]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/tile/kernel/setup.c
treewide: Convert uses of struct resource to resource_size(ptr)
[mirror_ubuntu-zesty-kernel.git] / arch / tile / kernel / setup.c
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mmzone.h>
18 #include <linux/bootmem.h>
19 #include <linux/module.h>
20 #include <linux/node.h>
21 #include <linux/cpu.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/kexec.h>
25 #include <linux/pci.h>
26 #include <linux/initrd.h>
27 #include <linux/io.h>
28 #include <linux/highmem.h>
29 #include <linux/smp.h>
30 #include <linux/timex.h>
31 #include <asm/setup.h>
32 #include <asm/sections.h>
33 #include <asm/cacheflush.h>
34 #include <asm/pgalloc.h>
35 #include <asm/mmu_context.h>
36 #include <hv/hypervisor.h>
37 #include <arch/interrupts.h>
38
39 /* <linux/smp.h> doesn't provide this definition. */
40 #ifndef CONFIG_SMP
41 #define setup_max_cpus 1
42 #endif
43
44 static inline int ABS(int x) { return x >= 0 ? x : -x; }
45
46 /* Chip information */
47 char chip_model[64] __write_once;
48
49 struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
50 EXPORT_SYMBOL(node_data);
51
52 /* We only create bootmem data on node 0. */
53 static bootmem_data_t __initdata node0_bdata;
54
55 /* Information on the NUMA nodes that we compute early */
56 unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
57 unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
58 unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
59 unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
60 unsigned long __initdata node_free_pfn[MAX_NUMNODES];
61
62 static unsigned long __initdata node_percpu[MAX_NUMNODES];
63
64 #ifdef CONFIG_HIGHMEM
65 /* Page frame index of end of lowmem on each controller. */
66 unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
67
68 /* Number of pages that can be mapped into lowmem. */
69 static unsigned long __initdata mappable_physpages;
70 #endif
71
72 /* Data on which physical memory controller corresponds to which NUMA node */
73 int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
74
75 #ifdef CONFIG_HIGHMEM
76 /* Map information from VAs to PAs */
77 unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
78 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
79 EXPORT_SYMBOL(pbase_map);
80
81 /* Map information from PAs to VAs */
82 void *vbase_map[NR_PA_HIGHBIT_VALUES]
83 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
84 EXPORT_SYMBOL(vbase_map);
85 #endif
86
87 /* Node number as a function of the high PA bits */
88 int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
89 EXPORT_SYMBOL(highbits_to_node);
90
91 static unsigned int __initdata maxmem_pfn = -1U;
92 static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
93 [0 ... MAX_NUMNODES-1] = -1U
94 };
95 static nodemask_t __initdata isolnodes;
96
97 #ifdef CONFIG_PCI
98 enum { DEFAULT_PCI_RESERVE_MB = 64 };
99 static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
100 unsigned long __initdata pci_reserve_start_pfn = -1U;
101 unsigned long __initdata pci_reserve_end_pfn = -1U;
102 #endif
103
104 static int __init setup_maxmem(char *str)
105 {
106 long maxmem_mb;
107 if (str == NULL || strict_strtol(str, 0, &maxmem_mb) != 0 ||
108 maxmem_mb == 0)
109 return -EINVAL;
110
111 maxmem_pfn = (maxmem_mb >> (HPAGE_SHIFT - 20)) <<
112 (HPAGE_SHIFT - PAGE_SHIFT);
113 pr_info("Forcing RAM used to no more than %dMB\n",
114 maxmem_pfn >> (20 - PAGE_SHIFT));
115 return 0;
116 }
117 early_param("maxmem", setup_maxmem);
118
119 static int __init setup_maxnodemem(char *str)
120 {
121 char *endp;
122 long maxnodemem_mb, node;
123
124 node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
125 if (node >= MAX_NUMNODES || *endp != ':' ||
126 strict_strtol(endp+1, 0, &maxnodemem_mb) != 0)
127 return -EINVAL;
128
129 maxnodemem_pfn[node] = (maxnodemem_mb >> (HPAGE_SHIFT - 20)) <<
130 (HPAGE_SHIFT - PAGE_SHIFT);
131 pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
132 node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
133 return 0;
134 }
135 early_param("maxnodemem", setup_maxnodemem);
136
137 static int __init setup_isolnodes(char *str)
138 {
139 char buf[MAX_NUMNODES * 5];
140 if (str == NULL || nodelist_parse(str, isolnodes) != 0)
141 return -EINVAL;
142
143 nodelist_scnprintf(buf, sizeof(buf), isolnodes);
144 pr_info("Set isolnodes value to '%s'\n", buf);
145 return 0;
146 }
147 early_param("isolnodes", setup_isolnodes);
148
149 #ifdef CONFIG_PCI
150 static int __init setup_pci_reserve(char* str)
151 {
152 unsigned long mb;
153
154 if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
155 mb > 3 * 1024)
156 return -EINVAL;
157
158 pci_reserve_mb = mb;
159 pr_info("Reserving %dMB for PCIE root complex mappings\n",
160 pci_reserve_mb);
161 return 0;
162 }
163 early_param("pci_reserve", setup_pci_reserve);
164 #endif
165
166 #ifndef __tilegx__
167 /*
168 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
169 * This can be used to increase (or decrease) the vmalloc area.
170 */
171 static int __init parse_vmalloc(char *arg)
172 {
173 if (!arg)
174 return -EINVAL;
175
176 VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
177
178 /* See validate_va() for more on this test. */
179 if ((long)_VMALLOC_START >= 0)
180 early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
181 VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
182
183 return 0;
184 }
185 early_param("vmalloc", parse_vmalloc);
186 #endif
187
188 #ifdef CONFIG_HIGHMEM
189 /*
190 * Determine for each controller where its lowmem is mapped and how much of
191 * it is mapped there. On controller zero, the first few megabytes are
192 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
193 * start our data mappings higher up, but for now we don't bother, to avoid
194 * additional confusion.
195 *
196 * One question is whether, on systems with more than 768 Mb and
197 * controllers of different sizes, to map in a proportionate amount of
198 * each one, or to try to map the same amount from each controller.
199 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
200 * respectively, do we map 256MB from each, or do we map 128 MB, 512
201 * MB, and 128 MB respectively?) For now we use a proportionate
202 * solution like the latter.
203 *
204 * The VA/PA mapping demands that we align our decisions at 16 MB
205 * boundaries so that we can rapidly convert VA to PA.
