]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/tile/kernel/setup.c
ACPI / Fan: Use bus id as the name for non PNP0C0B (Fan) devices
[mirror_ubuntu-focal-kernel.git] / arch / tile / kernel / setup.c
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mmzone.h>
18 #include <linux/bootmem.h>
19 #include <linux/module.h>
20 #include <linux/node.h>
21 #include <linux/cpu.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/kexec.h>
25 #include <linux/pci.h>
26 #include <linux/swiotlb.h>
27 #include <linux/initrd.h>
28 #include <linux/io.h>
29 #include <linux/highmem.h>
30 #include <linux/smp.h>
31 #include <linux/timex.h>
32 #include <linux/hugetlb.h>
33 #include <linux/start_kernel.h>
34 #include <linux/screen_info.h>
35 #include <asm/setup.h>
36 #include <asm/sections.h>
37 #include <asm/cacheflush.h>
38 #include <asm/pgalloc.h>
39 #include <asm/mmu_context.h>
40 #include <hv/hypervisor.h>
41 #include <arch/interrupts.h>
42
43 /* <linux/smp.h> doesn't provide this definition. */
44 #ifndef CONFIG_SMP
45 #define setup_max_cpus 1
46 #endif
47
48 static inline int ABS(int x) { return x >= 0 ? x : -x; }
49
50 /* Chip information */
51 char chip_model[64] __write_once;
52
53 #ifdef CONFIG_VT
54 struct screen_info screen_info;
55 #endif
56
57 struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
58 EXPORT_SYMBOL(node_data);
59
60 /* Information on the NUMA nodes that we compute early */
61 unsigned long node_start_pfn[MAX_NUMNODES];
62 unsigned long node_end_pfn[MAX_NUMNODES];
63 unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
64 unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
65 unsigned long __initdata node_free_pfn[MAX_NUMNODES];
66
67 static unsigned long __initdata node_percpu[MAX_NUMNODES];
68
69 /*
70 * per-CPU stack and boot info.
71 */
72 DEFINE_PER_CPU(unsigned long, boot_sp) =
73 (unsigned long)init_stack + THREAD_SIZE;
74
75 #ifdef CONFIG_SMP
76 DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
77 #else
78 /*
79 * The variable must be __initdata since it references __init code.
80 * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
81 */
82 unsigned long __initdata boot_pc = (unsigned long)start_kernel;
83 #endif
84
85 #ifdef CONFIG_HIGHMEM
86 /* Page frame index of end of lowmem on each controller. */
87 unsigned long node_lowmem_end_pfn[MAX_NUMNODES];
88
89 /* Number of pages that can be mapped into lowmem. */
90 static unsigned long __initdata mappable_physpages;
91 #endif
92
93 /* Data on which physical memory controller corresponds to which NUMA node */
94 int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
95
96 #ifdef CONFIG_HIGHMEM
97 /* Map information from VAs to PAs */
98 unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
99 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
100 EXPORT_SYMBOL(pbase_map);
101
102 /* Map information from PAs to VAs */
103 void *vbase_map[NR_PA_HIGHBIT_VALUES]
104 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
105 EXPORT_SYMBOL(vbase_map);
106 #endif
107
108 /* Node number as a function of the high PA bits */
109 int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
110 EXPORT_SYMBOL(highbits_to_node);
111
112 static unsigned int __initdata maxmem_pfn = -1U;
113 static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
114 [0 ... MAX_NUMNODES-1] = -1U
115 };
116 static nodemask_t __initdata isolnodes;
117
118 #if defined(CONFIG_PCI) && !defined(__tilegx__)
119 enum { DEFAULT_PCI_RESERVE_MB = 64 };
120 static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
121 unsigned long __initdata pci_reserve_start_pfn = -1U;
122 unsigned long __initdata pci_reserve_end_pfn = -1U;
123 #endif
124
125 static int __init setup_maxmem(char *str)
126 {
127 unsigned long long maxmem;
128 if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
129 return -EINVAL;
130
131 maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
132 pr_info("Forcing RAM used to no more than %dMB\n",
133 maxmem_pfn >> (20 - PAGE_SHIFT));
134 return 0;
135 }
136 early_param("maxmem", setup_maxmem);
137
138 static int __init setup_maxnodemem(char *str)
139 {
140 char *endp;
141 unsigned long long maxnodemem;
142 long node;
143
144 node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
145 if (node >= MAX_NUMNODES || *endp != ':')
146 return -EINVAL;
147
148 maxnodemem = memparse(endp+1, NULL);
149 maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
150 (HPAGE_SHIFT - PAGE_SHIFT);
151 pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
152 node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
153 return 0;
154 }
155 early_param("maxnodemem", setup_maxnodemem);
156
157 struct memmap_entry {
158 u64 addr; /* start of memory segment */
159 u64 size; /* size of memory segment */
160 };
161 static struct memmap_entry memmap_map[64];
162 static int memmap_nr;
163
164 static void add_memmap_region(u64 addr, u64 size)
165 {
166 if (memmap_nr >= ARRAY_SIZE(memmap_map)) {
167 pr_err("Ooops! Too many entries in the memory map!\n");
168 return;
169 }
170 memmap_map[memmap_nr].addr = addr;
171 memmap_map[memmap_nr].size = size;
172 memmap_nr++;
173 }
174
175 static int __init setup_memmap(char *p)
176 {
177 char *oldp;
178 u64 start_at, mem_size;
179
180 if (!p)
181 return -EINVAL;
182
183 if (!strncmp(p, "exactmap", 8)) {
184 pr_err("\"memmap=exactmap\" not valid on tile\n");
185 return 0;
186 }
187
188 oldp = p;
189 mem_size = memparse(p, &p);
190 if (p == oldp)
191 return -EINVAL;
192
193 if (*p == '@') {
194 pr_err("\"memmap=nn@ss\" (force RAM) invalid on tile\n");
195 } else if (*p == '#') {
196 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on tile\n");
197 } else if (*p == '$') {
198 start_at = memparse(p+1, &p);
199 add_memmap_region(start_at, mem_size);
200 } else {
201 if (mem_size == 0)
202 return -EINVAL;
203 maxmem_pfn = (mem_size >> HPAGE_SHIFT) <<
204 (HPAGE_SHIFT - PAGE_SHIFT);
205 }
206 return *p == '\0' ? 0 : -EINVAL;
207 }
208 early_param("memmap", setup_memmap);
209
210 static int __init setup_mem(char *str)
211 {
212 return setup_maxmem(str);
213 }
214 early_param("mem", setup_mem); /* compatibility with x86 */
215
216 static int __init setup_isolnodes(char *str)
217 {
218 char buf[MAX_NUMNODES * 5];
219 if (str == NULL || nodelist_parse(str, isolnodes) != 0)
220 return -EINVAL;
221
222 nodelist_scnprintf(buf, sizeof(buf), isolnodes);
223 pr_info("Set isolnodes value to '%s'\n", buf);
224 return 0;
225 }
226 early_param("isolnodes", setup_isolnodes);
227
228 #if defined(CONFIG_PCI) && !defined(__tilegx__)
229 static int __init setup_pci_reserve(char* str)
230 {
231 if (str == NULL || kstrtouint(str, 0, &pci_reserve_mb) != 0 ||
232 pci_reserve_mb > 3 * 1024)
233 return -EINVAL;
234
235 pr_info("Reserving %dMB for PCIE root complex mappings\n",
236 pci_reserve_mb);
237 return 0;
238 }
239 early_param("pci_reserve", setup_pci_reserve);
240 #endif
241
242 #ifndef __tilegx__
243 /*
244 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
245 * This can be used to increase (or decrease) the vmalloc area.
