]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/tile/include/asm/pgtable.h
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / arch / tile / include / asm / pgtable.h
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * This file contains the functions and defines necessary to modify and use
15 * the TILE page table tree.
16 */
17
18 #ifndef _ASM_TILE_PGTABLE_H
19 #define _ASM_TILE_PGTABLE_H
20
21 #include <hv/hypervisor.h>
22
23 #ifndef __ASSEMBLY__
24
25 #include <linux/bitops.h>
26 #include <linux/threads.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/spinlock.h>
30 #include <linux/pfn.h>
31 #include <asm/processor.h>
32 #include <asm/fixmap.h>
33 #include <asm/page.h>
34
35 struct mm_struct;
36 struct vm_area_struct;
37
38 /*
39 * ZERO_PAGE is a global shared page that is always zero: used
40 * for zero-mapped memory areas etc..
41 */
42 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
43 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
44
45 extern pgd_t swapper_pg_dir[];
46 extern pgprot_t swapper_pgprot;
47 extern struct kmem_cache *pgd_cache;
48 extern spinlock_t pgd_lock;
49 extern struct list_head pgd_list;
50
51 /*
52 * The very last slots in the pgd_t are for addresses unusable by Linux
53 * (pgd_addr_invalid() returns true). So we use them for the list structure.
54 * The x86 code we are modelled on uses the page->private/index fields
55 * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since
56 * our pgds are so much smaller than a page, it seems a waste to
57 * spend a whole page on each pgd.
58 */
59 #define PGD_LIST_OFFSET \
60 ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head))
61 #define pgd_to_list(pgd) \
62 ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET))
63 #define list_to_pgd(list) \
64 ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET))
65
66 extern void pgtable_cache_init(void);
67 extern void paging_init(void);
68 extern void set_page_homes(void);
69
70 #define FIRST_USER_ADDRESS 0UL
71
72 #define _PAGE_PRESENT HV_PTE_PRESENT
73 #define _PAGE_HUGE_PAGE HV_PTE_PAGE
74 #define _PAGE_SUPER_PAGE HV_PTE_SUPER
75 #define _PAGE_READABLE HV_PTE_READABLE
76 #define _PAGE_WRITABLE HV_PTE_WRITABLE
77 #define _PAGE_EXECUTABLE HV_PTE_EXECUTABLE
78 #define _PAGE_ACCESSED HV_PTE_ACCESSED
79 #define _PAGE_DIRTY HV_PTE_DIRTY
80 #define _PAGE_GLOBAL HV_PTE_GLOBAL
81 #define _PAGE_USER HV_PTE_USER
82
83 /*
84 * All the "standard" bits. Cache-control bits are managed elsewhere.
85 * This is used to test for valid level-2 page table pointers by checking
86 * all the bits, and to mask away the cache control bits for mprotect.
87 */
88 #define _PAGE_ALL (\
89 _PAGE_PRESENT | \
90 _PAGE_HUGE_PAGE | \
91 _PAGE_SUPER_PAGE | \
92 _PAGE_READABLE | \
93 _PAGE_WRITABLE | \
94 _PAGE_EXECUTABLE | \
95 _PAGE_ACCESSED | \
96 _PAGE_DIRTY | \
97 _PAGE_GLOBAL | \
98 _PAGE_USER \
99 )
100
101 #define PAGE_NONE \
102 __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
103 #define PAGE_SHARED \
104 __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
105 _PAGE_USER | _PAGE_ACCESSED)
106
107 #define PAGE_SHARED_EXEC \
108 __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
109 _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED)
110 #define PAGE_COPY_NOEXEC \
111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
112 #define PAGE_COPY_EXEC \
113 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
114 _PAGE_READABLE | _PAGE_EXECUTABLE)
115 #define PAGE_COPY \
116 PAGE_COPY_NOEXEC
117 #define PAGE_READONLY \
118 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
119 #define PAGE_READONLY_EXEC \
120 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
121 _PAGE_READABLE | _PAGE_EXECUTABLE)
122
123 #define _PAGE_KERNEL_RO \
124 (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED)
125 #define _PAGE_KERNEL \
126 (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY)
127 #define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE)
128
129 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
130 #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO)
131 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC)
132
133 #define page_to_kpgprot(p) PAGE_KERNEL
134
135 /*
136 * We could tighten these up, but for now writable or executable
137 * implies readable.