206 */
207 static void *__init setup_pa_va_mapping(void)
208 {
209 unsigned long curr_pages = 0;
210 unsigned long vaddr = PAGE_OFFSET;
211 nodemask_t highonlynodes = isolnodes;
212 int i, j;
213
214 memset(pbase_map, -1, sizeof(pbase_map));
215 memset(vbase_map, -1, sizeof(vbase_map));
216
217 /* Node zero cannot be isolated for LOWMEM purposes. */
218 node_clear(0, highonlynodes);
219
220 /* Count up the number of pages on non-highonlynodes controllers. */
221 mappable_physpages = 0;
222 for_each_online_node(i) {
223 if (!node_isset(i, highonlynodes))
224 mappable_physpages +=
225 node_end_pfn[i] - node_start_pfn[i];
226 }
227
228 for_each_online_node(i) {
229 unsigned long start = node_start_pfn[i];
230 unsigned long end = node_end_pfn[i];
231 unsigned long size = end - start;
232 unsigned long vaddr_end;
233
234 if (node_isset(i, highonlynodes)) {
235 /* Mark this controller as having no lowmem. */
236 node_lowmem_end_pfn[i] = start;
237 continue;
238 }
239
240 curr_pages += size;
241 if (mappable_physpages > MAXMEM_PFN) {
242 vaddr_end = PAGE_OFFSET +
243 (((u64)curr_pages * MAXMEM_PFN /
244 mappable_physpages)
245 << PAGE_SHIFT);
246 } else {
247 vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
248 }
249 for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
250 unsigned long this_pfn =
251 start + (j << HUGETLB_PAGE_ORDER);
252 pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
253 if (vbase_map[__pfn_to_highbits(this_pfn)] ==
254 (void *)-1)
255 vbase_map[__pfn_to_highbits(this_pfn)] =
256 (void *)(vaddr & HPAGE_MASK);
257 }
258 node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
259 BUG_ON(node_lowmem_end_pfn[i] > end);
260 }
261
262 /* Return highest address of any mapped memory. */
263 return (void *)vaddr;
264 }
265 #endif /* CONFIG_HIGHMEM */
266
267 /*
268 * Register our most important memory mappings with the debug stub.
269 *
270 * This is up to 4 mappings for lowmem, one mapping per memory
271 * controller, plus one for our text segment.
272 */
273 static void __cpuinit store_permanent_mappings(void)
274 {
275 int i;
276
277 for_each_online_node(i) {
278 HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
279 #ifdef CONFIG_HIGHMEM
280 HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
281 #else
282 HV_PhysAddr high_mapped_pa = node_end_pfn[i];
283 #endif
284
285 unsigned long pages = high_mapped_pa - node_start_pfn[i];
286 HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
287 hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
288 }
289
290 hv_store_mapping((HV_VirtAddr)_stext,
291 (uint32_t)(_einittext - _stext), 0);
292 }
293
294 /*
295 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
296 * and node_online_map, doing suitable sanity-checking.
297 * Also set min_low_pfn, max_low_pfn, and max_pfn.
298 */
299 static void __init setup_memory(void)
300 {
301 int i, j;
302 int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
303 #ifdef CONFIG_HIGHMEM
304 long highmem_pages;
305 #endif
306 #ifndef __tilegx__
307 int cap;
308 #endif
309 #if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
310 long lowmem_pages;
311 #endif
312
313 /* We are using a char to hold the cpu_2_node[] mapping */
314 BUILD_BUG_ON(MAX_NUMNODES > 127);
315
316 /* Discover the ranges of memory available to us */
317 for (i = 0; ; ++i) {
318 unsigned long start, size, end, highbits;
319 HV_PhysAddrRange range = hv_inquire_physical(i);
320 if (range.size == 0)
321 break;
322 #ifdef CONFIG_FLATMEM
323 if (i > 0) {
324 pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
325 range.size, range.start + range.size);
326 continue;
327 }
328 #endif
329 #ifndef __tilegx__
330 if ((unsigned long)range.start) {
331 pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
332 range.start, range.start + range.size);
333 continue;
334 }
335 #endif
336 if ((range.start & (HPAGE_SIZE-1)) != 0 ||
337 (range.size & (HPAGE_SIZE-1)) != 0) {
338 unsigned long long start_pa = range.start;
339 unsigned long long orig_size = range.size;
340 range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
341 range.size -= (range.start - start_pa);
342 range.size &= HPAGE_MASK;
343 pr_err("Range not hugepage-aligned: %#llx..%#llx:"
344 " now %#llx-%#llx\n",
345 start_pa, start_pa + orig_size,
346 range.start, range.start + range.size);
347 }
348 highbits = __pa_to_highbits(range.start);
349 if (highbits >= NR_PA_HIGHBIT_VALUES) {
350 pr_err("PA high bits too high: %#llx..%#llx\n",
351 range.start, range.start + range.size);
352 continue;
353 }
354 if (highbits_seen[highbits]) {
355 pr_err("Range overlaps in high bits: %#llx..%#llx\n",
356 range.start, range.start + range.size);
357 continue;
358 }
359 highbits_seen[highbits] = 1;
360 if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
361 int max_size = maxnodemem_pfn[i];
362 if (max_size > 0) {
363 pr_err("Maxnodemem reduced node %d to"
364 " %d pages\n", i, max_size);
365 range.size = PFN_PHYS(max_size);
366 } else {
367 pr_err("Maxnodemem disabled node %d\n", i);
368 continue;
369 }
370 }
371 if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
372 int max_size = maxmem_pfn - num_physpages;
373 if (max_size > 0) {
374 pr_err("Maxmem reduced node %d to %d pages\n",
375 i, max_size);
376 range.size = PFN_PHYS(max_size);
377 } else {
378 pr_err("Maxmem disabled node %d\n", i);
379 continue;
380 }
381 }
382 if (i >= MAX_NUMNODES) {
383 pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
384 i, range.size, range.size + range.start);
385 continue;
386 }
387
388 start = range.start >> PAGE_SHIFT;
389 size = range.size >> PAGE_SHIFT;
390 end = start + size;
391
392 #ifndef __tilegx__
393 if (((HV_PhysAddr)end << PAGE_SHIFT) !=
394 (range.start + range.size)) {
395 pr_err("PAs too high to represent: %#llx..%#llx\n",
396 range.start, range.start + range.size);
397 continue;
398 }
399 #endif
400 #ifdef CONFIG_PCI
401 /*
402 * Blocks that overlap the pci reserved region must
403 * have enough space to hold the maximum percpu data
404 * region at the top of the range. If there isn't
405 * enough space above the reserved region, just
406 * truncate the node.