246 */
247 static int __init parse_vmalloc(char *arg)
248 {
249 if (!arg)
250 return -EINVAL;
251
252 VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
253
254 /* See validate_va() for more on this test. */
255 if ((long)_VMALLOC_START >= 0)
256 early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
257 VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
258
259 return 0;
260 }
261 early_param("vmalloc", parse_vmalloc);
262 #endif
263
264 #ifdef CONFIG_HIGHMEM
265 /*
266 * Determine for each controller where its lowmem is mapped and how much of
267 * it is mapped there. On controller zero, the first few megabytes are
268 * already mapped in as code at MEM_SV_START, so in principle we could
269 * start our data mappings higher up, but for now we don't bother, to avoid
270 * additional confusion.
271 *
272 * One question is whether, on systems with more than 768 Mb and
273 * controllers of different sizes, to map in a proportionate amount of
274 * each one, or to try to map the same amount from each controller.
275 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
276 * respectively, do we map 256MB from each, or do we map 128 MB, 512
277 * MB, and 128 MB respectively?) For now we use a proportionate
278 * solution like the latter.
279 *
280 * The VA/PA mapping demands that we align our decisions at 16 MB
281 * boundaries so that we can rapidly convert VA to PA.
282 */
283 static void *__init setup_pa_va_mapping(void)
284 {
285 unsigned long curr_pages = 0;
286 unsigned long vaddr = PAGE_OFFSET;
287 nodemask_t highonlynodes = isolnodes;
288 int i, j;
289
290 memset(pbase_map, -1, sizeof(pbase_map));
291 memset(vbase_map, -1, sizeof(vbase_map));
292
293 /* Node zero cannot be isolated for LOWMEM purposes. */
294 node_clear(0, highonlynodes);
295
296 /* Count up the number of pages on non-highonlynodes controllers. */
297 mappable_physpages = 0;
298 for_each_online_node(i) {
299 if (!node_isset(i, highonlynodes))
300 mappable_physpages +=
301 node_end_pfn[i] - node_start_pfn[i];
302 }
303
304 for_each_online_node(i) {
305 unsigned long start = node_start_pfn[i];
306 unsigned long end = node_end_pfn[i];
307 unsigned long size = end - start;
308 unsigned long vaddr_end;
309
310 if (node_isset(i, highonlynodes)) {
311 /* Mark this controller as having no lowmem. */
312 node_lowmem_end_pfn[i] = start;
313 continue;
314 }
315
316 curr_pages += size;
317 if (mappable_physpages > MAXMEM_PFN) {
318 vaddr_end = PAGE_OFFSET +
319 (((u64)curr_pages * MAXMEM_PFN /
320 mappable_physpages)
321 << PAGE_SHIFT);
322 } else {
323 vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
324 }
325 for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
326 unsigned long this_pfn =
327 start + (j << HUGETLB_PAGE_ORDER);
328 pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
329 if (vbase_map[__pfn_to_highbits(this_pfn)] ==
330 (void *)-1)
331 vbase_map[__pfn_to_highbits(this_pfn)] =
332 (void *)(vaddr & HPAGE_MASK);
333 }
334 node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
335 BUG_ON(node_lowmem_end_pfn[i] > end);
336 }
337
338 /* Return highest address of any mapped memory. */
339 return (void *)vaddr;
340 }
341 #endif /* CONFIG_HIGHMEM */
342
343 /*
344 * Register our most important memory mappings with the debug stub.
345 *
346 * This is up to 4 mappings for lowmem, one mapping per memory
347 * controller, plus one for our text segment.
348 */
349 static void store_permanent_mappings(void)
350 {
351 int i;
352
353 for_each_online_node(i) {
354 HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
355 #ifdef CONFIG_HIGHMEM
356 HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
357 #else
358 HV_PhysAddr high_mapped_pa = node_end_pfn[i];
359 #endif
360
361 unsigned long pages = high_mapped_pa - node_start_pfn[i];
362 HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
363 hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
364 }
365
366 hv_store_mapping((HV_VirtAddr)_text,
367 (uint32_t)(_einittext - _text), 0);
368 }
369
370 /*
371 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
372 * and node_online_map, doing suitable sanity-checking.
373 * Also set min_low_pfn, max_low_pfn, and max_pfn.
374 */
375 static void __init setup_memory(void)
376 {
377 int i, j;
378 int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
379 #ifdef CONFIG_HIGHMEM
380 long highmem_pages;
381 #endif
382 #ifndef __tilegx__
383 int cap;
384 #endif
385 #if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
386 long lowmem_pages;
387 #endif
388 unsigned long physpages = 0;
389
390 /* We are using a char to hold the cpu_2_node[] mapping */
391 BUILD_BUG_ON(MAX_NUMNODES > 127);
392
393 /* Discover the ranges of memory available to us */
394 for (i = 0; ; ++i) {
395 unsigned long start, size, end, highbits;
396 HV_PhysAddrRange range = hv_inquire_physical(i);
397 if (range.size == 0)
398 break;
399 #ifdef CONFIG_FLATMEM
400 if (i > 0) {
401 pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
402 range.size, range.start + range.size);
403 continue;
404 }
405 #endif
406 #ifndef __tilegx__
407 if ((unsigned long)range.start) {
408 pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
409 range.start, range.start + range.size);
410 continue;
411 }
412 #endif
413 if ((range.start & (HPAGE_SIZE-1)) != 0 ||
414 (range.size & (HPAGE_SIZE-1)) != 0) {
415 unsigned long long start_pa = range.start;
416 unsigned long long orig_size = range.size;
417 range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
418 range.size -= (range.start - start_pa);
419 range.size &= HPAGE_MASK;
420 pr_err("Range not hugepage-aligned: %#llx..%#llx:"
421 " now %#llx-%#llx\n",
422 start_pa, start_pa + orig_size,
423 range.start, range.start + range.size);
424 }
425 highbits = __pa_to_highbits(range.start);
426 if (highbits >= NR_PA_HIGHBIT_VALUES) {
427 pr_err("PA high bits too high: %#llx..%#llx\n",
428 range.start, range.start + range.size);
429 continue;
430 }
431 if (highbits_seen[highbits]) {
432 pr_err("Range overlaps in high bits: %#llx..%#llx\n",
433 range.start, range.start + range.size);
434 continue;
435 }
436 highbits_seen[highbits] = 1;
437 if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
438 int max_size = maxnodemem_pfn[i];
439 if (max_size > 0) {
440 pr_err("Maxnodemem reduced node %d to"
441 " %d pages\n", i, max_size);
442 range.size = PFN_PHYS(max_size);
443 } else {
444 pr_err("Maxnodemem disabled node %d\n", i);
445 continue;
446 }
447 }
448 if (physpages + PFN_DOWN(range.size) > maxmem_pfn) {
449 int max_size = maxmem_pfn - physpages;
450 if (max_size > 0) {
451 pr_err("Maxmem reduced node %d to %d pages\n",
452 i, max_size);
453 range.size = PFN_PHYS(max_size);
454 } else {
455 pr_err("Maxmem disabled node %d\n", i);
456 continue;
457 }
458 }
459 if (i >= MAX_NUMNODES) {
460 pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
461 i, range.size, range.size + range.start);
462 continue;
463 }
464
465 start = range.start >> PAGE_SHIFT;
466 size = range.size >> PAGE_SHIFT;
467 end = start + size;
468
469 #ifndef __tilegx__
470 if (((HV_PhysAddr)end << PAGE_SHIFT) !=
471 (range.start + range.size)) {
472 pr_err("PAs too high to represent: %#llx..%#llx\n",
473 range.start, range.start + range.size);
474 continue;
475 }
476 #endif
477 #if defined(CONFIG_PCI) && !defined(__tilegx__)
478 /*
479 * Blocks that overlap the pci reserved region must
480 * have enough space to hold the maximum percpu data
481 * region at the top of the range. If there isn't
482 * enough space above the reserved region, just
483 * truncate the node.
