]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/tile/mm/fault.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / arch / tile / mm / fault.c
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * From i386 code copyright (C) 1995 Linus Torvalds
15 */
16
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/ptrace.h>
27 #include <linux/mman.h>
28 #include <linux/mm.h>
29 #include <linux/smp.h>
30 #include <linux/interrupt.h>
31 #include <linux/init.h>
32 #include <linux/tty.h>
33 #include <linux/vt_kern.h> /* For unblank_screen() */
34 #include <linux/highmem.h>
35 #include <linux/extable.h>
36 #include <linux/kprobes.h>
37 #include <linux/hugetlb.h>
38 #include <linux/syscalls.h>
39 #include <linux/uaccess.h>
40 #include <linux/kdebug.h>
41
42 #include <asm/pgalloc.h>
43 #include <asm/sections.h>
44 #include <asm/traps.h>
45 #include <asm/syscalls.h>
46
47 #include <arch/interrupts.h>
48
49 static noinline void force_sig_info_fault(const char *type, int si_signo,
50 int si_code, unsigned long address,
51 int fault_num,
52 struct task_struct *tsk,
53 struct pt_regs *regs)
54 {
55 siginfo_t info;
56
57 if (unlikely(tsk->pid < 2)) {
58 panic("Signal %d (code %d) at %#lx sent to %s!",
59 si_signo, si_code & 0xffff, address,
60 is_idle_task(tsk) ? "the idle task" : "init");
61 }
62
63 info.si_signo = si_signo;
64 info.si_errno = 0;
65 info.si_code = si_code;
66 info.si_addr = (void __user *)address;
67 info.si_trapno = fault_num;
68 trace_unhandled_signal(type, regs, address, si_signo);
69 force_sig_info(si_signo, &info, tsk);
70 }
71
72 #ifndef __tilegx__
73 /*
74 * Synthesize the fault a PL0 process would get by doing a word-load of
75 * an unaligned address or a high kernel address.
76 */
77 SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
78 {
79 struct pt_regs *regs = current_pt_regs();
80
81 if (address >= PAGE_OFFSET)
82 force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
83 address, INT_DTLB_MISS, current, regs);
84 else
85 force_sig_info_fault("atomic alignment fault", SIGBUS,
86 BUS_ADRALN, address,
87 INT_UNALIGN_DATA, current, regs);
88
89 /*
90 * Adjust pc to point at the actual instruction, which is unusual
91 * for syscalls normally, but is appropriate when we are claiming
92 * that a syscall swint1 caused a page fault or bus error.
93 */
94 regs->pc -= 8;
95
96 /*
97 * Mark this as a caller-save interrupt, like a normal page fault,
98 * so that when we go through the signal handler path we will
99 * properly restore r0, r1, and r2 for the signal handler arguments.
100 */
101 regs->flags |= PT_FLAGS_CALLER_SAVES;
102
103 return 0;
104 }
105 #endif
106
107 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
108 {
109 unsigned index = pgd_index(address);
110 pgd_t *pgd_k;
111 pud_t *pud, *pud_k;
112 pmd_t *pmd, *pmd_k;
113
114 pgd += index;
115 pgd_k = init_mm.pgd + index;
116
117 if (!pgd_present(*pgd_k))
118 return NULL;
119
120 pud = pud_offset(pgd, address);
121 pud_k = pud_offset(pgd_k, address);
122 if (!pud_present(*pud_k))
123 return NULL;
124
125 pmd = pmd_offset(pud, address);
126 pmd_k = pmd_offset(pud_k, address);
127 if (!pmd_present(*pmd_k))
128 return NULL;
129 if (!pmd_present(*pmd))
130 set_pmd(pmd, *pmd_k);
131 else
132 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
133 return pmd_k;
134 }
135
136 /*
137 * Handle a fault on the vmalloc area.
138 */
139 static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
140 {
141 pmd_t *pmd_k;
142 pte_t *pte_k;
143
144 /* Make sure we are in vmalloc area */
145 if (!(address >= VMALLOC_START && address < VMALLOC_END))
146 return -1;
147
148 /*
149 * Synchronize this task's top level page-table
150 * with the 'reference' page table.