407 */
408 if (start <= pci_reserve_start_pfn &&
409 end > pci_reserve_start_pfn) {
410 unsigned int per_cpu_size =
411 __per_cpu_end - __per_cpu_start;
412 unsigned int percpu_pages =
413 NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
414 if (end < pci_reserve_end_pfn + percpu_pages) {
415 end = pci_reserve_start_pfn;
416 pr_err("PCI mapping region reduced node %d to"
417 " %ld pages\n", i, end - start);
418 }
419 }
420 #endif
421
422 for (j = __pfn_to_highbits(start);
423 j <= __pfn_to_highbits(end - 1); j++)
424 highbits_to_node[j] = i;
425
426 node_start_pfn[i] = start;
427 node_end_pfn[i] = end;
428 node_controller[i] = range.controller;
429 num_physpages += size;
430 max_pfn = end;
431
432 /* Mark node as online */
433 node_set(i, node_online_map);
434 node_set(i, node_possible_map);
435 }
436
437 #ifndef __tilegx__
438 /*
439 * For 4KB pages, mem_map "struct page" data is 1% of the size
440 * of the physical memory, so can be quite big (640 MB for
441 * four 16G zones). These structures must be mapped in
442 * lowmem, and since we currently cap out at about 768 MB,
443 * it's impractical to try to use this much address space.
444 * For now, arbitrarily cap the amount of physical memory
445 * we're willing to use at 8 million pages (32GB of 4KB pages).
446 */
447 cap = 8 * 1024 * 1024; /* 8 million pages */
448 if (num_physpages > cap) {
449 int num_nodes = num_online_nodes();
450 int cap_each = cap / num_nodes;
451 unsigned long dropped_pages = 0;
452 for (i = 0; i < num_nodes; ++i) {
453 int size = node_end_pfn[i] - node_start_pfn[i];
454 if (size > cap_each) {
455 dropped_pages += (size - cap_each);
456 node_end_pfn[i] = node_start_pfn[i] + cap_each;
457 }
458 }
459 num_physpages -= dropped_pages;
460 pr_warning("Only using %ldMB memory;"
461 " ignoring %ldMB.\n",
462 num_physpages >> (20 - PAGE_SHIFT),
463 dropped_pages >> (20 - PAGE_SHIFT));
464 pr_warning("Consider using a larger page size.\n");
465 }
466 #endif
467
468 /* Heap starts just above the last loaded address. */
469 min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
470
471 #ifdef CONFIG_HIGHMEM
472 /* Find where we map lowmem from each controller. */
473 high_memory = setup_pa_va_mapping();
474
475 /* Set max_low_pfn based on what node 0 can directly address. */
476 max_low_pfn = node_lowmem_end_pfn[0];
477
478 lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
479 MAXMEM_PFN : mappable_physpages;
480 highmem_pages = (long) (num_physpages - lowmem_pages);
481
482 pr_notice("%ldMB HIGHMEM available.\n",
483 pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
484 pr_notice("%ldMB LOWMEM available.\n",
485 pages_to_mb(lowmem_pages));
486 #else
487 /* Set max_low_pfn based on what node 0 can directly address. */
488 max_low_pfn = node_end_pfn[0];
489
490 #ifndef __tilegx__
491 if (node_end_pfn[0] > MAXMEM_PFN) {
492 pr_warning("Only using %ldMB LOWMEM.\n",
493 MAXMEM>>20);
494 pr_warning("Use a HIGHMEM enabled kernel.\n");
495 max_low_pfn = MAXMEM_PFN;
496 max_pfn = MAXMEM_PFN;
497 num_physpages = MAXMEM_PFN;
498 node_end_pfn[0] = MAXMEM_PFN;
499 } else {
500 pr_notice("%ldMB memory available.\n",
501 pages_to_mb(node_end_pfn[0]));
502 }
503 for (i = 1; i < MAX_NUMNODES; ++i) {
504 node_start_pfn[i] = 0;
505 node_end_pfn[i] = 0;
506 }
507 high_memory = __va(node_end_pfn[0]);
508 #else
509 lowmem_pages = 0;
510 for (i = 0; i < MAX_NUMNODES; ++i) {
511 int pages = node_end_pfn[i] - node_start_pfn[i];
512 lowmem_pages += pages;
513 if (pages)
514 high_memory = pfn_to_kaddr(node_end_pfn[i]);
515 }
516 pr_notice("%ldMB memory available.\n",
517 pages_to_mb(lowmem_pages));
518 #endif
519 #endif
520 }
521
522 static void __init setup_bootmem_allocator(void)
523 {
524 unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
525
526 /* Provide a node 0 bdata. */
527 NODE_DATA(0)->bdata = &node0_bdata;
528
529 #ifdef CONFIG_PCI
530 /* Don't let boot memory alias the PCI region. */
531 last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
532 #else
533 last_alloc_pfn = max_low_pfn;
534 #endif
535
536 /*
537 * Initialize the boot-time allocator (with low memory only):
538 * The first argument says where to put the bitmap, and the
539 * second says where the end of allocatable memory is.
540 */
541 bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
542
543 /*
544 * Let the bootmem allocator use all the space we've given it
545 * except for its own bitmap.