484 */
485 if (start <= pci_reserve_start_pfn &&
486 end > pci_reserve_start_pfn) {
487 unsigned int per_cpu_size =
488 __per_cpu_end - __per_cpu_start;
489 unsigned int percpu_pages =
490 NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
491 if (end < pci_reserve_end_pfn + percpu_pages) {
492 end = pci_reserve_start_pfn;
493 pr_err("PCI mapping region reduced node %d to"
494 " %ld pages\n", i, end - start);
495 }
496 }
497 #endif
498
499 for (j = __pfn_to_highbits(start);
500 j <= __pfn_to_highbits(end - 1); j++)
501 highbits_to_node[j] = i;
502
503 node_start_pfn[i] = start;
504 node_end_pfn[i] = end;
505 node_controller[i] = range.controller;
506 physpages += size;
507 max_pfn = end;
508
509 /* Mark node as online */
510 node_set(i, node_online_map);
511 node_set(i, node_possible_map);
512 }
513
514 #ifndef __tilegx__
515 /*
516 * For 4KB pages, mem_map "struct page" data is 1% of the size
517 * of the physical memory, so can be quite big (640 MB for
518 * four 16G zones). These structures must be mapped in
519 * lowmem, and since we currently cap out at about 768 MB,
520 * it's impractical to try to use this much address space.
521 * For now, arbitrarily cap the amount of physical memory
522 * we're willing to use at 8 million pages (32GB of 4KB pages).
523 */
524 cap = 8 * 1024 * 1024; /* 8 million pages */
525 if (physpages > cap) {
526 int num_nodes = num_online_nodes();
527 int cap_each = cap / num_nodes;
528 unsigned long dropped_pages = 0;
529 for (i = 0; i < num_nodes; ++i) {
530 int size = node_end_pfn[i] - node_start_pfn[i];
531 if (size > cap_each) {
532 dropped_pages += (size - cap_each);
533 node_end_pfn[i] = node_start_pfn[i] + cap_each;
534 }
535 }
536 physpages -= dropped_pages;
537 pr_warning("Only using %ldMB memory;"
538 " ignoring %ldMB.\n",
539 physpages >> (20 - PAGE_SHIFT),
540 dropped_pages >> (20 - PAGE_SHIFT));
541 pr_warning("Consider using a larger page size.\n");
542 }
543 #endif
544
545 /* Heap starts just above the last loaded address. */
546 min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
547
548 #ifdef CONFIG_HIGHMEM
549 /* Find where we map lowmem from each controller. */
550 high_memory = setup_pa_va_mapping();
551
552 /* Set max_low_pfn based on what node 0 can directly address. */
553 max_low_pfn = node_lowmem_end_pfn[0];
554
555 lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
556 MAXMEM_PFN : mappable_physpages;
557 highmem_pages = (long) (physpages - lowmem_pages);
558
559 pr_notice("%ldMB HIGHMEM available.\n",
560 pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
561 pr_notice("%ldMB LOWMEM available.\n",
562 pages_to_mb(lowmem_pages));
563 #else
564 /* Set max_low_pfn based on what node 0 can directly address. */
565 max_low_pfn = node_end_pfn[0];
566
567 #ifndef __tilegx__
568 if (node_end_pfn[0] > MAXMEM_PFN) {
569 pr_warning("Only using %ldMB LOWMEM.\n",
570 MAXMEM>>20);
571 pr_warning("Use a HIGHMEM enabled kernel.\n");
572 max_low_pfn = MAXMEM_PFN;
573 max_pfn = MAXMEM_PFN;
574 node_end_pfn[0] = MAXMEM_PFN;
575 } else {
576 pr_notice("%ldMB memory available.\n",
577 pages_to_mb(node_end_pfn[0]));
578 }
579 for (i = 1; i < MAX_NUMNODES; ++i) {
580 node_start_pfn[i] = 0;
581 node_end_pfn[i] = 0;
582 }
583 high_memory = __va(node_end_pfn[0]);
584 #else
585 lowmem_pages = 0;
586 for (i = 0; i < MAX_NUMNODES; ++i) {
587 int pages = node_end_pfn[i] - node_start_pfn[i];
588 lowmem_pages += pages;
589 if (pages)
590 high_memory = pfn_to_kaddr(node_end_pfn[i]);
591 }
592 pr_notice("%ldMB memory available.\n",
593 pages_to_mb(lowmem_pages));
594 #endif
595 #endif
596 }
597
598 /*
599 * On 32-bit machines, we only put bootmem on the low controller,
600 * since PAs > 4GB can't be used in bootmem. In principle one could
601 * imagine, e.g., multiple 1 GB controllers all of which could support
602 * bootmem, but in practice using controllers this small isn't a
603 * particularly interesting scenario, so we just keep it simple and
604 * use only the first controller for bootmem on 32-bit machines.
605 */
606 static inline int node_has_bootmem(int nid)
607 {
608 #ifdef CONFIG_64BIT
609 return 1;
610 #else
611 return nid == 0;
612 #endif
613 }
614
615 static inline unsigned long alloc_bootmem_pfn(int nid,
616 unsigned long size,
617 unsigned long goal)
618 {
619 void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
620 PAGE_SIZE, goal);
621 unsigned long pfn = kaddr_to_pfn(kva);
622 BUG_ON(goal && PFN_PHYS(pfn) != goal);
623 return pfn;
624 }
625
626 static void __init setup_bootmem_allocator_node(int i)
627 {
628 unsigned long start, end, mapsize, mapstart;
629
630 if (node_has_bootmem(i)) {
631 NODE_DATA(i)->bdata = &bootmem_node_data[i];
632 } else {
633 /* Share controller zero's bdata for now. */
634 NODE_DATA(i)->bdata = &bootmem_node_data[0];
635 return;
636 }
637
638 /* Skip up to after the bss in node 0. */
639 start = (i == 0) ? min_low_pfn : node_start_pfn[i];
640
641 /* Only lowmem, if we're a HIGHMEM build. */
642 #ifdef CONFIG_HIGHMEM
643 end = node_lowmem_end_pfn[i];
644 #else
645 end = node_end_pfn[i];
646 #endif
647
648 /* No memory here. */
649 if (end == start)
650 return;
651
652 /* Figure out where the bootmem bitmap is located. */
653 mapsize = bootmem_bootmap_pages(end - start);
654 if (i == 0) {
655 /* Use some space right before the heap on node 0. */
656 mapstart = start;
657 start += mapsize;
658 } else {
659 /* Allocate bitmap on node 0 to avoid page table issues. */
660 mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
661 }
662
663 /* Initialize a node. */
664 init_bootmem_node(NODE_DATA(i), mapstart, start, end);
665
666 /* Free all the space back into the allocator. */
667 free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
668
669 #if defined(CONFIG_PCI) && !defined(__tilegx__)
670 /*
671 * Throw away any memory aliased by the PCI region.