151 */
152 pmd_k = vmalloc_sync_one(pgd, address);
153 if (!pmd_k)
154 return -1;
155 pte_k = pte_offset_kernel(pmd_k, address);
156 if (!pte_present(*pte_k))
157 return -1;
158 return 0;
159 }
160
161 /* Wait until this PTE has completed migration. */
162 static void wait_for_migration(pte_t *pte)
163 {
164 if (pte_migrating(*pte)) {
165 /*
166 * Wait until the migrater fixes up this pte.
167 * We scale the loop count by the clock rate so we'll wait for
168 * a few seconds here.
169 */
170 int retries = 0;
171 int bound = get_clock_rate();
172 while (pte_migrating(*pte)) {
173 barrier();
174 if (++retries > bound)
175 panic("Hit migrating PTE (%#llx) and page PFN %#lx still migrating",
176 pte->val, pte_pfn(*pte));
177 }
178 }
179 }
180
181 /*
182 * It's not generally safe to use "current" to get the page table pointer,
183 * since we might be running an oprofile interrupt in the middle of a
184 * task switch.
185 */
186 static pgd_t *get_current_pgd(void)
187 {
188 HV_Context ctx = hv_inquire_context();
189 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
190 struct page *pgd_page = pfn_to_page(pgd_pfn);
191 BUG_ON(PageHighMem(pgd_page));
192 return (pgd_t *) __va(ctx.page_table);
193 }
194
195 /*
196 * We can receive a page fault from a migrating PTE at any time.
197 * Handle it by just waiting until the fault resolves.
198 *
199 * It's also possible to get a migrating kernel PTE that resolves
200 * itself during the downcall from hypervisor to Linux. We just check
201 * here to see if the PTE seems valid, and if so we retry it.
202 *
203 * NOTE! We MUST NOT take any locks for this case. We may be in an
204 * interrupt or a critical region, and must do as little as possible.
205 * Similarly, we can't use atomic ops here, since we may be handling a
206 * fault caused by an atomic op access.
207 *
208 * If we find a migrating PTE while we're in an NMI context, and we're
209 * at a PC that has a registered exception handler, we don't wait,
210 * since this thread may (e.g.) have been interrupted while migrating
211 * its own stack, which would then cause us to self-deadlock.
212 */
213 static int handle_migrating_pte(pgd_t *pgd, int fault_num,
214 unsigned long address, unsigned long pc,
215 int is_kernel_mode, int write)
216 {
217 pud_t *pud;
218 pmd_t *pmd;
219 pte_t *pte;
220 pte_t pteval;
221
222 if (pgd_addr_invalid(address))
223 return 0;
224
225 pgd += pgd_index(address);
226 pud = pud_offset(pgd, address);
227 if (!pud || !pud_present(*pud))
228 return 0;
229 pmd = pmd_offset(pud, address);
230 if (!pmd || !pmd_present(*pmd))
231 return 0;
232 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
233 pte_offset_kernel(pmd, address);
234 pteval = *pte;
235 if (pte_migrating(pteval)) {
236 if (in_nmi() && search_exception_tables(pc))
237 return 0;
238 wait_for_migration(pte);
239 return 1;
240 }
241
242 if (!is_kernel_mode || !pte_present(pteval))
243 return 0;
244 if (fault_num == INT_ITLB_MISS) {
245 if (pte_exec(pteval))
246 return 1;
247 } else if (write) {
248 if (pte_write(pteval))
249 return 1;
250 } else {
251 if (pte_read(pteval))
252 return 1;
253 }
254
255 return 0;
256 }
257
258 /*
259 * This routine is responsible for faulting in user pages.
260 * It passes the work off to one of the appropriate routines.
261 * It returns true if the fault was successfully handled.
262 */
263 static int handle_page_fault(struct pt_regs *regs,
264 int fault_num,
265 int is_page_fault,
266 unsigned long address,
267 int write)
268 {
269 struct task_struct *tsk;
270 struct mm_struct *mm;
271 struct vm_area_struct *vma;
272 unsigned long stack_offset;
273 int fault;
274 int si_code;
275 int is_kernel_mode;
276 pgd_t *pgd;
277 unsigned int flags;
278
279 /* on TILE, protection faults are always writes */
280 if (!is_page_fault)
281 write = 1;
282
283 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
284
285 is_kernel_mode = !user_mode(regs);
286
287 tsk = validate_current();
288
289 /*
290 * Check to see if we might be overwriting the stack, and bail
291 * out if so. The page fault code is a relatively likely
292 * place to get trapped in an infinite regress, and once we
293 * overwrite the whole stack, it becomes very hard to recover.
