]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/tile/mm/homecache.c
Merge branch 'timers/core' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[mirror_ubuntu-zesty-kernel.git] / arch / tile / mm / homecache.c
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * This code maintains the "home" for each page in the system.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/spinlock.h>
20 #include <linux/list.h>
21 #include <linux/bootmem.h>
22 #include <linux/rmap.h>
23 #include <linux/pagemap.h>
24 #include <linux/mutex.h>
25 #include <linux/interrupt.h>
26 #include <linux/sysctl.h>
27 #include <linux/pagevec.h>
28 #include <linux/ptrace.h>
29 #include <linux/timex.h>
30 #include <linux/cache.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
33 #include <linux/hugetlb.h>
34
35 #include <asm/page.h>
36 #include <asm/sections.h>
37 #include <asm/tlbflush.h>
38 #include <asm/pgalloc.h>
39 #include <asm/homecache.h>
40
41 #include <arch/sim.h>
42
43 #include "migrate.h"
44
45
46 /*
47 * The noallocl2 option suppresses all use of the L2 cache to cache
48 * locally from a remote home.
49 */
50 static int __write_once noallocl2;
51 static int __init set_noallocl2(char *str)
52 {
53 noallocl2 = 1;
54 return 0;
55 }
56 early_param("noallocl2", set_noallocl2);
57
58
59 /*
60 * Update the irq_stat for cpus that we are going to interrupt
61 * with TLB or cache flushes. Also handle removing dataplane cpus
62 * from the TLB flush set, and setting dataplane_tlb_state instead.
63 */
64 static void hv_flush_update(const struct cpumask *cache_cpumask,
65 struct cpumask *tlb_cpumask,
66 unsigned long tlb_va, unsigned long tlb_length,
67 HV_Remote_ASID *asids, int asidcount)
68 {
69 struct cpumask mask;
70 int i, cpu;
71
72 cpumask_clear(&mask);
73 if (cache_cpumask)
74 cpumask_or(&mask, &mask, cache_cpumask);
75 if (tlb_cpumask && tlb_length) {
76 cpumask_or(&mask, &mask, tlb_cpumask);
77 }
78
79 for (i = 0; i < asidcount; ++i)
80 cpumask_set_cpu(asids[i].y * smp_width + asids[i].x, &mask);
81
82 /*
83 * Don't bother to update atomically; losing a count
84 * here is not that critical.
85 */
86 for_each_cpu(cpu, &mask)
87 ++per_cpu(irq_stat, cpu).irq_hv_flush_count;
88 }
89
90 /*
91 * This wrapper function around hv_flush_remote() does several things:
92 *
93 * - Provides a return value error-checking panic path, since
94 * there's never any good reason for hv_flush_remote() to fail.
95 * - Accepts a 32-bit PFN rather than a 64-bit PA, which generally
96 * is the type that Linux wants to pass around anyway.
97 * - Canonicalizes that lengths of zero make cpumasks NULL.
98 * - Handles deferring TLB flushes for dataplane tiles.
99 * - Tracks remote interrupts in the per-cpu irq_cpustat_t.
100 *
101 * Note that we have to wait until the cache flush completes before
102 * updating the per-cpu last_cache_flush word, since otherwise another
103 * concurrent flush can race, conclude the flush has already
104 * completed, and start to use the page while it's still dirty
105 * remotely (running concurrently with the actual evict, presumably).
106 */
107 void flush_remote(unsigned long cache_pfn, unsigned long cache_control,
108 const struct cpumask *cache_cpumask_orig,
109 HV_VirtAddr tlb_va, unsigned long tlb_length,
110 unsigned long tlb_pgsize,
111 const struct cpumask *tlb_cpumask_orig,
112 HV_Remote_ASID *asids, int asidcount)
113 {
114 int rc;
115 struct cpumask cache_cpumask_copy, tlb_cpumask_copy;
116 struct cpumask *cache_cpumask, *tlb_cpumask;
117 HV_PhysAddr cache_pa;
118 char cache_buf[NR_CPUS*5], tlb_buf[NR_CPUS*5];
119
120 mb(); /* provided just to simplify "magic hypervisor" mode */
121
122 /*
123 * Canonicalize and copy the cpumasks.