546 */
547 first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
548 if (first_alloc_pfn >= last_alloc_pfn)
549 early_panic("Not enough memory on controller 0 for bootmem\n");
550
551 free_bootmem(PFN_PHYS(first_alloc_pfn),
552 PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
553
554 #ifdef CONFIG_KEXEC
555 if (crashk_res.start != crashk_res.end)
556 reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
557 #endif
558 }
559
560 void *__init alloc_remap(int nid, unsigned long size)
561 {
562 int pages = node_end_pfn[nid] - node_start_pfn[nid];
563 void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
564 BUG_ON(size != pages * sizeof(struct page));
565 memset(map, 0, size);
566 return map;
567 }
568
569 static int __init percpu_size(void)
570 {
571 int size = __per_cpu_end - __per_cpu_start;
572 size += PERCPU_MODULE_RESERVE;
573 size += PERCPU_DYNAMIC_EARLY_SIZE;
574 if (size < PCPU_MIN_UNIT_SIZE)
575 size = PCPU_MIN_UNIT_SIZE;
576 size = roundup(size, PAGE_SIZE);
577
578 /* In several places we assume the per-cpu data fits on a huge page. */
579 BUG_ON(kdata_huge && size > HPAGE_SIZE);
580 return size;
581 }
582
583 static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
584 {
585 void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
586 unsigned long pfn = kaddr_to_pfn(kva);
587 BUG_ON(goal && PFN_PHYS(pfn) != goal);
588 return pfn;
589 }
590
591 static void __init zone_sizes_init(void)
592 {
593 unsigned long zones_size[MAX_NR_ZONES] = { 0 };
594 int size = percpu_size();
595 int num_cpus = smp_height * smp_width;
596 int i;
597
598 for (i = 0; i < num_cpus; ++i)
599 node_percpu[cpu_to_node(i)] += size;
600
601 for_each_online_node(i) {
602 unsigned long start = node_start_pfn[i];
603 unsigned long end = node_end_pfn[i];
604 #ifdef CONFIG_HIGHMEM
605 unsigned long lowmem_end = node_lowmem_end_pfn[i];
606 #else
607 unsigned long lowmem_end = end;
608 #endif
609 int memmap_size = (end - start) * sizeof(struct page);
610 node_free_pfn[i] = start;
611
612 /*
613 * Set aside pages for per-cpu data and the mem_map array.
614 *
615 * Since the per-cpu data requires special homecaching,
616 * if we are in kdata_huge mode, we put it at the end of
617 * the lowmem region. If we're not in kdata_huge mode,
618 * we take the per-cpu pages from the bottom of the
619 * controller, since that avoids fragmenting a huge page
620 * that users might want. We always take the memmap
621 * from the bottom of the controller, since with
622 * kdata_huge that lets it be under a huge TLB entry.
623 *
624 * If the user has requested isolnodes for a controller,
625 * though, there'll be no lowmem, so we just alloc_bootmem
626 * the memmap. There will be no percpu memory either.
627 */
628 if (__pfn_to_highbits(start) == 0) {
629 /* In low PAs, allocate via bootmem. */
630 unsigned long goal = 0;
631 node_memmap_pfn[i] =
632 alloc_bootmem_pfn(memmap_size, goal);
633 if (kdata_huge)
634 goal = PFN_PHYS(lowmem_end) - node_percpu[i];
635 if (node_percpu[i])
636 node_percpu_pfn[i] =
637 alloc_bootmem_pfn(node_percpu[i], goal);
638 } else if (cpu_isset(i, isolnodes)) {
639 node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
640 BUG_ON(node_percpu[i] != 0);
641 } else {
642 /* In high PAs, just reserve some pages. */
643 node_memmap_pfn[i] = node_free_pfn[i];
644 node_free_pfn[i] += PFN_UP(memmap_size);
645 if (!kdata_huge) {
646 node_percpu_pfn[i] = node_free_pfn[i];
647 node_free_pfn[i] += PFN_UP(node_percpu[i]);
648 } else {
649 node_percpu_pfn[i] =
650 lowmem_end - PFN_UP(node_percpu[i]);
651 }
652 }
653
654 #ifdef CONFIG_HIGHMEM
655 if (start > lowmem_end) {
656 zones_size[ZONE_NORMAL] = 0;
657 zones_size[ZONE_HIGHMEM] = end - start;
658 } else {
659 zones_size[ZONE_NORMAL] = lowmem_end - start;
660 zones_size[ZONE_HIGHMEM] = end - lowmem_end;
661 }
662 #else
663 zones_size[ZONE_NORMAL] = end - start;
664 #endif
665
666 /*
667 * Everyone shares node 0's bootmem allocator, but
668 * we use alloc_remap(), above, to put the actual
669 * struct page array on the individual controllers,
670 * which is most of the data that we actually care about.
671 * We can't place bootmem allocators on the other
672 * controllers since the bootmem allocator can only
673 * operate on 32-bit physical addresses.
674 */
675 NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
676
677 free_area_init_node(i, zones_size, start, NULL);
678 printk(KERN_DEBUG " Normal zone: %ld per-cpu pages\n",
679 PFN_UP(node_percpu[i]));
680
681 /* Track the type of memory on each node */
682 if (zones_size[ZONE_NORMAL])
683 node_set_state(i, N_NORMAL_MEMORY);
684 #ifdef CONFIG_HIGHMEM
685 if (end != start)
686 node_set_state(i, N_HIGH_MEMORY);
687 #endif
688
689 node_set_online(i);
690 }
691 }
692
693 #ifdef CONFIG_NUMA
694
695 /* which logical CPUs are on which nodes */
696 struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
697 EXPORT_SYMBOL(node_2_cpu_mask);
698
699 /* which node each logical CPU is on */
700 char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
701 EXPORT_SYMBOL(cpu_2_node);
702
703 /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
704 static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
705 {
706 if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
707 return -1;
708 else
709 return cpu_to_node(cpu);
710 }
711
712 /* Return number of immediately-adjacent tiles sharing the same NUMA node. */
713 static int __init node_neighbors(int node, int cpu,
714 struct cpumask *unbound_cpus)
715 {
716 int neighbors = 0;
717 int w = smp_width;
718 int h = smp_height;
719 int x = cpu % w;
720 int y = cpu / w;
721 if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
722 ++neighbors;
723 if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
724 ++neighbors;
725 if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
726 ++neighbors;
727 if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
728 ++neighbors;
729 return neighbors;
730 }
731
732 static void __init setup_numa_mapping(void)
733 {
734 int distance[MAX_NUMNODES][NR_CPUS];
735 HV_Coord coord;
736 int cpu, node, cpus, i, x, y;
737 int num_nodes = num_online_nodes();
738 struct cpumask unbound_cpus;
739 nodemask_t default_nodes;
740
741 cpumask_clear(&unbound_cpus);
742
743 /* Get set of nodes we will use for defaults */
744 nodes_andnot(default_nodes, node_online_map, isolnodes);
745 if (nodes_empty(default_nodes)) {
746 BUG_ON(!node_isset(0, node_online_map));
747 pr_err("Forcing NUMA node zero available as a default node\n");
748 node_set(0, default_nodes);
749 }
750
751 /* Populate the distance[] array */
752 memset(distance, -1, sizeof(distance));
753 cpu = 0;
754 for (coord.y = 0; coord.y < smp_height; ++coord.y) {
755 for (coord.x = 0; coord.x < smp_width;
756 ++coord.x, ++cpu) {
757 BUG_ON(cpu >= nr_cpu_ids);
758 if (!cpu_possible(cpu)) {
759 cpu_2_node[cpu] = -1;
760 continue;
761 }
762 for_each_node_mask(node, default_nodes) {
763 HV_MemoryControllerInfo info =
764 hv_inquire_memory_controller(
765 coord, node_controller[node]);
766 distance[node][cpu] =
767 ABS(info.coord.x) + ABS(info.coord.y);
768 }
769 cpumask_set_cpu(cpu, &unbound_cpus);
770 }
771 }
772 cpus = cpu;
773
774 /*
775 * Round-robin through the NUMA nodes until all the cpus are
776 * assigned. We could be more clever here (e.g. create four
777 * sorted linked lists on the same set of cpu nodes, and pull
778 * off them in round-robin sequence, removing from all four
779 * lists each time) but given the relatively small numbers
780 * involved, O(n^2) seem OK for a one-time cost.
