]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/tile/kernel/pci-dma.c
Merge branch 'tip/perf/core' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-eoan-kernel.git] / arch / tile / kernel / pci-dma.c
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/vmalloc.h>
18 #include <linux/export.h>
19 #include <asm/tlbflush.h>
20 #include <asm/homecache.h>
21
22 /* Generic DMA mapping functions: */
23
24 /*
25 * Allocate what Linux calls "coherent" memory, which for us just
26 * means uncached.
27 */
28 void *dma_alloc_coherent(struct device *dev,
29 size_t size,
30 dma_addr_t *dma_handle,
31 gfp_t gfp)
32 {
33 u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
34 int node = dev_to_node(dev);
35 int order = get_order(size);
36 struct page *pg;
37 dma_addr_t addr;
38
39 gfp |= __GFP_ZERO;
40
41 /*
42 * By forcing NUMA node 0 for 32-bit masks we ensure that the
43 * high 32 bits of the resulting PA will be zero. If the mask
44 * size is, e.g., 24, we may still not be able to guarantee a
45 * suitable memory address, in which case we will return NULL.
46 * But such devices are uncommon.
47 */
48 if (dma_mask <= DMA_BIT_MASK(32))
49 node = 0;
50
51 pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
52 if (pg == NULL)
53 return NULL;
54
55 addr = page_to_phys(pg);
56 if (addr + size > dma_mask) {
57 homecache_free_pages(addr, order);
58 return NULL;
59 }
60
61 *dma_handle = addr;
62 return page_address(pg);
63 }
64 EXPORT_SYMBOL(dma_alloc_coherent);
65
66 /*
67 * Free memory that was allocated with dma_alloc_coherent.
68 */
69 void dma_free_coherent(struct device *dev, size_t size,
70 void *vaddr, dma_addr_t dma_handle)
71 {
72 homecache_free_pages((unsigned long)vaddr, get_order(size));
73 }
74 EXPORT_SYMBOL(dma_free_coherent);
75
76 /*
77 * The map routines "map" the specified address range for DMA
78 * accesses. The memory belongs to the device after this call is
79 * issued, until it is unmapped with dma_unmap_single.
80 *
81 * We don't need to do any mapping, we just flush the address range
82 * out of the cache and return a DMA address.
83 *
84 * The unmap routines do whatever is necessary before the processor
85 * accesses the memory again, and must be called before the driver
86 * touches the memory. We can get away with a cache invalidate if we
87 * can count on nothing having been touched.
88 */
89
90 /* Flush a PA range from cache page by page. */
91 static void __dma_map_pa_range(dma_addr_t dma_addr, size_t size)
92 {
93 struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
94 size_t bytesleft = PAGE_SIZE - (dma_addr & (PAGE_SIZE - 1));
95
96 while ((ssize_t)size > 0) {
97 /* Flush the page. */
98 homecache_flush_cache(page++, 0);
99
100 /* Figure out if we need to continue on the next page. */
101 size -= bytesleft;
102 bytesleft = PAGE_SIZE;
103 }
104 }
105
106 /*
107 * dma_map_single can be passed any memory address, and there appear
108 * to be no alignment constraints.
109 *
110 * There is a chance that the start of the buffer will share a cache
111 * line with some other data that has been touched in the meantime.
112 */
113 dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
114 enum dma_data_direction direction)
115 {
116 dma_addr_t dma_addr = __pa(ptr);
117
118 BUG_ON(!valid_dma_direction(direction));
119 WARN_ON(size == 0);
120
121 __dma_map_pa_range(dma_addr, size);
122
123 return dma_addr;
124 }
125 EXPORT_SYMBOL(dma_map_single);
126
127 void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
128 enum dma_data_direction direction)
129 {
130 BUG_ON(!valid_dma_direction(direction));
131 }
132 EXPORT_SYMBOL(dma_unmap_single);
133
134 int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
135 enum dma_data_direction direction)
136 {
137 struct scatterlist *sg;
138 int i;
139
140 BUG_ON(!valid_dma_direction(direction));
141
142 WARN_ON(nents == 0 || sglist->length == 0);
143
144 for_each_sg(sglist, sg, nents, i) {
145 sg->dma_address = sg_phys(sg);
146 __dma_map_pa_range(sg->dma_address, sg->length);
147 }
148
149 return nents;
150 }
151 EXPORT_SYMBOL(dma_map_sg);
152
153 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
154 enum dma_data_direction direction)
155 {
156 BUG_ON(!valid_dma_direction(direction));
157 }
158 EXPORT_SYMBOL(dma_unmap_sg);
159
160 dma_addr_t dma_map_page(struct device *dev, struct page *page,
161 unsigned long offset, size_t size,
162 enum dma_data_direction direction)
163 {
164 BUG_ON(!valid_dma_direction(direction));
165
166 BUG_ON(offset + size > PAGE_SIZE);
167 homecache_flush_cache(page, 0);
168
169 return page_to_pa(page) + offset;
170 }
171 EXPORT_SYMBOL(dma_map_page);
172
173 void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
174 enum dma_data_direction direction)
175 {
176 BUG_ON(!valid_dma_direction(direction));
177 }
178 EXPORT_SYMBOL(dma_unmap_page);
179
180 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
181 size_t size, enum dma_data_direction direction)
182 {
183 BUG_ON(!valid_dma_direction(direction));
184 }
185 EXPORT_SYMBOL(dma_sync_single_for_cpu);
186
187 void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
188 size_t size, enum dma_data_direction direction)
189 {
190 unsigned long start = PFN_DOWN(dma_handle);
191 unsigned long end = PFN_DOWN(dma_handle + size - 1);
192 unsigned long i;
193
194 BUG_ON(!valid_dma_direction(direction));
195 for (i = start; i <= end; ++i)
196 homecache_flush_cache(pfn_to_page(i), 0);
197 }
198 EXPORT_SYMBOL(dma_sync_single_for_device);
199
200 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
201 enum dma_data_direction direction)
202 {
203 BUG_ON(!valid_dma_direction(direction));
204 WARN_ON(nelems == 0 || sg[0].length == 0);
205 }
206 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
207
208 /*
209 * Flush and invalidate cache for scatterlist.
210 */
211 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
212 int nelems, enum dma_data_direction direction)
213 {
214 struct scatterlist *sg;
215 int i;
216
217 BUG_ON(!valid_dma_direction(direction));
218 WARN_ON(nelems == 0 || sglist->length == 0);
219
220 for_each_sg(sglist, sg, nelems, i) {
221 dma_sync_single_for_device(dev, sg->dma_address,
222 sg_dma_len(sg), direction);
223 }
224 }
225 EXPORT_SYMBOL(dma_sync_sg_for_device);
226
227 void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
228 unsigned long offset, size_t size,
229 enum dma_data_direction direction)
230 {
231 dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
232 }
233 EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
234
235 void dma_sync_single_range_for_device(struct device *dev,
236 dma_addr_t dma_handle,
237 unsigned long offset, size_t size,
238 enum dma_data_direction direction)
239 {
240 dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
241 }
242 EXPORT_SYMBOL(dma_sync_single_range_for_device);
243
244 /*
245 * dma_alloc_noncoherent() returns non-cacheable memory, so there's no
246 * need to do any flushing here.
247 */
248 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
249 enum dma_data_direction direction)
250 {
251 }
252 EXPORT_SYMBOL(dma_cache_sync);