672 */
673 if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start) {
674 start = max(pci_reserve_start_pfn, start);
675 end = min(pci_reserve_end_pfn, end);
676 reserve_bootmem(PFN_PHYS(start), PFN_PHYS(end - start),
677 BOOTMEM_EXCLUSIVE);
678 }
679 #endif
680 }
681
682 static void __init setup_bootmem_allocator(void)
683 {
684 int i;
685 for (i = 0; i < MAX_NUMNODES; ++i)
686 setup_bootmem_allocator_node(i);
687
688 /* Reserve any memory excluded by "memmap" arguments. */
689 for (i = 0; i < memmap_nr; ++i) {
690 struct memmap_entry *m = &memmap_map[i];
691 reserve_bootmem(m->addr, m->size, BOOTMEM_DEFAULT);
692 }
693
694 #ifdef CONFIG_BLK_DEV_INITRD
695 if (initrd_start) {
696 /* Make sure the initrd memory region is not modified. */
697 if (reserve_bootmem(initrd_start, initrd_end - initrd_start,
698 BOOTMEM_EXCLUSIVE)) {
699 pr_crit("The initrd memory region has been polluted. Disabling it.\n");
700 initrd_start = 0;
701 initrd_end = 0;
702 } else {
703 /*
704 * Translate initrd_start & initrd_end from PA to VA for
705 * future access.
706 */
707 initrd_start += PAGE_OFFSET;
708 initrd_end += PAGE_OFFSET;
709 }
710 }
711 #endif
712
713 #ifdef CONFIG_KEXEC
714 if (crashk_res.start != crashk_res.end)
715 reserve_bootmem(crashk_res.start, resource_size(&crashk_res),
716 BOOTMEM_DEFAULT);
717 #endif
718 }
719
720 void *__init alloc_remap(int nid, unsigned long size)
721 {
722 int pages = node_end_pfn[nid] - node_start_pfn[nid];
723 void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
724 BUG_ON(size != pages * sizeof(struct page));
725 memset(map, 0, size);
726 return map;
727 }
728
729 static int __init percpu_size(void)
730 {
731 int size = __per_cpu_end - __per_cpu_start;
732 size += PERCPU_MODULE_RESERVE;
733 size += PERCPU_DYNAMIC_EARLY_SIZE;
734 if (size < PCPU_MIN_UNIT_SIZE)
735 size = PCPU_MIN_UNIT_SIZE;
736 size = roundup(size, PAGE_SIZE);
737
738 /* In several places we assume the per-cpu data fits on a huge page. */
739 BUG_ON(kdata_huge && size > HPAGE_SIZE);
740 return size;
741 }
742
743 static void __init zone_sizes_init(void)
744 {
745 unsigned long zones_size[MAX_NR_ZONES] = { 0 };
746 int size = percpu_size();
747 int num_cpus = smp_height * smp_width;
748 const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));
749
750 int i;
751
752 for (i = 0; i < num_cpus; ++i)
753 node_percpu[cpu_to_node(i)] += size;
754
755 for_each_online_node(i) {
756 unsigned long start = node_start_pfn[i];
757 unsigned long end = node_end_pfn[i];
758 #ifdef CONFIG_HIGHMEM
759 unsigned long lowmem_end = node_lowmem_end_pfn[i];
760 #else
761 unsigned long lowmem_end = end;
762 #endif
763 int memmap_size = (end - start) * sizeof(struct page);
764 node_free_pfn[i] = start;
765
766 /*
767 * Set aside pages for per-cpu data and the mem_map array.
768 *
769 * Since the per-cpu data requires special homecaching,
770 * if we are in kdata_huge mode, we put it at the end of
771 * the lowmem region. If we're not in kdata_huge mode,
772 * we take the per-cpu pages from the bottom of the
773 * controller, since that avoids fragmenting a huge page
774 * that users might want. We always take the memmap
775 * from the bottom of the controller, since with
776 * kdata_huge that lets it be under a huge TLB entry.
777 *
778 * If the user has requested isolnodes for a controller,
779 * though, there'll be no lowmem, so we just alloc_bootmem
780 * the memmap. There will be no percpu memory either.
781 */
782 if (i != 0 && cpu_isset(i, isolnodes)) {
783 node_memmap_pfn[i] =
784 alloc_bootmem_pfn(0, memmap_size, 0);
785 BUG_ON(node_percpu[i] != 0);
786 } else if (node_has_bootmem(start)) {
787 unsigned long goal = 0;
788 node_memmap_pfn[i] =
789 alloc_bootmem_pfn(i, memmap_size, 0);
790 if (kdata_huge)
791 goal = PFN_PHYS(lowmem_end) - node_percpu[i];
792 if (node_percpu[i])
793 node_percpu_pfn[i] =
794 alloc_bootmem_pfn(i, node_percpu[i],
795 goal);
796 } else {
797 /* In non-bootmem zones, just reserve some pages. */
798 node_memmap_pfn[i] = node_free_pfn[i];
799 node_free_pfn[i] += PFN_UP(memmap_size);
800 if (!kdata_huge) {
801 node_percpu_pfn[i] = node_free_pfn[i];
802 node_free_pfn[i] += PFN_UP(node_percpu[i]);
803 } else {
804 node_percpu_pfn[i] =
805 lowmem_end - PFN_UP(node_percpu[i]);
806 }
807 }
808
809 #ifdef CONFIG_HIGHMEM
810 if (start > lowmem_end) {
811 zones_size[ZONE_NORMAL] = 0;
812 zones_size[ZONE_HIGHMEM] = end - start;
813 } else {
814 zones_size[ZONE_NORMAL] = lowmem_end - start;
815 zones_size[ZONE_HIGHMEM] = end - lowmem_end;
816 }
817 #else
818 zones_size[ZONE_NORMAL] = end - start;
819 #endif
820
821 if (start < dma_end) {
822 zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL],
823 dma_end - start);
824 zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA];
825 } else {
826 zones_size[ZONE_DMA] = 0;
827 }
828
829 /* Take zone metadata from controller 0 if we're isolnode. */
830 if (node_isset(i, isolnodes))
831 NODE_DATA(i)->bdata = &bootmem_node_data[0];
832
833 free_area_init_node(i, zones_size, start, NULL);
834 printk(KERN_DEBUG " Normal zone: %ld per-cpu pages\n",
835 PFN_UP(node_percpu[i]));
836
837 /* Track the type of memory on each node */
838 if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA])
839 node_set_state(i, N_NORMAL_MEMORY);
840 #ifdef CONFIG_HIGHMEM
841 if (end != start)
842 node_set_state(i, N_HIGH_MEMORY);
843 #endif
844
845 node_set_online(i);
846 }
847 }
848
849 #ifdef CONFIG_NUMA
850
851 /* which logical CPUs are on which nodes */
852 struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
853 EXPORT_SYMBOL(node_2_cpu_mask);
854
855 /* which node each logical CPU is on */
856 char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
857 EXPORT_SYMBOL(cpu_2_node);
858
859 /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
860 static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
861 {
862 if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
863 return -1;
864 else
865 return cpu_to_node(cpu);
866 }
867