781 */
782 node = first_node(default_nodes);
783 while (!cpumask_empty(&unbound_cpus)) {
784 int best_cpu = -1;
785 int best_distance = INT_MAX;
786 for (cpu = 0; cpu < cpus; ++cpu) {
787 if (cpumask_test_cpu(cpu, &unbound_cpus)) {
788 /*
789 * Compute metric, which is how much
790 * closer the cpu is to this memory
791 * controller than the others, shifted
792 * up, and then the number of
793 * neighbors already in the node as an
794 * epsilon adjustment to try to keep
795 * the nodes compact.
796 */
797 int d = distance[node][cpu] * num_nodes;
798 for_each_node_mask(i, default_nodes) {
799 if (i != node)
800 d -= distance[i][cpu];
801 }
802 d *= 8; /* allow space for epsilon */
803 d -= node_neighbors(node, cpu, &unbound_cpus);
804 if (d < best_distance) {
805 best_cpu = cpu;
806 best_distance = d;
807 }
808 }
809 }
810 BUG_ON(best_cpu < 0);
811 cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
812 cpu_2_node[best_cpu] = node;
813 cpumask_clear_cpu(best_cpu, &unbound_cpus);
814 node = next_node(node, default_nodes);
815 if (node == MAX_NUMNODES)
816 node = first_node(default_nodes);
817 }
818
819 /* Print out node assignments and set defaults for disabled cpus */
820 cpu = 0;
821 for (y = 0; y < smp_height; ++y) {
822 printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
823 for (x = 0; x < smp_width; ++x, ++cpu) {
824 if (cpu_to_node(cpu) < 0) {
825 pr_cont(" -");
826 cpu_2_node[cpu] = first_node(default_nodes);
827 } else {
828 pr_cont(" %d", cpu_to_node(cpu));
829 }
830 }
831 pr_cont("\n");
832 }
833 }
834
835 static struct cpu cpu_devices[NR_CPUS];
836
837 static int __init topology_init(void)
838 {
839 int i;
840
841 for_each_online_node(i)
842 register_one_node(i);
843
844 for (i = 0; i < smp_height * smp_width; ++i)
845 register_cpu(&cpu_devices[i], i);
846
847 return 0;
848 }
849
850 subsys_initcall(topology_init);
851
852 #else /* !CONFIG_NUMA */
853
854 #define setup_numa_mapping() do { } while (0)
855
856 #endif /* CONFIG_NUMA */
857
858 /**
859 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
860 * @boot: Is this the boot cpu?
861 *
862 * Called from setup_arch() on the boot cpu, or online_secondary().
863 */
864 void __cpuinit setup_cpu(int boot)
865 {
866 /* The boot cpu sets up its permanent mappings much earlier. */
867 if (!boot)
868 store_permanent_mappings();
869
870 /* Allow asynchronous TLB interrupts. */
871 #if CHIP_HAS_TILE_DMA()
872 arch_local_irq_unmask(INT_DMATLB_MISS);
873 arch_local_irq_unmask(INT_DMATLB_ACCESS);
874 #endif
875 #if CHIP_HAS_SN_PROC()
876 arch_local_irq_unmask(INT_SNITLB_MISS);
877 #endif
878 #ifdef __tilegx__
879 arch_local_irq_unmask(INT_SINGLE_STEP_K);
880 #endif
881
882 /*
883 * Allow user access to many generic SPRs, like the cycle
884 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
885 */
886 __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
887
888 #if CHIP_HAS_SN()
889 /* Static network is not restricted. */
890 __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
891 #endif
892 #if CHIP_HAS_SN_PROC()
893 __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
894 __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
895 #endif
896
897 /*
898 * Set the MPL for interrupt control 0 & 1 to the corresponding
899 * values. This includes access to the SYSTEM_SAVE and EX_CONTEXT
900 * SPRs, as well as the interrupt mask.
901 */
902 __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
903 __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
904
905 /* Initialize IRQ support for this cpu. */
906 setup_irq_regs();
907
908 #ifdef CONFIG_HARDWALL
909 /* Reset the network state on this cpu. */
910 reset_network_state();
911 #endif
912 }
913
914 #ifdef CONFIG_BLK_DEV_INITRD
915
916 static int __initdata set_initramfs_file;
917 static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
918
919 static int __init setup_initramfs_file(char *str)
920 {
921 if (str == NULL)
922 return -EINVAL;
923 strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
924 set_initramfs_file = 1;
925
926 return 0;
927 }
928 early_param("initramfs_file", setup_initramfs_file);
929
930 /*
931 * We look for an additional "initramfs.cpio.gz" file in the hvfs.
932 * If there is one, we allocate some memory for it and it will be
933 * unpacked to the initramfs after any built-in initramfs_data.