138 */
139 #define __P000 PAGE_NONE
140 #define __P001 PAGE_READONLY
141 #define __P010 PAGE_COPY /* this is write-only, which we won't support */
142 #define __P011 PAGE_COPY
143 #define __P100 PAGE_READONLY_EXEC
144 #define __P101 PAGE_READONLY_EXEC
145 #define __P110 PAGE_COPY_EXEC
146 #define __P111 PAGE_COPY_EXEC
147
148 #define __S000 PAGE_NONE
149 #define __S001 PAGE_READONLY
150 #define __S010 PAGE_SHARED
151 #define __S011 PAGE_SHARED
152 #define __S100 PAGE_READONLY_EXEC
153 #define __S101 PAGE_READONLY_EXEC
154 #define __S110 PAGE_SHARED_EXEC
155 #define __S111 PAGE_SHARED_EXEC
156
157 /*
158 * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT
159 * and PAGE_HUGE_PAGE, which must be one and zero, respectively.
160 * We set the ignored bits to zero.
161 */
162 #define _PAGE_TABLE _PAGE_PRESENT
163
164 /* Inherit the caching flags from the old protection bits. */
165 #define pgprot_modify(oldprot, newprot) \
166 (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val }
167
168 /* Just setting the PFN to zero suffices. */
169 #define pte_pgprot(x) hv_pte_set_pa((x), 0)
170
171 /*
172 * For PTEs and PDEs, we must clear the Present bit first when
173 * clearing a page table entry, so clear the bottom half first and
174 * enforce ordering with a barrier.
175 */
176 static inline void __pte_clear(pte_t *ptep)
177 {
178 #ifdef __tilegx__
179 ptep->val = 0;
180 #else
181 u32 *tmp = (u32 *)ptep;
182 tmp[0] = 0;
183 barrier();
184 tmp[1] = 0;
185 #endif
186 }
187 #define pte_clear(mm, addr, ptep) __pte_clear(ptep)
188
189 /*
190 * The following only work if pte_present() is true.
191 * Undefined behaviour if not..
192 */
193 #define pte_present hv_pte_get_present
194 #define pte_mknotpresent hv_pte_clear_present
195 #define pte_user hv_pte_get_user
196 #define pte_read hv_pte_get_readable
197 #define pte_dirty hv_pte_get_dirty
198 #define pte_young hv_pte_get_accessed
199 #define pte_write hv_pte_get_writable
200 #define pte_exec hv_pte_get_executable
201 #define pte_huge hv_pte_get_page
202 #define pte_super hv_pte_get_super
203 #define pte_rdprotect hv_pte_clear_readable
204 #define pte_exprotect hv_pte_clear_executable
205 #define pte_mkclean hv_pte_clear_dirty
206 #define pte_mkold hv_pte_clear_accessed
207 #define pte_wrprotect hv_pte_clear_writable
208 #define pte_mksmall hv_pte_clear_page
209 #define pte_mkread hv_pte_set_readable
210 #define pte_mkexec hv_pte_set_executable
211 #define pte_mkdirty hv_pte_set_dirty
212 #define pte_mkyoung hv_pte_set_accessed
213 #define pte_mkwrite hv_pte_set_writable
214 #define pte_mkhuge hv_pte_set_page
215 #define pte_mksuper hv_pte_set_super
216
217 #define pte_special(pte) 0
218 #define pte_mkspecial(pte) (pte)
219
220 /*
221 * Use some spare bits in the PTE for user-caching tags.
222 */
223 #define pte_set_forcecache hv_pte_set_client0
224 #define pte_get_forcecache hv_pte_get_client0
225 #define pte_clear_forcecache hv_pte_clear_client0
226 #define pte_set_anyhome hv_pte_set_client1
227 #define pte_get_anyhome hv_pte_get_client1
228 #define pte_clear_anyhome hv_pte_clear_client1
229
230 /*
231 * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved.
232 */
233 #define pte_migrating hv_pte_get_migrating
234 #define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x))
235 #define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x))
236
237 #define pte_ERROR(e) \
238 pr_err("%s:%d: bad pte 0x%016llx\n", __FILE__, __LINE__, pte_val(e))
239 #define pgd_ERROR(e) \
240 pr_err("%s:%d: bad pgd 0x%016llx\n", __FILE__, __LINE__, pgd_val(e))
241
242 /* Return PA and protection info for a given kernel VA. */
243 int va_to_cpa_and_pte(void *va, phys_addr_t *cpa, pte_t *pte);
244
245 /*
246 * __set_pte() ensures we write the 64-bit PTE with 32-bit words in
247 * the right order on 32-bit platforms and also allows us to write
248 * hooks to check valid PTEs, etc., if we want.