868 /* Return number of immediately-adjacent tiles sharing the same NUMA node. */
869 static int __init node_neighbors(int node, int cpu,
870 struct cpumask *unbound_cpus)
871 {
872 int neighbors = 0;
873 int w = smp_width;
874 int h = smp_height;
875 int x = cpu % w;
876 int y = cpu / w;
877 if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
878 ++neighbors;
879 if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
880 ++neighbors;
881 if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
882 ++neighbors;
883 if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
884 ++neighbors;
885 return neighbors;
886 }
887
888 static void __init setup_numa_mapping(void)
889 {
890 int distance[MAX_NUMNODES][NR_CPUS];
891 HV_Coord coord;
892 int cpu, node, cpus, i, x, y;
893 int num_nodes = num_online_nodes();
894 struct cpumask unbound_cpus;
895 nodemask_t default_nodes;
896
897 cpumask_clear(&unbound_cpus);
898
899 /* Get set of nodes we will use for defaults */
900 nodes_andnot(default_nodes, node_online_map, isolnodes);
901 if (nodes_empty(default_nodes)) {
902 BUG_ON(!node_isset(0, node_online_map));
903 pr_err("Forcing NUMA node zero available as a default node\n");
904 node_set(0, default_nodes);
905 }
906
907 /* Populate the distance[] array */
908 memset(distance, -1, sizeof(distance));
909 cpu = 0;
910 for (coord.y = 0; coord.y < smp_height; ++coord.y) {
911 for (coord.x = 0; coord.x < smp_width;
912 ++coord.x, ++cpu) {
913 BUG_ON(cpu >= nr_cpu_ids);
914 if (!cpu_possible(cpu)) {
915 cpu_2_node[cpu] = -1;
916 continue;
917 }
918 for_each_node_mask(node, default_nodes) {
919 HV_MemoryControllerInfo info =
920 hv_inquire_memory_controller(
921 coord, node_controller[node]);
922 distance[node][cpu] =
923 ABS(info.coord.x) + ABS(info.coord.y);
924 }
925 cpumask_set_cpu(cpu, &unbound_cpus);
926 }
927 }
928 cpus = cpu;
929
930 /*
931 * Round-robin through the NUMA nodes until all the cpus are
932 * assigned. We could be more clever here (e.g. create four
933 * sorted linked lists on the same set of cpu nodes, and pull
934 * off them in round-robin sequence, removing from all four
935 * lists each time) but given the relatively small numbers
936 * involved, O(n^2) seem OK for a one-time cost.
937 */
938 node = first_node(default_nodes);
939 while (!cpumask_empty(&unbound_cpus)) {
940 int best_cpu = -1;
941 int best_distance = INT_MAX;
942 for (cpu = 0; cpu < cpus; ++cpu) {
943 if (cpumask_test_cpu(cpu, &unbound_cpus)) {
944 /*
945 * Compute metric, which is how much
946 * closer the cpu is to this memory
947 * controller than the others, shifted
948 * up, and then the number of
949 * neighbors already in the node as an
950 * epsilon adjustment to try to keep
951 * the nodes compact.
952 */
953 int d = distance[node][cpu] * num_nodes;
954 for_each_node_mask(i, default_nodes) {
955 if (i != node)
956 d -= distance[i][cpu];
957 }
958 d *= 8; /* allow space for epsilon */
959 d -= node_neighbors(node, cpu, &unbound_cpus);
960 if (d < best_distance) {
961 best_cpu = cpu;
962 best_distance = d;
963 }
964 }
965 }
966 BUG_ON(best_cpu < 0);
967 cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
968 cpu_2_node[best_cpu] = node;
969 cpumask_clear_cpu(best_cpu, &unbound_cpus);
970 node = next_node(node, default_nodes);
971 if (node == MAX_NUMNODES)
972 node = first_node(default_nodes);
973 }
974
975 /* Print out node assignments and set defaults for disabled cpus */
976 cpu = 0;
977 for (y = 0; y < smp_height; ++y) {
978 printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
979 for (x = 0; x < smp_width; ++x, ++cpu) {
980 if (cpu_to_node(cpu) < 0) {
981 pr_cont(" -");
982 cpu_2_node[cpu] = first_node(default_nodes);
983 } else {
984 pr_cont(" %d", cpu_to_node(cpu));
985 }
986 }
987 pr_cont("\n");
988 }
989 }
990
991 static struct cpu cpu_devices[NR_CPUS];
992
993 static int __init topology_init(void)
994 {
995 int i;
996
997 for_each_online_node(i)
998 register_one_node(i);
999
1000 for (i = 0; i < smp_height * smp_width; ++i)
1001 register_cpu(&cpu_devices[i], i);
1002
1003 return 0;
1004 }
1005
1006 subsys_initcall(topology_init);
1007
1008 #else /* !CONFIG_NUMA */
1009
1010 #define setup_numa_mapping() do { } while (0)
1011
1012 #endif /* CONFIG_NUMA */
1013
1014 /*
1015 * Initialize hugepage support on this cpu. We do this on all cores
1016 * early in boot: before argument parsing for the boot cpu, and after
1017 * argument parsing but before the init functions run on the secondaries.
1018 * So the values we set up here in the hypervisor may be overridden on
1019 * the boot cpu as arguments are parsed.
1020 */
1021 static void init_super_pages(void)
1022 {
1023 #ifdef CONFIG_HUGETLB_SUPER_PAGES
1024 int i;
1025 for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
1026 hv_set_pte_super_shift(i, huge_shift[i]);
1027 #endif
1028 }
1029
1030 /**
1031 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
1032 * @boot: Is this the boot cpu?
1033 *
1034 * Called from setup_arch() on the boot cpu, or online_secondary().
1035 */
1036 void setup_cpu(int boot)
1037 {
1038 /* The boot cpu sets up its permanent mappings much earlier. */
1039 if (!boot)
1040 store_permanent_mappings();
1041
1042 /* Allow asynchronous TLB interrupts. */
1043 #if CHIP_HAS_TILE_DMA()
1044 arch_local_irq_unmask(INT_DMATLB_MISS);
1045 arch_local_irq_unmask(INT_DMATLB_ACCESS);
1046 #endif
1047 #ifdef __tilegx__
1048 arch_local_irq_unmask(INT_SINGLE_STEP_K);
1049 #endif
1050
1051 /*
1052 * Allow user access to many generic SPRs, like the cycle
1053 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
1054 */
1055 __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
1056
1057 #if CHIP_HAS_SN()
1058 /* Static network is not restricted. */
1059 __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
1060 #endif
1061
1062 /*
1063 * Set the MPL for interrupt control 0 & 1 to the corresponding
1064 * values. This includes access to the SYSTEM_SAVE and EX_CONTEXT
1065 * SPRs, as well as the interrupt mask.