294 */
295 stack_offset = stack_pointer & (THREAD_SIZE-1);
296 if (stack_offset < THREAD_SIZE / 8) {
297 pr_alert("Potential stack overrun: sp %#lx\n", stack_pointer);
298 show_regs(regs);
299 pr_alert("Killing current process %d/%s\n",
300 tsk->pid, tsk->comm);
301 do_group_exit(SIGKILL);
302 }
303
304 /*
305 * Early on, we need to check for migrating PTE entries;
306 * see homecache.c. If we find a migrating PTE, we wait until
307 * the backing page claims to be done migrating, then we proceed.
308 * For kernel PTEs, we rewrite the PTE and return and retry.
309 * Otherwise, we treat the fault like a normal "no PTE" fault,
310 * rather than trying to patch up the existing PTE.
311 */
312 pgd = get_current_pgd();
313 if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
314 is_kernel_mode, write))
315 return 1;
316
317 si_code = SEGV_MAPERR;
318
319 /*
320 * We fault-in kernel-space virtual memory on-demand. The
321 * 'reference' page table is init_mm.pgd.
322 *
323 * NOTE! We MUST NOT take any locks for this case. We may
324 * be in an interrupt or a critical region, and should
325 * only copy the information from the master page table,
326 * nothing more.
327 *
328 * This verifies that the fault happens in kernel space
329 * and that the fault was not a protection fault.
330 */
331 if (unlikely(address >= TASK_SIZE &&
332 !is_arch_mappable_range(address, 0))) {
333 if (is_kernel_mode && is_page_fault &&
334 vmalloc_fault(pgd, address) >= 0)
335 return 1;
336 /*
337 * Don't take the mm semaphore here. If we fixup a prefetch
338 * fault we could otherwise deadlock.
339 */
340 mm = NULL; /* happy compiler */
341 vma = NULL;
342 goto bad_area_nosemaphore;
343 }
344
345 /*
346 * If we're trying to touch user-space addresses, we must
347 * be either at PL0, or else with interrupts enabled in the
348 * kernel, so either way we can re-enable interrupts here
349 * unless we are doing atomic access to user space with
350 * interrupts disabled.
351 */
352 if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
353 local_irq_enable();
354
355 mm = tsk->mm;
356
357 /*
358 * If we're in an interrupt, have no user context or are running in an
359 * region with pagefaults disabled then we must not take the fault.
360 */
361 if (pagefault_disabled() || !mm) {
362 vma = NULL; /* happy compiler */
363 goto bad_area_nosemaphore;
364 }
365
366 if (!is_kernel_mode)
367 flags |= FAULT_FLAG_USER;
368
369 /*
370 * When running in the kernel we expect faults to occur only to
371 * addresses in user space. All other faults represent errors in the
372 * kernel and should generate an OOPS. Unfortunately, in the case of an
373 * erroneous fault occurring in a code path which already holds mmap_sem
374 * we will deadlock attempting to validate the fault against the
375 * address space. Luckily the kernel only validly references user
376 * space from well defined areas of code, which are listed in the
377 * exceptions table.
378 *
379 * As the vast majority of faults will be valid we will only perform
380 * the source reference check when there is a possibility of a deadlock.
381 * Attempt to lock the address space, if we cannot we then validate the
382 * source. If this is invalid we can skip the address space check,
383 * thus avoiding the deadlock.
384 */
385 if (!down_read_trylock(&mm->mmap_sem)) {
386 if (is_kernel_mode &&
387 !search_exception_tables(regs->pc)) {
388 vma = NULL; /* happy compiler */
389 goto bad_area_nosemaphore;
390 }
391
392 retry:
393 down_read(&mm->mmap_sem);
394 }
395
396 vma = find_vma(mm, address);
397 if (!vma)
398 goto bad_area;
399 if (vma->vm_start <= address)
400 goto good_area;
401 if (!(vma->vm_flags & VM_GROWSDOWN))
402 goto bad_area;
403 if (regs->sp < PAGE_OFFSET) {
404 /*
405 * accessing the stack below sp is always a bug.
406 */
407 if (address < regs->sp)
408 goto bad_area;
409 }
410 if (expand_stack(vma, address))
411 goto bad_area;
412
413 /*
414 * Ok, we have a good vm_area for this memory access, so
415 * we can handle it..