249 */
250 void __set_pte(pte_t *ptep, pte_t pte);
251
252 /*
253 * set_pte() sets the given PTE and also sanity-checks the
254 * requested PTE against the page homecaching. Unspecified parts
255 * of the PTE are filled in when it is written to memory, i.e. all
256 * caching attributes if "!forcecache", or the home cpu if "anyhome".
257 */
258 extern void set_pte(pte_t *ptep, pte_t pte);
259 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
260 #define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval)
261
262 #define pte_page(x) pfn_to_page(pte_pfn(x))
263
264 static inline int pte_none(pte_t pte)
265 {
266 return !pte.val;
267 }
268
269 static inline unsigned long pte_pfn(pte_t pte)
270 {
271 return PFN_DOWN(hv_pte_get_pa(pte));
272 }
273
274 /* Set or get the remote cache cpu in a pgprot with remote caching. */
275 extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu);
276 extern int get_remote_cache_cpu(pgprot_t prot);
277
278 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
279 {
280 return hv_pte_set_pa(prot, PFN_PHYS(pfn));
281 }
282
283 /* Support for priority mappings. */
284 extern void start_mm_caching(struct mm_struct *mm);
285 extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next);
286
287 /*
288 * Encode and de-code a swap entry (see <linux/swapops.h>).
289 * We put the swap file type+offset in the 32 high bits;
290 * I believe we can just leave the low bits clear.
291 */
292 #define __swp_type(swp) ((swp).val & 0x1f)
293 #define __swp_offset(swp) ((swp).val >> 5)
294 #define __swp_entry(type, off) ((swp_entry_t) { (type) | ((off) << 5) })
295 #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).val >> 32 })
296 #define __swp_entry_to_pte(swp) ((pte_t) { (((long long) ((swp).val)) << 32) })
297
298 /*
299 * Conversion functions: convert a page and protection to a page entry,
300 * and a page entry and page directory to the page they refer to.
301 */
302
303 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
304
305 /*
306 * If we are doing an mprotect(), just accept the new vma->vm_page_prot
307 * value and combine it with the PFN from the old PTE to get a new PTE.
308 */
309 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
310 {
311 return pfn_pte(pte_pfn(pte), newprot);
312 }
313
314 /*
315 * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
316 *
317 * This macro returns the index of the entry in the pgd page which would
318 * control the given virtual address.
319 */
320 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
321
322 /*
323 * pgd_offset() returns a (pgd_t *)
324 * pgd_index() is used get the offset into the pgd page's array of pgd_t's.
325 */
326 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
327
328 /*
329 * A shortcut which implies the use of the kernel's pgd, instead
330 * of a process's.
331 */
332 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
333
334 #define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
335 #define pte_unmap(pte) do { } while (0)
336
337 /* Clear a non-executable kernel PTE and flush it from the TLB. */
338 #define kpte_clear_flush(ptep, vaddr) \
339 do { \
340 pte_clear(&init_mm, (vaddr), (ptep)); \
341 local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \
342 } while (0)
343
344 /*
345 * The kernel page tables contain what we need, and we flush when we
346 * change specific page table entries.
347 */
348 #define update_mmu_cache(vma, address, pte) do { } while (0)
349
350 #ifdef CONFIG_FLATMEM
351 #define kern_addr_valid(addr) (1)
352 #endif /* CONFIG_FLATMEM */
353
354 extern void vmalloc_sync_all(void);
355
356 #endif /* !__ASSEMBLY__ */
357
358 #ifdef __tilegx__
359 #include <asm/pgtable_64.h>
360 #else
361 #include <asm/pgtable_32.h>
362 #endif
363
364 #ifndef __ASSEMBLY__
365
366 static inline int pmd_none(pmd_t pmd)
367 {
368 /*
369 * Only check low word on 32-bit platforms, since it might be
370 * out of sync with upper half.