1066 */
1067 __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
1068 __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
1069
1070 /* Initialize IRQ support for this cpu. */
1071 setup_irq_regs();
1072
1073 #ifdef CONFIG_HARDWALL
1074 /* Reset the network state on this cpu. */
1075 reset_network_state();
1076 #endif
1077
1078 init_super_pages();
1079 }
1080
1081 #ifdef CONFIG_BLK_DEV_INITRD
1082
1083 static int __initdata set_initramfs_file;
1084 static char __initdata initramfs_file[128] = "initramfs";
1085
1086 static int __init setup_initramfs_file(char *str)
1087 {
1088 if (str == NULL)
1089 return -EINVAL;
1090 strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
1091 set_initramfs_file = 1;
1092
1093 return 0;
1094 }
1095 early_param("initramfs_file", setup_initramfs_file);
1096
1097 /*
1098 * We look for a file called "initramfs" in the hvfs. If there is one, we
1099 * allocate some memory for it and it will be unpacked to the initramfs.
1100 * If it's compressed, the initd code will uncompress it first.
1101 */
1102 static void __init load_hv_initrd(void)
1103 {
1104 HV_FS_StatInfo stat;
1105 int fd, rc;
1106 void *initrd;
1107
1108 /* If initrd has already been set, skip initramfs file in hvfs. */
1109 if (initrd_start)
1110 return;
1111
1112 fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
1113 if (fd == HV_ENOENT) {
1114 if (set_initramfs_file) {
1115 pr_warning("No such hvfs initramfs file '%s'\n",
1116 initramfs_file);
1117 return;
1118 } else {
1119 /* Try old backwards-compatible name. */
1120 fd = hv_fs_findfile((HV_VirtAddr)"initramfs.cpio.gz");
1121 if (fd == HV_ENOENT)
1122 return;
1123 }
1124 }
1125 BUG_ON(fd < 0);
1126 stat = hv_fs_fstat(fd);
1127 BUG_ON(stat.size < 0);
1128 if (stat.flags & HV_FS_ISDIR) {
1129 pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
1130 initramfs_file);
1131 return;
1132 }
1133 initrd = alloc_bootmem_pages(stat.size);
1134 rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
1135 if (rc != stat.size) {
1136 pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
1137 stat.size, initramfs_file, rc);
1138 free_initrd_mem((unsigned long) initrd, stat.size);
1139 return;
1140 }
1141 initrd_start = (unsigned long) initrd;
1142 initrd_end = initrd_start + stat.size;
1143 }
1144
1145 void __init free_initrd_mem(unsigned long begin, unsigned long end)
1146 {
1147 free_bootmem(__pa(begin), end - begin);
1148 }
1149
1150 static int __init setup_initrd(char *str)
1151 {
1152 char *endp;
1153 unsigned long initrd_size;
1154
1155 initrd_size = str ? simple_strtoul(str, &endp, 0) : 0;
1156 if (initrd_size == 0 || *endp != '@')
1157 return -EINVAL;
1158
1159 initrd_start = simple_strtoul(endp+1, &endp, 0);
1160 if (initrd_start == 0)
1161 return -EINVAL;
1162
1163 initrd_end = initrd_start + initrd_size;
1164
1165 return 0;
1166 }
1167 early_param("initrd", setup_initrd);
1168
1169 #else
1170 static inline void load_hv_initrd(void) {}
1171 #endif /* CONFIG_BLK_DEV_INITRD */
1172
1173 static void __init validate_hv(void)
1174 {
1175 /*
1176 * It may already be too late, but let's check our built-in
1177 * configuration against what the hypervisor is providing.
1178 */
1179 unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
1180 int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
1181 int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
1182 HV_ASIDRange asid_range;
1183
1184 #ifndef CONFIG_SMP
1185 HV_Topology topology = hv_inquire_topology();
1186 BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
1187 if (topology.width != 1 || topology.height != 1) {
1188 pr_warning("Warning: booting UP kernel on %dx%d grid;"
1189 " will ignore all but first tile.\n",
1190 topology.width, topology.height);
1191 }
1192 #endif
1193
1194 if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1195 early_panic("Hypervisor glue size %ld is too big!\n",
1196 glue_size);
1197 if (hv_page_size != PAGE_SIZE)
1198 early_panic("Hypervisor page size %#x != our %#lx\n",
1199 hv_page_size, PAGE_SIZE);
1200 if (hv_hpage_size != HPAGE_SIZE)
1201 early_panic("Hypervisor huge page size %#x != our %#lx\n",
1202 hv_hpage_size, HPAGE_SIZE);
1203
1204 #ifdef CONFIG_SMP
1205 /*
1206 * Some hypervisor APIs take a pointer to a bitmap array
1207 * whose size is at least the number of cpus on the chip.
1208 * We use a struct cpumask for this, so it must be big enough.
1209 */
1210 if ((smp_height * smp_width) > nr_cpu_ids)
1211 early_panic("Hypervisor %d x %d grid too big for Linux"
1212 " NR_CPUS %d\n", smp_height, smp_width,
1213 nr_cpu_ids);
1214 #endif
1215
1216 /*
1217 * Check that we're using allowed ASIDs, and initialize the
1218 * various asid variables to their appropriate initial states.
1219 */
1220 asid_range = hv_inquire_asid(0);
1221 min_asid = asid_range.start;
1222 __this_cpu_write(current_asid, min_asid);
1223 max_asid = asid_range.start + asid_range.size - 1;
1224
1225 if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1226 sizeof(chip_model)) < 0) {
1227 pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1228 strlcpy(chip_model, "unknown", sizeof(chip_model));
1229 }
1230 }
1231
1232 static void __init validate_va(void)
1233 {
1234 #ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */
1235 /*
1236 * Similarly, make sure we're only using allowed VAs.
1237 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_START,
1238 * and 0 .. KERNEL_HIGH_VADDR.
1239 * In addition, make sure we CAN'T use the end of memory, since
1240 * we use the last chunk of each pgd for the pgd_list.
1241 */
1242 int i, user_kernel_ok = 0;
1243 unsigned long max_va = 0;
1244 unsigned long list_va =
1245 ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1246
1247 for (i = 0; ; ++i) {
1248 HV_VirtAddrRange range = hv_inquire_virtual(i);
1249 if (range.size == 0)
1250 break;
1251 if (range.start <= MEM_USER_INTRPT &&
1252 range.start + range.size >= MEM_HV_START)
1253 user_kernel_ok = 1;
1254 if (range.start == 0)
1255 max_va = range.size;
1256 BUG_ON(range.start + range.size > list_va);
1257 }
1258 if (!user_kernel_ok)
1259 early_panic("Hypervisor not configured for user/kernel VAs\n");
1260 if (max_va == 0)
1261 early_panic("Hypervisor not configured for low VAs\n");
1262 if (max_va < KERNEL_HIGH_VADDR)
1263 early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1264 max_va, KERNEL_HIGH_VADDR);
1265
1266 /* Kernel PCs must have their high bit set; see intvec.S. */
1267 if ((long)VMALLOC_START >= 0)
1268 early_panic(
1269 "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1270 "Reconfigure the kernel with smaller VMALLOC_RESERVE.\n",
1271 VMALLOC_START);
1272 #endif
1273 }
1274
1275 /*
1276 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1277 * to cache data on at a page level, i.e. what cpus can be placed in
1278 * the LOTAR field of a PTE. It is equivalent to the set of possible
1279 * cpus plus any other cpus that are willing to share their cache.