416 */
417 good_area:
418 si_code = SEGV_ACCERR;
419 if (fault_num == INT_ITLB_MISS) {
420 if (!(vma->vm_flags & VM_EXEC))
421 goto bad_area;
422 } else if (write) {
423 #ifdef TEST_VERIFY_AREA
424 if (!is_page_fault && regs->cs == KERNEL_CS)
425 pr_err("WP fault at " REGFMT "\n", regs->eip);
426 #endif
427 if (!(vma->vm_flags & VM_WRITE))
428 goto bad_area;
429 flags |= FAULT_FLAG_WRITE;
430 } else {
431 if (!is_page_fault || !(vma->vm_flags & VM_READ))
432 goto bad_area;
433 }
434
435 /*
436 * If for any reason at all we couldn't handle the fault,
437 * make sure we exit gracefully rather than endlessly redo
438 * the fault.
439 */
440 fault = handle_mm_fault(vma, address, flags);
441
442 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
443 return 0;
444
445 if (unlikely(fault & VM_FAULT_ERROR)) {
446 if (fault & VM_FAULT_OOM)
447 goto out_of_memory;
448 else if (fault & VM_FAULT_SIGSEGV)
449 goto bad_area;
450 else if (fault & VM_FAULT_SIGBUS)
451 goto do_sigbus;
452 BUG();
453 }
454 if (flags & FAULT_FLAG_ALLOW_RETRY) {
455 if (fault & VM_FAULT_MAJOR)
456 tsk->maj_flt++;
457 else
458 tsk->min_flt++;
459 if (fault & VM_FAULT_RETRY) {
460 flags &= ~FAULT_FLAG_ALLOW_RETRY;
461 flags |= FAULT_FLAG_TRIED;
462
463 /*
464 * No need to up_read(&mm->mmap_sem) as we would
465 * have already released it in __lock_page_or_retry
466 * in mm/filemap.c.
467 */
468 goto retry;
469 }
470 }
471
472 #if CHIP_HAS_TILE_DMA()
473 /* If this was a DMA TLB fault, restart the DMA engine. */
474 switch (fault_num) {
475 case INT_DMATLB_MISS:
476 case INT_DMATLB_MISS_DWNCL:
477 case INT_DMATLB_ACCESS:
478 case INT_DMATLB_ACCESS_DWNCL:
479 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
480 break;
481 }
482 #endif
483
484 up_read(&mm->mmap_sem);
485 return 1;
486
487 /*
488 * Something tried to access memory that isn't in our memory map..
489 * Fix it, but check if it's kernel or user first..
490 */
491 bad_area:
492 up_read(&mm->mmap_sem);
493
494 bad_area_nosemaphore:
495 /* User mode accesses just cause a SIGSEGV */
496 if (!is_kernel_mode) {
497 /*
498 * It's possible to have interrupts off here.
499 */
500 local_irq_enable();
501
502 force_sig_info_fault("segfault", SIGSEGV, si_code, address,
503 fault_num, tsk, regs);
504 return 0;
505 }
506
507 no_context:
508 /* Are we prepared to handle this kernel fault? */
509 if (fixup_exception(regs))
510 return 0;
511
512 /*
513 * Oops. The kernel tried to access some bad page. We'll have to
514 * terminate things with extreme prejudice.
515 */
516
517 bust_spinlocks(1);
518
519 /* FIXME: no lookup_address() yet */
520 #ifdef SUPPORT_LOOKUP_ADDRESS
521 if (fault_num == INT_ITLB_MISS) {
522 pte_t *pte = lookup_address(address);
523
524 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
525 pr_crit("kernel tried to execute non-executable page - exploit attempt? (uid: %d)\n",
526 current->uid);
527 }
528 #endif
529 if (address < PAGE_SIZE)
530 pr_alert("Unable to handle kernel NULL pointer dereference\n");
531 else
532 pr_alert("Unable to handle kernel paging request\n");
533 pr_alert(" at virtual address " REGFMT ", pc " REGFMT "\n",
534 address, regs->pc);
535
536 show_regs(regs);
537
538 if (unlikely(tsk->pid < 2)) {
539 panic("Kernel page fault running %s!",
540 is_idle_task(tsk) ? "the idle task" : "init");
541 }
542
543 /*
544 * More FIXME: we should probably copy the i386 here and
545 * implement a generic die() routine. Not today.