934 */
935 static void __init load_hv_initrd(void)
936 {
937 HV_FS_StatInfo stat;
938 int fd, rc;
939 void *initrd;
940
941 fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
942 if (fd == HV_ENOENT) {
943 if (set_initramfs_file)
944 pr_warning("No such hvfs initramfs file '%s'\n",
945 initramfs_file);
946 return;
947 }
948 BUG_ON(fd < 0);
949 stat = hv_fs_fstat(fd);
950 BUG_ON(stat.size < 0);
951 if (stat.flags & HV_FS_ISDIR) {
952 pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
953 initramfs_file);
954 return;
955 }
956 initrd = alloc_bootmem_pages(stat.size);
957 rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
958 if (rc != stat.size) {
959 pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
960 stat.size, initramfs_file, rc);
961 free_initrd_mem((unsigned long) initrd, stat.size);
962 return;
963 }
964 initrd_start = (unsigned long) initrd;
965 initrd_end = initrd_start + stat.size;
966 }
967
968 void __init free_initrd_mem(unsigned long begin, unsigned long end)
969 {
970 free_bootmem(__pa(begin), end - begin);
971 }
972
973 #else
974 static inline void load_hv_initrd(void) {}
975 #endif /* CONFIG_BLK_DEV_INITRD */
976
977 static void __init validate_hv(void)
978 {
979 /*
980 * It may already be too late, but let's check our built-in
981 * configuration against what the hypervisor is providing.
982 */
983 unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
984 int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
985 int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
986 HV_ASIDRange asid_range;
987
988 #ifndef CONFIG_SMP
989 HV_Topology topology = hv_inquire_topology();
990 BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
991 if (topology.width != 1 || topology.height != 1) {
992 pr_warning("Warning: booting UP kernel on %dx%d grid;"
993 " will ignore all but first tile.\n",
994 topology.width, topology.height);
995 }
996 #endif
997
998 if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
999 early_panic("Hypervisor glue size %ld is too big!\n",
1000 glue_size);
1001 if (hv_page_size != PAGE_SIZE)
1002 early_panic("Hypervisor page size %#x != our %#lx\n",
1003 hv_page_size, PAGE_SIZE);
1004 if (hv_hpage_size != HPAGE_SIZE)
1005 early_panic("Hypervisor huge page size %#x != our %#lx\n",
1006 hv_hpage_size, HPAGE_SIZE);
1007
1008 #ifdef CONFIG_SMP
1009 /*
1010 * Some hypervisor APIs take a pointer to a bitmap array
1011 * whose size is at least the number of cpus on the chip.
1012 * We use a struct cpumask for this, so it must be big enough.
1013 */
1014 if ((smp_height * smp_width) > nr_cpu_ids)
1015 early_panic("Hypervisor %d x %d grid too big for Linux"
1016 " NR_CPUS %d\n", smp_height, smp_width,
1017 nr_cpu_ids);
1018 #endif
1019
1020 /*
1021 * Check that we're using allowed ASIDs, and initialize the
1022 * various asid variables to their appropriate initial states.
1023 */
1024 asid_range = hv_inquire_asid(0);
1025 __get_cpu_var(current_asid) = min_asid = asid_range.start;
1026 max_asid = asid_range.start + asid_range.size - 1;
1027
1028 if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1029 sizeof(chip_model)) < 0) {
1030 pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1031 strlcpy(chip_model, "unknown", sizeof(chip_model));
1032 }
1033 }
1034
1035 static void __init validate_va(void)
1036 {
1037 #ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */
1038 /*
1039 * Similarly, make sure we're only using allowed VAs.
1040 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1041 * and 0 .. KERNEL_HIGH_VADDR.
1042 * In addition, make sure we CAN'T use the end of memory, since
1043 * we use the last chunk of each pgd for the pgd_list.
1044 */
1045 int i, user_kernel_ok = 0;
1046 unsigned long max_va = 0;
1047 unsigned long list_va =
1048 ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1049
1050 for (i = 0; ; ++i) {
1051 HV_VirtAddrRange range = hv_inquire_virtual(i);
1052 if (range.size == 0)
1053 break;
1054 if (range.start <= MEM_USER_INTRPT &&
1055 range.start + range.size >= MEM_HV_INTRPT)
1056 user_kernel_ok = 1;
1057 if (range.start == 0)
1058 max_va = range.size;
1059 BUG_ON(range.start + range.size > list_va);
1060 }
1061 if (!user_kernel_ok)
1062 early_panic("Hypervisor not configured for user/kernel VAs\n");
1063 if (max_va == 0)
1064 early_panic("Hypervisor not configured for low VAs\n");
1065 if (max_va < KERNEL_HIGH_VADDR)
1066 early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1067 max_va, KERNEL_HIGH_VADDR);
1068
1069 /* Kernel PCs must have their high bit set; see intvec.S. */
1070 if ((long)VMALLOC_START >= 0)
1071 early_panic(
1072 "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1073 "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1074 "or smaller VMALLOC_RESERVE.\n",
1075 VMALLOC_START);
1076 #endif
1077 }
1078
1079 /*
1080 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1081 * to cache data on at a page level, i.e. what cpus can be placed in
1082 * the LOTAR field of a PTE. It is equivalent to the set of possible
1083 * cpus plus any other cpus that are willing to share their cache.
1084 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1085 */
1086 struct cpumask __write_once cpu_lotar_map;
1087 EXPORT_SYMBOL(cpu_lotar_map);
1088
1089 #if CHIP_HAS_CBOX_HOME_MAP()
1090 /*
1091 * hash_for_home_map lists all the tiles that hash-for-home data
1092 * will be cached on. Note that this may includes tiles that are not
1093 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1094 * device is being shared between multiple supervisors).
1095 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1096 */
1097 struct cpumask hash_for_home_map;
1098 EXPORT_SYMBOL(hash_for_home_map);
1099 #endif
1100
1101 /*
1102 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1103 * flush on our behalf. It is set to cpu_possible_map OR'ed with
1104 * hash_for_home_map, and it is what should be passed to
1105 * hv_flush_remote() to flush all caches. Note that if there are
1106 * dedicated hypervisor driver tiles that have authorized use of their
1107 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1108 * cpu_cacheable_map, as they are a special case.
1109 */
1110 struct cpumask __write_once cpu_cacheable_map;
1111 EXPORT_SYMBOL(cpu_cacheable_map);
1112
1113 static __initdata struct cpumask disabled_map;
1114
1115 static int __init disabled_cpus(char *str)
1116 {
1117 int boot_cpu = smp_processor_id();
1118
1119 if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1120 return -EINVAL;
1121 if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1122 pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1123 cpumask_clear_cpu(boot_cpu, &disabled_map);
1124 }
1125 return 0;
1126 }
1127
1128 early_param("disabled_cpus", disabled_cpus);
1129
1130 void __init print_disabled_cpus(void)
1131 {
1132 if (!cpumask_empty(&disabled_map)) {
1133 char buf[100];
1134 cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1135 pr_info("CPUs not available for Linux: %s\n", buf);
1136 }
1137 }
1138
1139 static void __init setup_cpu_maps(void)
1140 {
1141 struct cpumask hv_disabled_map, cpu_possible_init;
1142 int boot_cpu = smp_processor_id();
1143 int cpus, i, rc;
1144
1145 /* Learn which cpus are allowed by the hypervisor. */
1146 rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1147 (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1148 sizeof(cpu_cacheable_map));
1149 if (rc < 0)
1150 early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1151 if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1152 early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1153
1154 /* Compute the cpus disabled by the hvconfig file. */
1155 cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1156
1157 /* Include them with the cpus disabled by "disabled_cpus". */
1158 cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1159
1160 /*
1161 * Disable every cpu after "setup_max_cpus". But don't mark
1162 * as disabled the cpus that are outside of our initial rectangle,
1163 * since that turns out to be confusing.