1280 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1281 */
1282 struct cpumask __write_once cpu_lotar_map;
1283 EXPORT_SYMBOL(cpu_lotar_map);
1284
1285 /*
1286 * hash_for_home_map lists all the tiles that hash-for-home data
1287 * will be cached on. Note that this may includes tiles that are not
1288 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1289 * device is being shared between multiple supervisors).
1290 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1291 */
1292 struct cpumask hash_for_home_map;
1293 EXPORT_SYMBOL(hash_for_home_map);
1294
1295 /*
1296 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1297 * flush on our behalf. It is set to cpu_possible_mask OR'ed with
1298 * hash_for_home_map, and it is what should be passed to
1299 * hv_flush_remote() to flush all caches. Note that if there are
1300 * dedicated hypervisor driver tiles that have authorized use of their
1301 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1302 * cpu_cacheable_map, as they are a special case.
1303 */
1304 struct cpumask __write_once cpu_cacheable_map;
1305 EXPORT_SYMBOL(cpu_cacheable_map);
1306
1307 static __initdata struct cpumask disabled_map;
1308
1309 static int __init disabled_cpus(char *str)
1310 {
1311 int boot_cpu = smp_processor_id();
1312
1313 if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1314 return -EINVAL;
1315 if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1316 pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1317 cpumask_clear_cpu(boot_cpu, &disabled_map);
1318 }
1319 return 0;
1320 }
1321
1322 early_param("disabled_cpus", disabled_cpus);
1323
1324 void __init print_disabled_cpus(void)
1325 {
1326 if (!cpumask_empty(&disabled_map)) {
1327 char buf[100];
1328 cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1329 pr_info("CPUs not available for Linux: %s\n", buf);
1330 }
1331 }
1332
1333 static void __init setup_cpu_maps(void)
1334 {
1335 struct cpumask hv_disabled_map, cpu_possible_init;
1336 int boot_cpu = smp_processor_id();
1337 int cpus, i, rc;
1338
1339 /* Learn which cpus are allowed by the hypervisor. */
1340 rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1341 (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1342 sizeof(cpu_cacheable_map));
1343 if (rc < 0)
1344 early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1345 if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1346 early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1347
1348 /* Compute the cpus disabled by the hvconfig file. */
1349 cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1350
1351 /* Include them with the cpus disabled by "disabled_cpus". */
1352 cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1353
1354 /*
1355 * Disable every cpu after "setup_max_cpus". But don't mark
1356 * as disabled the cpus that are outside of our initial rectangle,
1357 * since that turns out to be confusing.
1358 */
1359 cpus = 1; /* this cpu */
1360 cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */
1361 for (i = 0; cpus < setup_max_cpus; ++i)
1362 if (!cpumask_test_cpu(i, &disabled_map))
1363 ++cpus;
1364 for (; i < smp_height * smp_width; ++i)
1365 cpumask_set_cpu(i, &disabled_map);
1366 cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1367 for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1368 cpumask_clear_cpu(i, &disabled_map);
1369
1370 /*
1371 * Setup cpu_possible map as every cpu allocated to us, minus
1372 * the results of any "disabled_cpus" settings.
1373 */
1374 cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1375 init_cpu_possible(&cpu_possible_init);
1376
1377 /* Learn which cpus are valid for LOTAR caching. */
1378 rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1379 (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1380 sizeof(cpu_lotar_map));
1381 if (rc < 0) {
1382 pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1383 cpu_lotar_map = *cpu_possible_mask;
1384 }
1385
1386 /* Retrieve set of CPUs used for hash-for-home caching */
1387 rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1388 (HV_VirtAddr) hash_for_home_map.bits,
1389 sizeof(hash_for_home_map));
1390 if (rc < 0)
1391 early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1392 cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1393 }
1394
1395
1396 static int __init dataplane(char *str)
1397 {
1398 pr_warning("WARNING: dataplane support disabled in this kernel\n");
1399 return 0;
1400 }
1401
1402 early_param("dataplane", dataplane);
1403
1404 #ifdef CONFIG_CMDLINE_BOOL
1405 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1406 #endif
1407
1408 void __init setup_arch(char **cmdline_p)
1409 {
1410 int len;
1411
1412 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1413 len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1414 COMMAND_LINE_SIZE);
1415 if (boot_command_line[0])
1416 pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1417 boot_command_line);
1418 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1419 #else
1420 char *hv_cmdline;
1421 #if defined(CONFIG_CMDLINE_BOOL)
1422 if (builtin_cmdline[0]) {
1423 int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1424 COMMAND_LINE_SIZE);
1425 if (builtin_len < COMMAND_LINE_SIZE-1)
1426 boot_command_line[builtin_len++] = ' ';
1427 hv_cmdline = &boot_command_line[builtin_len];
1428 len = COMMAND_LINE_SIZE - builtin_len;
1429 } else
1430 #endif
1431 {
1432 hv_cmdline = boot_command_line;
1433 len = COMMAND_LINE_SIZE;
1434 }
1435 len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1436 if (len < 0 || len > COMMAND_LINE_SIZE)
1437 early_panic("hv_get_command_line failed: %d\n", len);
1438 #endif
1439
1440 *cmdline_p = boot_command_line;
1441
1442 /* Set disabled_map and setup_max_cpus very early */
1443 parse_early_param();
1444
1445 /* Make sure the kernel is compatible with the hypervisor. */
1446 validate_hv();
1447 validate_va();
1448
1449 setup_cpu_maps();
1450
1451
1452 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1453 /*
1454 * Initialize the PCI structures. This is done before memory
1455 * setup so that we know whether or not a pci_reserve region
1456 * is necessary.
1457 */
1458 if (tile_pci_init() == 0)
1459 pci_reserve_mb = 0;
1460
1461 /* PCI systems reserve a region just below 4GB for mapping iomem. */
1462 pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
1463 pci_reserve_start_pfn = pci_reserve_end_pfn -
1464 (pci_reserve_mb << (20 - PAGE_SHIFT));
1465 #endif
1466
1467 init_mm.start_code = (unsigned long) _text;
1468 init_mm.end_code = (unsigned long) _etext;
1469 init_mm.end_data = (unsigned long) _edata;
1470 init_mm.brk = (unsigned long) _end;
1471
1472 setup_memory();
1473 store_permanent_mappings();
1474 setup_bootmem_allocator();
1475
1476 /*
1477 * NOTE: before this point _nobody_ is allowed to allocate
1478 * any memory using the bootmem allocator.
1479 */
1480
1481 #ifdef CONFIG_SWIOTLB
1482 swiotlb_init(0);
1483 #endif
1484
1485 paging_init();
1486 setup_numa_mapping();
1487 zone_sizes_init();
1488 set_page_homes();
1489 setup_cpu(1);
1490 setup_clock();
1491 load_hv_initrd();
1492 }
1493
1494
1495 /*
1496 * Set up per-cpu memory.
1497 */
1498
1499 unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1500 EXPORT_SYMBOL(__per_cpu_offset);
1501
1502 static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1503 static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1504
1505 /*
1506 * As the percpu code allocates pages, we return the pages from the
1507 * end of the node for the specified cpu.