124 */
125 if (cache_cpumask_orig && cache_control) {
126 cpumask_copy(&cache_cpumask_copy, cache_cpumask_orig);
127 cache_cpumask = &cache_cpumask_copy;
128 } else {
129 cpumask_clear(&cache_cpumask_copy);
130 cache_cpumask = NULL;
131 }
132 if (cache_cpumask == NULL)
133 cache_control = 0;
134 if (tlb_cpumask_orig && tlb_length) {
135 cpumask_copy(&tlb_cpumask_copy, tlb_cpumask_orig);
136 tlb_cpumask = &tlb_cpumask_copy;
137 } else {
138 cpumask_clear(&tlb_cpumask_copy);
139 tlb_cpumask = NULL;
140 }
141
142 hv_flush_update(cache_cpumask, tlb_cpumask, tlb_va, tlb_length,
143 asids, asidcount);
144 cache_pa = (HV_PhysAddr)cache_pfn << PAGE_SHIFT;
145 rc = hv_flush_remote(cache_pa, cache_control,
146 cpumask_bits(cache_cpumask),
147 tlb_va, tlb_length, tlb_pgsize,
148 cpumask_bits(tlb_cpumask),
149 asids, asidcount);
150 if (rc == 0)
151 return;
152 cpumask_scnprintf(cache_buf, sizeof(cache_buf), &cache_cpumask_copy);
153 cpumask_scnprintf(tlb_buf, sizeof(tlb_buf), &tlb_cpumask_copy);
154
155 pr_err("hv_flush_remote(%#llx, %#lx, %p [%s],"
156 " %#lx, %#lx, %#lx, %p [%s], %p, %d) = %d\n",
157 cache_pa, cache_control, cache_cpumask, cache_buf,
158 (unsigned long)tlb_va, tlb_length, tlb_pgsize,
159 tlb_cpumask, tlb_buf,
160 asids, asidcount, rc);
161 panic("Unsafe to continue.");
162 }
163
164 static void homecache_finv_page_va(void* va, int home)
165 {
166 int cpu = get_cpu();
167 if (home == cpu) {
168 finv_buffer_local(va, PAGE_SIZE);
169 } else if (home == PAGE_HOME_HASH) {
170 finv_buffer_remote(va, PAGE_SIZE, 1);
171 } else {
172 BUG_ON(home < 0 || home >= NR_CPUS);
173 finv_buffer_remote(va, PAGE_SIZE, 0);
174 }
175 put_cpu();
176 }
177
178 void homecache_finv_map_page(struct page *page, int home)
179 {
180 unsigned long flags;
181 unsigned long va;
182 pte_t *ptep;
183 pte_t pte;
184
185 if (home == PAGE_HOME_UNCACHED)
186 return;
187 local_irq_save(flags);
188 #ifdef CONFIG_HIGHMEM
189 va = __fix_to_virt(FIX_KMAP_BEGIN + kmap_atomic_idx_push() +
190 (KM_TYPE_NR * smp_processor_id()));
191 #else
192 va = __fix_to_virt(FIX_HOMECACHE_BEGIN + smp_processor_id());
193 #endif
194 ptep = virt_to_kpte(va);
195 pte = pfn_pte(page_to_pfn(page), PAGE_KERNEL);
196 __set_pte(ptep, pte_set_home(pte, home));
197 homecache_finv_page_va((void *)va, home);
198 __pte_clear(ptep);
199 hv_flush_page(va, PAGE_SIZE);
200 #ifdef CONFIG_HIGHMEM
201 kmap_atomic_idx_pop();
202 #endif
203 local_irq_restore(flags);
204 }
205
206 static void homecache_finv_page_home(struct page *page, int home)
207 {
208 if (!PageHighMem(page) && home == page_home(page))
209 homecache_finv_page_va(page_address(page), home);
210 else
211 homecache_finv_map_page(page, home);
212 }
213
214 static inline bool incoherent_home(int home)