546 */
547 #ifdef SUPPORT_DIE
548 die("Oops", regs);
549 #endif
550 bust_spinlocks(1);
551
552 do_group_exit(SIGKILL);
553
554 /*
555 * We ran out of memory, or some other thing happened to us that made
556 * us unable to handle the page fault gracefully.
557 */
558 out_of_memory:
559 up_read(&mm->mmap_sem);
560 if (is_kernel_mode)
561 goto no_context;
562 pagefault_out_of_memory();
563 return 0;
564
565 do_sigbus:
566 up_read(&mm->mmap_sem);
567
568 /* Kernel mode? Handle exceptions or die */
569 if (is_kernel_mode)
570 goto no_context;
571
572 force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
573 fault_num, tsk, regs);
574 return 0;
575 }
576
577 #ifndef __tilegx__
578
579 /* We must release ICS before panicking or we won't get anywhere. */
580 #define ics_panic(fmt, ...) \
581 do { \
582 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
583 panic(fmt, ##__VA_ARGS__); \
584 } while (0)
585
586 /*
587 * When we take an ITLB or DTLB fault or access violation in the
588 * supervisor while the critical section bit is set, the hypervisor is
589 * reluctant to write new values into the EX_CONTEXT_K_x registers,
590 * since that might indicate we have not yet squirreled the SPR
591 * contents away and can thus safely take a recursive interrupt.
592 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
593 *
594 * Note that this routine is called before homecache_tlb_defer_enter(),
595 * which means that we can properly unlock any atomics that might
596 * be used there (good), but also means we must be very sensitive
597 * to not touch any data structures that might be located in memory
598 * that could migrate, as we could be entering the kernel on a dataplane
599 * cpu that has been deferring kernel TLB updates. This means, for
600 * example, that we can't migrate init_mm or its pgd.
601 */
602 struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
603 unsigned long address,
604 unsigned long info)
605 {
606 unsigned long pc = info & ~1;
607 int write = info & 1;
608 pgd_t *pgd = get_current_pgd();
609
610 /* Retval is 1 at first since we will handle the fault fully. */
611 struct intvec_state state = {
612 do_page_fault, fault_num, address, write, 1
613 };
614
615 /* Validate that we are plausibly in the right routine. */
616 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
617 (fault_num != INT_DTLB_MISS &&
618 fault_num != INT_DTLB_ACCESS)) {
619 unsigned long old_pc = regs->pc;
620 regs->pc = pc;
621 ics_panic("Bad ICS page fault args: old PC %#lx, fault %d/%d at %#lx",
622 old_pc, fault_num, write, address);
623 }
624
625 /* We might be faulting on a vmalloc page, so check that first. */
626 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
627 return state;
628
629 /*
630 * If we faulted with ICS set in sys_cmpxchg, we are providing
631 * a user syscall service that should generate a signal on
632 * fault. We didn't set up a kernel stack on initial entry to
633 * sys_cmpxchg, but instead had one set up by the fault, which
634 * (because sys_cmpxchg never releases ICS) came to us via the
635 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
636 * still referencing the original user code. We release the
637 * atomic lock and rewrite pt_regs so that it appears that we
638 * came from user-space directly, and after we finish the
639 * fault we'll go back to user space and re-issue the swint.
640 * This way the backtrace information is correct if we need to
641 * emit a stack dump at any point while handling this.
642 *
643 * Must match register use in sys_cmpxchg().
644 */
645 if (pc >= (unsigned long) sys_cmpxchg &&
646 pc < (unsigned long) __sys_cmpxchg_end) {
647 #ifdef CONFIG_SMP
648 /* Don't unlock before we could have locked. */
649 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
650 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
651 __atomic_fault_unlock(lock_ptr);
652 }
653 #endif
654 regs->sp = regs->regs[27];
655 }
656
657 /*
658 * We can also fault in the atomic assembly, in which
659 * case we use the exception table to do the first-level fixup.
660 * We may re-fixup again in the real fault handler if it
661 * turns out the faulting address is just bad, and not,
662 * for example, migrating.