1164 */
1165 cpus = 1; /* this cpu */
1166 cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */
1167 for (i = 0; cpus < setup_max_cpus; ++i)
1168 if (!cpumask_test_cpu(i, &disabled_map))
1169 ++cpus;
1170 for (; i < smp_height * smp_width; ++i)
1171 cpumask_set_cpu(i, &disabled_map);
1172 cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1173 for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1174 cpumask_clear_cpu(i, &disabled_map);
1175
1176 /*
1177 * Setup cpu_possible map as every cpu allocated to us, minus
1178 * the results of any "disabled_cpus" settings.
1179 */
1180 cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1181 init_cpu_possible(&cpu_possible_init);
1182
1183 /* Learn which cpus are valid for LOTAR caching. */
1184 rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1185 (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1186 sizeof(cpu_lotar_map));
1187 if (rc < 0) {
1188 pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1189 cpu_lotar_map = cpu_possible_map;
1190 }
1191
1192 #if CHIP_HAS_CBOX_HOME_MAP()
1193 /* Retrieve set of CPUs used for hash-for-home caching */
1194 rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1195 (HV_VirtAddr) hash_for_home_map.bits,
1196 sizeof(hash_for_home_map));
1197 if (rc < 0)
1198 early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1199 cpumask_or(&cpu_cacheable_map, &cpu_possible_map, &hash_for_home_map);
1200 #else
1201 cpu_cacheable_map = cpu_possible_map;
1202 #endif
1203 }
1204
1205
1206 static int __init dataplane(char *str)
1207 {
1208 pr_warning("WARNING: dataplane support disabled in this kernel\n");
1209 return 0;
1210 }
1211
1212 early_param("dataplane", dataplane);
1213
1214 #ifdef CONFIG_CMDLINE_BOOL
1215 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1216 #endif
1217
1218 void __init setup_arch(char **cmdline_p)
1219 {
1220 int len;
1221
1222 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1223 len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1224 COMMAND_LINE_SIZE);
1225 if (boot_command_line[0])
1226 pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1227 boot_command_line);
1228 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1229 #else
1230 char *hv_cmdline;
1231 #if defined(CONFIG_CMDLINE_BOOL)
1232 if (builtin_cmdline[0]) {
1233 int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1234 COMMAND_LINE_SIZE);
1235 if (builtin_len < COMMAND_LINE_SIZE-1)
1236 boot_command_line[builtin_len++] = ' ';
1237 hv_cmdline = &boot_command_line[builtin_len];
1238 len = COMMAND_LINE_SIZE - builtin_len;
1239 } else
1240 #endif
1241 {
1242 hv_cmdline = boot_command_line;
1243 len = COMMAND_LINE_SIZE;
1244 }
1245 len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1246 if (len < 0 || len > COMMAND_LINE_SIZE)
1247 early_panic("hv_get_command_line failed: %d\n", len);
1248 #endif
1249
1250 *cmdline_p = boot_command_line;
1251
1252 /* Set disabled_map and setup_max_cpus very early */
1253 parse_early_param();
1254
1255 /* Make sure the kernel is compatible with the hypervisor. */
1256 validate_hv();
1257 validate_va();
1258
1259 setup_cpu_maps();
1260
1261
1262 #ifdef CONFIG_PCI
1263 /*
1264 * Initialize the PCI structures. This is done before memory
1265 * setup so that we know whether or not a pci_reserve region
1266 * is necessary.
1267 */
1268 if (tile_pci_init() == 0)
1269 pci_reserve_mb = 0;
1270
1271 /* PCI systems reserve a region just below 4GB for mapping iomem. */
1272 pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
1273 pci_reserve_start_pfn = pci_reserve_end_pfn -
1274 (pci_reserve_mb << (20 - PAGE_SHIFT));
1275 #endif
1276
1277 init_mm.start_code = (unsigned long) _text;
1278 init_mm.end_code = (unsigned long) _etext;
1279 init_mm.end_data = (unsigned long) _edata;
1280 init_mm.brk = (unsigned long) _end;
1281
1282 setup_memory();
1283 store_permanent_mappings();
1284 setup_bootmem_allocator();
1285
1286 /*
1287 * NOTE: before this point _nobody_ is allowed to allocate
1288 * any memory using the bootmem allocator.
1289 */
1290
1291 paging_init();
1292 setup_numa_mapping();
1293 zone_sizes_init();
1294 set_page_homes();
1295 setup_cpu(1);
1296 setup_clock();
1297 load_hv_initrd();
1298 }
1299
1300
1301 /*
1302 * Set up per-cpu memory.
1303 */
1304
1305 unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1306 EXPORT_SYMBOL(__per_cpu_offset);
1307
1308 static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1309 static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1310
1311 /*
1312 * As the percpu code allocates pages, we return the pages from the
1313 * end of the node for the specified cpu.
1314 */
1315 static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1316 {
1317 int nid = cpu_to_node(cpu);
1318 unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1319
1320 BUG_ON(size % PAGE_SIZE != 0);
1321 pfn_offset[nid] += size / PAGE_SIZE;
1322 BUG_ON(node_percpu[nid] < size);
1323 node_percpu[nid] -= size;
1324 if (percpu_pfn[cpu] == 0)
1325 percpu_pfn[cpu] = pfn;
1326 return pfn_to_kaddr(pfn);
1327 }
1328
1329 /*
1330 * Pages reserved for percpu memory are not freeable, and in any case we are
1331 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1332 */
1333 static void __init pcpu_fc_free(void *ptr, size_t size)
1334 {
1335 }
1336
1337 /*
1338 * Set up vmalloc page tables using bootmem for the percpu code.
