649 return -ENOMEM;
1650
1651 *vmem_pp = pte_base | __pa(block);
1652
1653 printk(KERN_INFO "[%p-%p] page_structs=%lu "
1654 "node=%d entry=%lu/%lu\n", start, block, nr,
1655 node,
1656 addr >> VMEMMAP_CHUNK_SHIFT,
1657 VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
1658 }
1659 }
1660 return 0;
1661 }
1662 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
1663
1664 static void prot_init_common(unsigned long page_none,
1665 unsigned long page_shared,
1666 unsigned long page_copy,
1667 unsigned long page_readonly,
1668 unsigned long page_exec_bit)
1669 {
1670 PAGE_COPY = __pgprot(page_copy);
1671 PAGE_SHARED = __pgprot(page_shared);
1672
1673 protection_map[0x0] = __pgprot(page_none);
1674 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1675 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1676 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1677 protection_map[0x4] = __pgprot(page_readonly);
1678 protection_map[0x5] = __pgprot(page_readonly);
1679 protection_map[0x6] = __pgprot(page_copy);
1680 protection_map[0x7] = __pgprot(page_copy);
1681 protection_map[0x8] = __pgprot(page_none);
1682 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1683 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1684 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1685 protection_map[0xc] = __pgprot(page_readonly);
1686 protection_map[0xd] = __pgprot(page_readonly);
1687 protection_map[0xe] = __pgprot(page_shared);
1688 protection_map[0xf] = __pgprot(page_shared);
1689 }
1690
1691 static void __init sun4u_pgprot_init(void)
1692 {
1693 unsigned long page_none, page_shared, page_copy, page_readonly;
1694 unsigned long page_exec_bit;
1695
1696 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1697 _PAGE_CACHE_4U | _PAGE_P_4U |
1698 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1699 _PAGE_EXEC_4U);
1700 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1701 _PAGE_CACHE_4U | _PAGE_P_4U |
1702 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1703 _PAGE_EXEC_4U | _PAGE_L_4U);
1704 PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1705
1706 _PAGE_IE = _PAGE_IE_4U;
1707 _PAGE_E = _PAGE_E_4U;
1708 _PAGE_CACHE = _PAGE_CACHE_4U;
1709
1710 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1711 __ACCESS_BITS_4U | _PAGE_E_4U);
1712
1713 #ifdef CONFIG_DEBUG_PAGEALLOC
1714 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
1715 0xfffff80000000000;
1716 #else
1717 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1718 0xfffff80000000000;
1719 #endif
1720 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1721 _PAGE_P_4U | _PAGE_W_4U);
1722
1723 /* XXX Should use 256MB on Panther. XXX */
1724 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1725
1726 _PAGE_SZBITS = _PAGE_SZBITS_4U;
1727 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1728 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1729 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1730
1731
1732 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1733 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1734 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1735 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1736 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1737 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1738 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1739
1740 page_exec_bit = _PAGE_EXEC_4U;
1741
1742 prot_init_common(page_none, page_shared, page_copy, page_readonly,
1743 page_exec_bit);
1744 }
1745
1746 static void __init sun4v_pgprot_init(void)
1747 {
1748 unsigned long page_none, page_shared, page_copy, page_readonly;
1749 unsigned long page_exec_bit;
1750
1751 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1752 _PAGE_CACHE_4V | _PAGE_P_4V |
1753 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1754 _PAGE_EXEC_4V);
1755 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1756 PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1757
1758 _PAGE_IE = _PAGE_IE_4V;
1759 _PAGE_E = _PAGE_E_4V;
1760 _PAGE_CACHE = _PAGE_CACHE_4V;
1761
1762 #ifdef CONFIG_DEBUG_PAGEALLOC
1763 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1764 0xfffff80000000000;
1765 #else
1766 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1767 0xfffff80000000000;
1768 #endif
1769 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1770 _PAGE_P_4V | _PAGE_W_4V);
1771
1772 #ifdef CONFIG_DEBUG_PAGEALLOC
1773 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1774 0xfffff80000000000;
1775 #else