215 {
216 return home == PAGE_HOME_IMMUTABLE || home == PAGE_HOME_INCOHERENT;
217 }
218
219 static void homecache_finv_page_internal(struct page *page, int force_map)
220 {
221 int home = page_home(page);
222 if (home == PAGE_HOME_UNCACHED)
223 return;
224 if (incoherent_home(home)) {
225 int cpu;
226 for_each_cpu(cpu, &cpu_cacheable_map)
227 homecache_finv_map_page(page, cpu);
228 } else if (force_map) {
229 /* Force if, e.g., the normal mapping is migrating. */
230 homecache_finv_map_page(page, home);
231 } else {
232 homecache_finv_page_home(page, home);
233 }
234 sim_validate_lines_evicted(PFN_PHYS(page_to_pfn(page)), PAGE_SIZE);
235 }
236
237 void homecache_finv_page(struct page *page)
238 {
239 homecache_finv_page_internal(page, 0);
240 }
241
242 void homecache_evict(const struct cpumask *mask)
243 {
244 flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0);
245 }
246
247 /* Report the home corresponding to a given PTE. */
248 static int pte_to_home(pte_t pte)
249 {
250 if (hv_pte_get_nc(pte))
251 return PAGE_HOME_IMMUTABLE;
252 switch (hv_pte_get_mode(pte)) {
253 case HV_PTE_MODE_CACHE_TILE_L3:
254 return get_remote_cache_cpu(pte);
255 case HV_PTE_MODE_CACHE_NO_L3:
256 return PAGE_HOME_INCOHERENT;
257 case HV_PTE_MODE_UNCACHED:
258 return PAGE_HOME_UNCACHED;
259 case HV_PTE_MODE_CACHE_HASH_L3:
260 return PAGE_HOME_HASH;
261 }
262 panic("Bad PTE %#llx\n", pte.val);
263 }
264
265 /* Update the home of a PTE if necessary (can also be used for a pgprot_t). */
266 pte_t pte_set_home(pte_t pte, int home)
267 {
268 /* Check for non-linear file mapping "PTEs" and pass them through. */
269 if (pte_file(pte))
270 return pte;
271
272 #if CHIP_HAS_MMIO()
273 /* Check for MMIO mappings and pass them through. */
274 if (hv_pte_get_mode(pte) == HV_PTE_MODE_MMIO)
275 return pte;
276 #endif
277
278
279 /*
280 * Only immutable pages get NC mappings. If we have a
281 * non-coherent PTE, but the underlying page is not
282 * immutable, it's likely the result of a forced
283 * caching setting running up against ptrace setting
284 * the page to be writable underneath. In this case,
285 * just keep the PTE coherent.
286 */
287 if (hv_pte_get_nc(pte) && home != PAGE_HOME_IMMUTABLE) {
288 pte = hv_pte_clear_nc(pte);
289 pr_err("non-immutable page incoherently referenced: %#llx\n",
290 pte.val);
291 }
292
293 switch (home) {
294
295 case PAGE_HOME_UNCACHED:
296 pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED);
297 break;
298
299 case PAGE_HOME_INCOHERENT:
300 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3);
301 break;
302
303 case PAGE_HOME_IMMUTABLE:
304 /*
305 * We could home this page anywhere, since it's immutable,
306 * but by default just home it to follow "hash_default".