371 */
372 return (unsigned long)pmd_val(pmd) == 0;
373 }
374
375 static inline int pmd_present(pmd_t pmd)
376 {
377 return pmd_val(pmd) & _PAGE_PRESENT;
378 }
379
380 static inline int pmd_bad(pmd_t pmd)
381 {
382 return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE);
383 }
384
385 static inline unsigned long pages_to_mb(unsigned long npg)
386 {
387 return npg >> (20 - PAGE_SHIFT);
388 }
389
390 /*
391 * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD]
392 *
393 * This function returns the index of the entry in the pmd which would
394 * control the given virtual address.
395 */
396 static inline unsigned long pmd_index(unsigned long address)
397 {
398 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
399 }
400
401 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
402 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
403 unsigned long address,
404 pmd_t *pmdp)
405 {
406 return ptep_test_and_clear_young(vma, address, pmdp_ptep(pmdp));
407 }
408
409 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
410 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
411 unsigned long address, pmd_t *pmdp)
412 {
413 ptep_set_wrprotect(mm, address, pmdp_ptep(pmdp));
414 }
415
416
417 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
418 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
419 unsigned long address,
420 pmd_t *pmdp)
421 {
422 return pte_pmd(ptep_get_and_clear(mm, address, pmdp_ptep(pmdp)));
423 }
424
425 static inline void __set_pmd(pmd_t *pmdp, pmd_t pmdval)
426 {
427 set_pte(pmdp_ptep(pmdp), pmd_pte(pmdval));
428 }
429
430 #define set_pmd_at(mm, addr, pmdp, pmdval) __set_pmd(pmdp, pmdval)
431
432 /* Create a pmd from a PTFN. */
433 static inline pmd_t ptfn_pmd(unsigned long ptfn, pgprot_t prot)
434 {
435 return pte_pmd(hv_pte_set_ptfn(prot, ptfn));
436 }
437
438 /* Return the page-table frame number (ptfn) that a pmd_t points at. */
439 #define pmd_ptfn(pmd) hv_pte_get_ptfn(pmd_pte(pmd))
440
441 /*
442 * A given kernel pmd_t maps to a specific virtual address (either a
443 * kernel huge page or a kernel pte_t table). Since kernel pte_t
444 * tables can be aligned at sub-page granularity, this function can
445 * return non-page-aligned pointers, despite its name.
446 */
447 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
448 {
449 phys_addr_t pa =
450 (phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN;
451 return (unsigned long)__va(pa);
452 }
453
454 /*
455 * A pmd_t points to the base of a huge page or to a pte_t array.
456 * If a pte_t array, since we can have multiple per page, we don't
457 * have a one-to-one mapping of pmd_t's to pages. However, this is
458 * OK for pte_lockptr(), since we just end up with potentially one
459 * lock being used for several pte_t arrays.
460 */
461 #define pmd_page(pmd) pfn_to_page(PFN_DOWN(HV_PTFN_TO_CPA(pmd_ptfn(pmd))))
462
463 static inline void pmd_clear(pmd_t *pmdp)
464 {
465 __pte_clear(pmdp_ptep(pmdp));
466 }
467
468 #define pmd_mknotpresent(pmd) pte_pmd(pte_mknotpresent(pmd_pte(pmd)))
469 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
470 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
471 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
472 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
473 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
474 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
475 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
476 #define pmd_huge_page(pmd) pte_huge(pmd_pte(pmd))
477 #define pmd_mkhuge(pmd) pte_pmd(pte_mkhuge(pmd_pte(pmd)))
478
479 #define pfn_pmd(pfn, pgprot) pte_pmd(pfn_pte((pfn), (pgprot)))
480 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
481 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
482
483 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
484 {
485 return pfn_pmd(pmd_pfn(pmd), newprot);
486 }
487
488 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
489 #define pmd_trans_huge pmd_huge_page
490 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
491
492 /*
493 * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
494 *
495 * This macro returns the index of the entry in the pte page which would
496 * control the given virtual address.
497 */
498 static inline unsigned long pte_index(unsigned long address)
499 {
500 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
501 }
502
503 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
504 {
505 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
506 }
507
508 #include <asm-generic/pgtable.h>
509
510 /* Support /proc/NN/pgtable API. */
511 struct seq_file;
512 int arch_proc_pgtable_show(struct seq_file *m, struct mm_struct *mm,
513 unsigned long vaddr, unsigned long pagesize,
514 pte_t *ptep, void **datap);
515
516 #endif /* !__ASSEMBLY__ */
517
518 #endif /* _ASM_TILE_PGTABLE_H */