1508 */
1509 static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1510 {
1511 int nid = cpu_to_node(cpu);
1512 unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1513
1514 BUG_ON(size % PAGE_SIZE != 0);
1515 pfn_offset[nid] += size / PAGE_SIZE;
1516 BUG_ON(node_percpu[nid] < size);
1517 node_percpu[nid] -= size;
1518 if (percpu_pfn[cpu] == 0)
1519 percpu_pfn[cpu] = pfn;
1520 return pfn_to_kaddr(pfn);
1521 }
1522
1523 /*
1524 * Pages reserved for percpu memory are not freeable, and in any case we are
1525 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1526 */
1527 static void __init pcpu_fc_free(void *ptr, size_t size)
1528 {
1529 }
1530
1531 /*
1532 * Set up vmalloc page tables using bootmem for the percpu code.
1533 */
1534 static void __init pcpu_fc_populate_pte(unsigned long addr)
1535 {
1536 pgd_t *pgd;
1537 pud_t *pud;
1538 pmd_t *pmd;
1539 pte_t *pte;
1540
1541 BUG_ON(pgd_addr_invalid(addr));
1542 if (addr < VMALLOC_START || addr >= VMALLOC_END)
1543 panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1544 " try increasing CONFIG_VMALLOC_RESERVE\n",
1545 addr, VMALLOC_START, VMALLOC_END);
1546
1547 pgd = swapper_pg_dir + pgd_index(addr);
1548 pud = pud_offset(pgd, addr);
1549 BUG_ON(!pud_present(*pud));
1550 pmd = pmd_offset(pud, addr);
1551 if (pmd_present(*pmd)) {
1552 BUG_ON(pmd_huge_page(*pmd));
1553 } else {
1554 pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1555 HV_PAGE_TABLE_ALIGN, 0);
1556 pmd_populate_kernel(&init_mm, pmd, pte);
1557 }
1558 }
1559
1560 void __init setup_per_cpu_areas(void)
1561 {
1562 struct page *pg;
1563 unsigned long delta, pfn, lowmem_va;
1564 unsigned long size = percpu_size();
1565 char *ptr;
1566 int rc, cpu, i;
1567
1568 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1569 pcpu_fc_free, pcpu_fc_populate_pte);
1570 if (rc < 0)
1571 panic("Cannot initialize percpu area (err=%d)", rc);
1572
1573 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1574 for_each_possible_cpu(cpu) {
1575 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1576
1577 /* finv the copy out of cache so we can change homecache */
1578 ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1579 __finv_buffer(ptr, size);
1580 pfn = percpu_pfn[cpu];
1581
1582 /* Rewrite the page tables to cache on that cpu */
1583 pg = pfn_to_page(pfn);
1584 for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1585
1586 /* Update the vmalloc mapping and page home. */
1587 unsigned long addr = (unsigned long)ptr + i;
1588 pte_t *ptep = virt_to_kpte(addr);
1589 pte_t pte = *ptep;
1590 BUG_ON(pfn != pte_pfn(pte));
1591 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1592 pte = set_remote_cache_cpu(pte, cpu);
1593 set_pte_at(&init_mm, addr, ptep, pte);
1594
1595 /* Update the lowmem mapping for consistency. */
1596 lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1597 ptep = virt_to_kpte(lowmem_va);
1598 if (pte_huge(*ptep)) {
1599 printk(KERN_DEBUG "early shatter of huge page"
1600 " at %#lx\n", lowmem_va);
1601 shatter_pmd((pmd_t *)ptep);
1602 ptep = virt_to_kpte(lowmem_va);
1603 BUG_ON(pte_huge(*ptep));
1604 }
1605 BUG_ON(pfn != pte_pfn(*ptep));
1606 set_pte_at(&init_mm, lowmem_va, ptep, pte);
1607 }
1608 }
1609
1610 /* Set our thread pointer appropriately. */
1611 set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1612
1613 /* Make sure the finv's have completed. */
1614 mb_incoherent();
1615
1616 /* Flush the TLB so we reference it properly from here on out. */
1617 local_flush_tlb_all();
1618 }
1619
1620 static struct resource data_resource = {
1621 .name = "Kernel data",
1622 .start = 0,
1623 .end = 0,
1624 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1625 };
1626
1627 static struct resource code_resource = {
1628 .name = "Kernel code",
1629 .start = 0,
1630 .end = 0,
1631 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1632 };
1633
1634 /*
1635 * On Pro, we reserve all resources above 4GB so that PCI won't try to put
1636 * mappings above 4GB.
1637 */
1638 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1639 static struct resource* __init
1640 insert_non_bus_resource(void)
1641 {
1642 struct resource *res =
1643 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1644 if (!res)
1645 return NULL;
1646 res->name = "Non-Bus Physical Address Space";
1647 res->start = (1ULL << 32);
1648 res->end = -1LL;
1649 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1650 if (insert_resource(&iomem_resource, res)) {
1651 kfree(res);
1652 return NULL;
1653 }
1654 return res;
1655 }
1656 #endif
1657
1658 static struct resource* __init
1659 insert_ram_resource(u64 start_pfn, u64 end_pfn, bool reserved)
1660 {
1661 struct resource *res =
1662 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1663 if (!res)
1664 return NULL;
1665 res->name = reserved ? "Reserved" : "System RAM";
1666 res->start = start_pfn << PAGE_SHIFT;
1667 res->end = (end_pfn << PAGE_SHIFT) - 1;
1668 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1669 if (insert_resource(&iomem_resource, res)) {
1670 kfree(res);
1671 return NULL;
1672 }
1673 return res;
1674 }
1675
1676 /*
1677 * Request address space for all standard resources
1678 *
1679 * If the system includes PCI root complex drivers, we need to create
1680 * a window just below 4GB where PCI BARs can be mapped.
1681 */
1682 static int __init request_standard_resources(void)
1683 {
1684 int i;
1685 enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
1686
1687 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1688 insert_non_bus_resource();
1689 #endif
1690
1691 for_each_online_node(i) {
1692 u64 start_pfn = node_start_pfn[i];
1693 u64 end_pfn = node_end_pfn[i];
1694
1695 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1696 if (start_pfn <= pci_reserve_start_pfn &&
1697 end_pfn > pci_reserve_start_pfn) {
1698 if (end_pfn > pci_reserve_end_pfn)
1699 insert_ram_resource(pci_reserve_end_pfn,
1700 end_pfn, 0);
1701 end_pfn = pci_reserve_start_pfn;
1702 }
1703 #endif
1704 insert_ram_resource(start_pfn, end_pfn, 0);
1705 }
1706
1707 code_resource.start = __pa(_text - CODE_DELTA);
1708 code_resource.end = __pa(_etext - CODE_DELTA)-1;
1709 data_resource.start = __pa(_sdata);
1710 data_resource.end = __pa(_end)-1;
1711
1712 insert_resource(&iomem_resource, &code_resource);
1713 insert_resource(&iomem_resource, &data_resource);
1714
1715 /* Mark any "memmap" regions busy for the resource manager. */
1716 for (i = 0; i < memmap_nr; ++i) {
1717 struct memmap_entry *m = &memmap_map[i];
1718 insert_ram_resource(PFN_DOWN(m->addr),
1719 PFN_UP(m->addr + m->size - 1), 1);
1720 }
1721
1722 #ifdef CONFIG_KEXEC
1723 insert_resource(&iomem_resource, &crashk_res);
1724 #endif
1725
1726 return 0;
1727 }
1728
1729 subsys_initcall(request_standard_resources);