307 */
308 BUG_ON(hv_pte_get_writable(pte));
309 if (pte_get_forcecache(pte)) {
310 /* Upgrade "force any cpu" to "No L3" for immutable. */
311 if (hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_TILE_L3
312 && pte_get_anyhome(pte)) {
313 pte = hv_pte_set_mode(pte,
314 HV_PTE_MODE_CACHE_NO_L3);
315 }
316 } else
317 if (hash_default)
318 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3);
319 else
320 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3);
321 pte = hv_pte_set_nc(pte);
322 break;
323
324 case PAGE_HOME_HASH:
325 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3);
326 break;
327
328 default:
329 BUG_ON(home < 0 || home >= NR_CPUS ||
330 !cpu_is_valid_lotar(home));
331 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
332 pte = set_remote_cache_cpu(pte, home);
333 break;
334 }
335
336 if (noallocl2)
337 pte = hv_pte_set_no_alloc_l2(pte);
338
339 /* Simplify "no local and no l3" to "uncached" */
340 if (hv_pte_get_no_alloc_l2(pte) && hv_pte_get_no_alloc_l1(pte) &&
341 hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_NO_L3) {
342 pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED);
343 }
344
345 /* Checking this case here gives a better panic than from the hv. */
346 BUG_ON(hv_pte_get_mode(pte) == 0);
347
348 return pte;
349 }
350 EXPORT_SYMBOL(pte_set_home);
351
352 /*
353 * The routines in this section are the "static" versions of the normal
354 * dynamic homecaching routines; they just set the home cache
355 * of a kernel page once, and require a full-chip cache/TLB flush,
356 * so they're not suitable for anything but infrequent use.
357 */
358
359 int page_home(struct page *page)
360 {
361 if (PageHighMem(page)) {
362 return PAGE_HOME_HASH;
363 } else {
364 unsigned long kva = (unsigned long)page_address(page);
365 return pte_to_home(*virt_to_kpte(kva));
366 }
367 }
368 EXPORT_SYMBOL(page_home);
369
370 void homecache_change_page_home(struct page *page, int order, int home)
371 {
372 int i, pages = (1 << order);
373 unsigned long kva;
374
375 BUG_ON(PageHighMem(page));
376 BUG_ON(page_count(page) > 1);
377 BUG_ON(page_mapcount(page) != 0);
378 kva = (unsigned long) page_address(page);
379 flush_remote(0, HV_FLUSH_EVICT_L2, &cpu_cacheable_map,
380 kva, pages * PAGE_SIZE, PAGE_SIZE, cpu_online_mask,
381 NULL, 0);
382
383 for (i = 0; i < pages; ++i, kva += PAGE_SIZE) {
384 pte_t *ptep = virt_to_kpte(kva);
385 pte_t pteval = *ptep;
386 BUG_ON(!pte_present(pteval) || pte_huge(pteval));
387 __set_pte(ptep, pte_set_home(pteval, home));
388 }
389 }
390 EXPORT_SYMBOL(homecache_change_page_home);
391
392 struct page *homecache_alloc_pages(gfp_t gfp_mask,
393 unsigned int order, int home)
394 {
395 struct page *page;
396 BUG_ON(gfp_mask & __GFP_HIGHMEM); /* must be lowmem */
397 page = alloc_pages(gfp_mask, order);
398 if (page)
399 homecache_change_page_home(page, order, home);
400 return page;
401 }
402 EXPORT_SYMBOL(homecache_alloc_pages);
403
404 struct page *homecache_alloc_pages_node(int nid, gfp_t gfp_mask,
405 unsigned int order, int home)
406 {
407 struct page *page;
408 BUG_ON(gfp_mask & __GFP_HIGHMEM); /* must be lowmem */
409 page = alloc_pages_node(nid, gfp_mask, order);
410 if (page)
411 homecache_change_page_home(page, order, home);
412 return page;
413 }
414
415 void __homecache_free_pages(struct page *page, unsigned int order)
416 {
417 if (put_page_testzero(page)) {
418 homecache_change_page_home(page, order, PAGE_HOME_HASH);
419 if (order == 0) {
420 free_hot_cold_page(page, 0);
421 } else {
422 init_page_count(page);
423 __free_pages(page, order);
424 }
425 }
426 }
427 EXPORT_SYMBOL(__homecache_free_pages);
428
429 void homecache_free_pages(unsigned long addr, unsigned int order)
430 {
431 if (addr != 0) {
432 VM_BUG_ON(!virt_addr_valid((void *)addr));
433 __homecache_free_pages(virt_to_page((void *)addr), order);
434 }
435 }
436 EXPORT_SYMBOL(homecache_free_pages);