1339 */
1340 static void __init pcpu_fc_populate_pte(unsigned long addr)
1341 {
1342 pgd_t *pgd;
1343 pud_t *pud;
1344 pmd_t *pmd;
1345 pte_t *pte;
1346
1347 BUG_ON(pgd_addr_invalid(addr));
1348 if (addr < VMALLOC_START || addr >= VMALLOC_END)
1349 panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1350 " try increasing CONFIG_VMALLOC_RESERVE\n",
1351 addr, VMALLOC_START, VMALLOC_END);
1352
1353 pgd = swapper_pg_dir + pgd_index(addr);
1354 pud = pud_offset(pgd, addr);
1355 BUG_ON(!pud_present(*pud));
1356 pmd = pmd_offset(pud, addr);
1357 if (pmd_present(*pmd)) {
1358 BUG_ON(pmd_huge_page(*pmd));
1359 } else {
1360 pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1361 HV_PAGE_TABLE_ALIGN, 0);
1362 pmd_populate_kernel(&init_mm, pmd, pte);
1363 }
1364 }
1365
1366 void __init setup_per_cpu_areas(void)
1367 {
1368 struct page *pg;
1369 unsigned long delta, pfn, lowmem_va;
1370 unsigned long size = percpu_size();
1371 char *ptr;
1372 int rc, cpu, i;
1373
1374 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1375 pcpu_fc_free, pcpu_fc_populate_pte);
1376 if (rc < 0)
1377 panic("Cannot initialize percpu area (err=%d)", rc);
1378
1379 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1380 for_each_possible_cpu(cpu) {
1381 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1382
1383 /* finv the copy out of cache so we can change homecache */
1384 ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1385 __finv_buffer(ptr, size);
1386 pfn = percpu_pfn[cpu];
1387
1388 /* Rewrite the page tables to cache on that cpu */
1389 pg = pfn_to_page(pfn);
1390 for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1391
1392 /* Update the vmalloc mapping and page home. */
1393 pte_t *ptep =
1394 virt_to_pte(NULL, (unsigned long)ptr + i);
1395 pte_t pte = *ptep;
1396 BUG_ON(pfn != pte_pfn(pte));
1397 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1398 pte = set_remote_cache_cpu(pte, cpu);
1399 set_pte(ptep, pte);
1400
1401 /* Update the lowmem mapping for consistency. */
1402 lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1403 ptep = virt_to_pte(NULL, lowmem_va);
1404 if (pte_huge(*ptep)) {
1405 printk(KERN_DEBUG "early shatter of huge page"
1406 " at %#lx\n", lowmem_va);
1407 shatter_pmd((pmd_t *)ptep);
1408 ptep = virt_to_pte(NULL, lowmem_va);
1409 BUG_ON(pte_huge(*ptep));
1410 }
1411 BUG_ON(pfn != pte_pfn(*ptep));
1412 set_pte(ptep, pte);
1413 }
1414 }
1415
1416 /* Set our thread pointer appropriately. */
1417 set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1418
1419 /* Make sure the finv's have completed. */
1420 mb_incoherent();
1421
1422 /* Flush the TLB so we reference it properly from here on out. */
1423 local_flush_tlb_all();
1424 }
1425
1426 static struct resource data_resource = {
1427 .name = "Kernel data",
1428 .start = 0,
1429 .end = 0,
1430 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1431 };
1432
1433 static struct resource code_resource = {
1434 .name = "Kernel code",
1435 .start = 0,
1436 .end = 0,
1437 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1438 };
1439
1440 /*
1441 * We reserve all resources above 4GB so that PCI won't try to put
1442 * mappings above 4GB; the standard allows that for some devices but
1443 * the probing code trunates values to 32 bits.
1444 */
1445 #ifdef CONFIG_PCI
1446 static struct resource* __init
1447 insert_non_bus_resource(void)
1448 {
1449 struct resource *res =
1450 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1451 res->name = "Non-Bus Physical Address Space";
1452 res->start = (1ULL << 32);
1453 res->end = -1LL;
1454 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1455 if (insert_resource(&iomem_resource, res)) {
1456 kfree(res);
1457 return NULL;
1458 }
1459 return res;
1460 }
1461 #endif
1462
1463 static struct resource* __init
1464 insert_ram_resource(u64 start_pfn, u64 end_pfn)
1465 {
1466 struct resource *res =
1467 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1468 res->name = "System RAM";
1469 res->start = start_pfn << PAGE_SHIFT;
1470 res->end = (end_pfn << PAGE_SHIFT) - 1;
1471 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1472 if (insert_resource(&iomem_resource, res)) {
1473 kfree(res);
1474 return NULL;
1475 }
1476 return res;
1477 }
1478
1479 /*
1480 * Request address space for all standard resources
1481 *
1482 * If the system includes PCI root complex drivers, we need to create
1483 * a window just below 4GB where PCI BARs can be mapped.
1484 */
1485 static int __init request_standard_resources(void)
1486 {
1487 int i;
1488 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1489
1490 iomem_resource.end = -1LL;
1491 #ifdef CONFIG_PCI
1492 insert_non_bus_resource();
1493 #endif
1494
1495 for_each_online_node(i) {
1496 u64 start_pfn = node_start_pfn[i];
1497 u64 end_pfn = node_end_pfn[i];
1498
1499 #ifdef CONFIG_PCI
1500 if (start_pfn <= pci_reserve_start_pfn &&
1501 end_pfn > pci_reserve_start_pfn) {
1502 if (end_pfn > pci_reserve_end_pfn)
1503 insert_ram_resource(pci_reserve_end_pfn,
1504 end_pfn);
1505 end_pfn = pci_reserve_start_pfn;
1506 }
1507 #endif
1508 insert_ram_resource(start_pfn, end_pfn);
1509 }
1510
1511 code_resource.start = __pa(_text - CODE_DELTA);
1512 code_resource.end = __pa(_etext - CODE_DELTA)-1;
1513 data_resource.start = __pa(_sdata);
1514 data_resource.end = __pa(_end)-1;
1515
1516 insert_resource(&iomem_resource, &code_resource);
1517 insert_resource(&iomem_resource, &data_resource);
1518
1519 #ifdef CONFIG_KEXEC
1520 insert_resource(&iomem_resource, &crashk_res);
1521 #endif
1522
1523 return 0;
1524 }
1525
1526 subsys_initcall(request_standard_resources);