1776 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1777 0xfffff80000000000;
1778 #endif
1779 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1780 _PAGE_P_4V | _PAGE_W_4V);
1781
1782 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1783 __ACCESS_BITS_4V | _PAGE_E_4V);
1784
1785 _PAGE_SZBITS = _PAGE_SZBITS_4V;
1786 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1787 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1788 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1789 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1790
1791 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1792 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1793 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1794 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1795 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1796 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1797 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1798
1799 page_exec_bit = _PAGE_EXEC_4V;
1800
1801 prot_init_common(page_none, page_shared, page_copy, page_readonly,
1802 page_exec_bit);
1803 }
1804
1805 unsigned long pte_sz_bits(unsigned long sz)
1806 {
1807 if (tlb_type == hypervisor) {
1808 switch (sz) {
1809 case 8 * 1024:
1810 default:
1811 return _PAGE_SZ8K_4V;
1812 case 64 * 1024:
1813 return _PAGE_SZ64K_4V;
1814 case 512 * 1024:
1815 return _PAGE_SZ512K_4V;
1816 case 4 * 1024 * 1024:
1817 return _PAGE_SZ4MB_4V;
1818 };
1819 } else {
1820 switch (sz) {
1821 case 8 * 1024:
1822 default:
1823 return _PAGE_SZ8K_4U;
1824 case 64 * 1024:
1825 return _PAGE_SZ64K_4U;
1826 case 512 * 1024:
1827 return _PAGE_SZ512K_4U;
1828 case 4 * 1024 * 1024:
1829 return _PAGE_SZ4MB_4U;
1830 };
1831 }
1832 }
1833
1834 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1835 {
1836 pte_t pte;
1837
1838 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
1839 pte_val(pte) |= (((unsigned long)space) << 32);
1840 pte_val(pte) |= pte_sz_bits(page_size);
1841
1842 return pte;
1843 }
1844
1845 static unsigned long kern_large_tte(unsigned long paddr)
1846 {
1847 unsigned long val;
1848
1849 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1850 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1851 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1852 if (tlb_type == hypervisor)
1853 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1854 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1855 _PAGE_EXEC_4V | _PAGE_W_4V);
1856
1857 return val | paddr;
1858 }
1859
1860 /* If not locked, zap it. */
1861 void __flush_tlb_all(void)
1862 {
1863 unsigned long pstate;
1864 int i;
1865
1866 __asm__ __volatile__("flushw\n\t"
1867 "rdpr %%pstate, %0\n\t"
1868 "wrpr %0, %1, %%pstate"
1869 : "=r" (pstate)
1870 : "i" (PSTATE_IE));
1871 if (tlb_type == hypervisor) {
1872 sun4v_mmu_demap_all();
1873 } else if (tlb_type == spitfire) {
1874 for (i = 0; i < 64; i++) {
1875 /* Spitfire Errata #32 workaround */
1876 /* NOTE: Always runs on spitfire, so no
1877 * cheetah+ page size encodings.
1878 */
1879 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
1880 "flush %%g6"
1881 : /* No outputs */
1882 : "r" (0),
1883 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1884
1885 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1886 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1887 "membar #Sync"
1888 : /* no outputs */
1889 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1890 spitfire_put_dtlb_data(i, 0x0UL);
1891 }
1892
1893 /* Spitfire Errata #32 workaround */
1894 /* NOTE: Always runs on spitfire, so no
1895 * cheetah+ page size encodings.
1896 */
1897 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
1898 "flush %%g6"
1899 : /* No outputs */
1900 : "r" (0),
1901 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1902
1903 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1904 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1905 "membar #Sync"
1906 : /* no outputs */
1907 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1908 spitfire_put_itlb_data(i, 0x0UL);
1909 }
1910 }
1911 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1912 cheetah_flush_dtlb_all();
1913 cheetah_flush_itlb_all();
1914 }
1915 __asm__ __volatile__("wrpr %0, 0, %%pstate"
1916 : : "r" (pstate));
1917 }
1918
1919 #ifdef CONFIG_MEMORY_HOTPLUG
1920
1921 void online_page(struct page *page)
1922 {
1923 ClearPageReserved(page);
1924 init_page_count(page);
1925 __free_page(page);
1926 totalram_pages++;
1927 num_physpages++;
1928 }
1929
1930 #endif /* CONFIG_MEMORY_HOTPLUG */