663 */
664 else if (pc >= (unsigned long) __start_atomic_asm_code &&
665 pc < (unsigned long) __end_atomic_asm_code) {
666 const struct exception_table_entry *fixup;
667 #ifdef CONFIG_SMP
668 /* Unlock the atomic lock. */
669 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
670 __atomic_fault_unlock(lock_ptr);
671 #endif
672 fixup = search_exception_tables(pc);
673 if (!fixup)
674 ics_panic("ICS atomic fault not in table: PC %#lx, fault %d",
675 pc, fault_num);
676 regs->pc = fixup->fixup;
677 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
678 }
679
680 /*
681 * Now that we have released the atomic lock (if necessary),
682 * it's safe to spin if the PTE that caused the fault was migrating.
683 */
684 if (fault_num == INT_DTLB_ACCESS)
685 write = 1;
686 if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
687 return state;
688
689 /* Return zero so that we continue on with normal fault handling. */
690 state.retval = 0;
691 return state;
692 }
693
694 #endif /* !__tilegx__ */
695
696 /*
697 * This routine handles page faults. It determines the address, and the
698 * problem, and then passes it handle_page_fault() for normal DTLB and
699 * ITLB issues, and for DMA or SN processor faults when we are in user
700 * space. For the latter, if we're in kernel mode, we just save the
701 * interrupt away appropriately and return immediately. We can't do
702 * page faults for user code while in kernel mode.
703 */
704 static inline void __do_page_fault(struct pt_regs *regs, int fault_num,
705 unsigned long address, unsigned long write)
706 {
707 int is_page_fault;
708
709 #ifdef CONFIG_KPROBES
710 /*
711 * This is to notify the fault handler of the kprobes. The
712 * exception code is redundant as it is also carried in REGS,
713 * but we pass it anyhow.
714 */
715 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, -1,
716 regs->faultnum, SIGSEGV) == NOTIFY_STOP)
717 return;
718 #endif
719
720 #ifdef __tilegx__
721 /*
722 * We don't need early do_page_fault_ics() support, since unlike
723 * Pro we don't need to worry about unlocking the atomic locks.
724 * There is only one current case in GX where we touch any memory
725 * under ICS other than our own kernel stack, and we handle that
726 * here. (If we crash due to trying to touch our own stack,
727 * we're in too much trouble for C code to help out anyway.)
728 */
729 if (write & ~1) {
730 unsigned long pc = write & ~1;
731 if (pc >= (unsigned long) __start_unalign_asm_code &&
732 pc < (unsigned long) __end_unalign_asm_code) {
733 struct thread_info *ti = current_thread_info();
734 /*
735 * Our EX_CONTEXT is still what it was from the
736 * initial unalign exception, but now we've faulted
737 * on the JIT page. We would like to complete the
738 * page fault however is appropriate, and then retry
739 * the instruction that caused the unalign exception.
740 * Our state has been "corrupted" by setting the low
741 * bit in "sp", and stashing r0..r3 in the
742 * thread_info area, so we revert all of that, then
743 * continue as if this were a normal page fault.
744 */
745 regs->sp &= ~1UL;
746 regs->regs[0] = ti->unalign_jit_tmp[0];
747 regs->regs[1] = ti->unalign_jit_tmp[1];
748 regs->regs[2] = ti->unalign_jit_tmp[2];
749 regs->regs[3] = ti->unalign_jit_tmp[3];
750 write &= 1;
751 } else {
752 pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
753 current->comm, current->pid, pc, address);
754 show_regs(regs);
755 do_group_exit(SIGKILL);
756 }
757 }
758 #else
759 /* This case should have been handled by do_page_fault_ics(). */
760 BUG_ON(write & ~1);
761 #endif
762
763 #if CHIP_HAS_TILE_DMA()
764 /*
765 * If it's a DMA fault, suspend the transfer while we're
766 * handling the miss; we'll restart after it's handled. If we
767 * don't suspend, it's possible that this process could swap
768 * out and back in, and restart the engine since the DMA is
769 * still 'running'.
770 */
771 if (fault_num == INT_DMATLB_MISS ||
772 fault_num == INT_DMATLB_ACCESS ||
773 fault_num == INT_DMATLB_MISS_DWNCL ||
774 fault_num == INT_DMATLB_ACCESS_DWNCL) {
775 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
776 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
777 SPR_DMA_STATUS__BUSY_MASK)
778 ;
779 }
780 #endif
781
782 /* Validate fault num and decide if this is a first-time page fault. */
783 switch (fault_num) {
784 case INT_ITLB_MISS:
785 case INT_DTLB_MISS:
786 #if CHIP_HAS_TILE_DMA()
787 case INT_DMATLB_MISS:
788 case INT_DMATLB_MISS_DWNCL:
789 #endif
790 is_page_fault = 1;
791 break;
792
793 case INT_DTLB_ACCESS:
794 #if CHIP_HAS_TILE_DMA()
795 case INT_DMATLB_ACCESS:
796 case INT_DMATLB_ACCESS_DWNCL:
797 #endif
798 is_page_fault = 0;
799 break;
800
801 default:
802 panic("Bad fault number %d in do_page_fault", fault_num);
803 }
804
805 #if CHIP_HAS_TILE_DMA()
806 if (!user_mode(regs)) {
807 struct async_tlb *async;
808 switch (fault_num) {
809 #if CHIP_HAS_TILE_DMA()
810 case INT_DMATLB_MISS:
811 case INT_DMATLB_ACCESS:
812 case INT_DMATLB_MISS_DWNCL:
813 case INT_DMATLB_ACCESS_DWNCL:
814 async = &current->thread.dma_async_tlb;
815 break;
816 #endif
817 default:
818 async = NULL;
819 }
820 if (async) {
821
822 /*
823 * No vmalloc check required, so we can allow
824 * interrupts immediately at this point.
825 */
826 local_irq_enable();
827
828 set_thread_flag(TIF_ASYNC_TLB);
829 if (async->fault_num != 0) {
830 panic("Second async fault %d; old fault was %d (%#lx/%ld)",
831 fault_num, async->fault_num,
832 address, write);
833 }
834 BUG_ON(fault_num == 0);
835 async->fault_num = fault_num;
836 async->is_fault = is_page_fault;
837 async->is_write = write;
838 async->address = address;
839 return;
840 }
841 }
842 #endif
843
844 handle_page_fault(regs, fault_num, is_page_fault, address, write);
845 }
846
847 void do_page_fault(struct pt_regs *regs, int fault_num,
848 unsigned long address, unsigned long write)
849 {
850 __do_page_fault(regs, fault_num, address, write);
851 }
852
853 #if CHIP_HAS_TILE_DMA()
854 /*
855 * This routine effectively re-issues asynchronous page faults
856 * when we are returning to user space.
857 */
858 void do_async_page_fault(struct pt_regs *regs)
859 {
860 struct async_tlb *async = &current->thread.dma_async_tlb;
861
862 /*
863 * Clear thread flag early. If we re-interrupt while processing
864 * code here, we will reset it and recall this routine before
865 * returning to user space.
866 */
867 clear_thread_flag(TIF_ASYNC_TLB);
868
869 if (async->fault_num) {
870 /*
871 * Clear async->fault_num before calling the page-fault
872 * handler so that if we re-interrupt before returning
873 * from the function we have somewhere to put the
874 * information from the new interrupt.
875 */
876 int fault_num = async->fault_num;
877 async->fault_num = 0;
878 handle_page_fault(regs, fault_num, async->is_fault,
879 async->address, async->is_write);
880 }
881 }
882 #endif /* CHIP_HAS_TILE_DMA() */
883
884
885 void vmalloc_sync_all(void)
886 {
887 #ifdef __tilegx__
888 /* Currently all L1 kernel pmd's are static and shared. */
889 BUILD_BUG_ON(pgd_index(VMALLOC_END - PAGE_SIZE) !=
890 pgd_index(VMALLOC_START));
891 #else
892 /*
893 * Note that races in the updates of insync and start aren't
894 * problematic: insync can only get set bits added, and updates to
895 * start are only improving performance (without affecting correctness
896 * if undone).
897 */
898 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
899 static unsigned long start = PAGE_OFFSET;
900 unsigned long address;
901
902 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
903 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
904 if (!test_bit(pgd_index(address), insync)) {
905 unsigned long flags;
906 struct list_head *pos;
907
908 spin_lock_irqsave(&pgd_lock, flags);
909 list_for_each(pos, &pgd_list)
910 if (!vmalloc_sync_one(list_to_pgd(pos),
911 address)) {
912 /* Must be at first entry in list. */
913 BUG_ON(pos != pgd_list.next);
914 break;
915 }
916 spin_unlock_irqrestore(&pgd_lock, flags);
917 if (pos != pgd_list.next)
918 set_bit(pgd_index(address), insync);
919 }
920 if (address == start && test_bit(pgd_index(address), insync))
921 start = address + PGDIR_SIZE;
922 }
923 #endif
924 }