]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/tile/mm/init.c
arch/tile: fix bug in loading kernels larger than 16 MB
[mirror_ubuntu-artful-kernel.git] / arch / tile / mm / init.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation, version 2.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for
13 * more details.
14 */
15
16 #include <linux/module.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/hugetlb.h>
27 #include <linux/swap.h>
28 #include <linux/smp.h>
29 #include <linux/init.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/poison.h>
33 #include <linux/bootmem.h>
34 #include <linux/slab.h>
35 #include <linux/proc_fs.h>
36 #include <linux/efi.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/processor.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
43 #include <asm/dma.h>
44 #include <asm/fixmap.h>
45 #include <asm/tlb.h>
46 #include <asm/tlbflush.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/homecache.h>
50 #include <hv/hypervisor.h>
51 #include <arch/chip.h>
52
53 #include "migrate.h"
54
55 #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
56
57 #ifndef __tilegx__
58 unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
59 EXPORT_SYMBOL(VMALLOC_RESERVE);
60 #endif
61
62 /* Create an L2 page table */
63 static pte_t * __init alloc_pte(void)
64 {
65 return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
66 }
67
68 /*
69 * L2 page tables per controller. We allocate these all at once from
70 * the bootmem allocator and store them here. This saves on kernel L2
71 * page table memory, compared to allocating a full 64K page per L2
72 * page table, and also means that in cases where we use huge pages,
73 * we are guaranteed to later be able to shatter those huge pages and
74 * switch to using these page tables instead, without requiring
75 * further allocation. Each l2_ptes[] entry points to the first page
76 * table for the first hugepage-size piece of memory on the
77 * controller; other page tables are just indexed directly, i.e. the
78 * L2 page tables are contiguous in memory for each controller.
79 */
80 static pte_t *l2_ptes[MAX_NUMNODES];
81 static int num_l2_ptes[MAX_NUMNODES];
82
83 static void init_prealloc_ptes(int node, int pages)
84 {
85 BUG_ON(pages & (HV_L2_ENTRIES-1));
86 if (pages) {
87 num_l2_ptes[node] = pages;
88 l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
89 HV_PAGE_TABLE_ALIGN, 0);
90 }
91 }
92
93 pte_t *get_prealloc_pte(unsigned long pfn)
94 {
95 int node = pfn_to_nid(pfn);
96 pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
97 BUG_ON(node >= MAX_NUMNODES);
98 BUG_ON(pfn >= num_l2_ptes[node]);
99 return &l2_ptes[node][pfn];
100 }
101
102 /*
103 * What caching do we expect pages from the heap to have when
104 * they are allocated during bootup? (Once we've installed the
105 * "real" swapper_pg_dir.)
106 */
107 static int initial_heap_home(void)
108 {
109 #if CHIP_HAS_CBOX_HOME_MAP()
110 if (hash_default)
111 return PAGE_HOME_HASH;
112 #endif
113 return smp_processor_id();
114 }
115
116 /*
117 * Place a pointer to an L2 page table in a middle page
118 * directory entry.
119 */
120 static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
121 {
122 phys_addr_t pa = __pa(page_table);
123 unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
124 pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
125 BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
126 pteval = pte_set_home(pteval, initial_heap_home());
127 *(pte_t *)pmd = pteval;
128 if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
129 BUG();
130 }
131
132 #ifdef __tilegx__
133
134 #if HV_L1_SIZE != HV_L2_SIZE
135 # error Rework assumption that L1 and L2 page tables are same size.
136 #endif
137
138 /* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
139 static inline pmd_t *alloc_pmd(void)
140 {
141 return (pmd_t *)alloc_pte();
142 }
143
144 static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
145 {
146 assign_pte((pmd_t *)pud, (pte_t *)pmd);
147 }
148
149 #endif /* __tilegx__ */
150
151 /* Replace the given pmd with a full PTE table. */
152 void __init shatter_pmd(pmd_t *pmd)
153 {
154 pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
155 assign_pte(pmd, pte);
156 }
157
158 #ifdef CONFIG_HIGHMEM
159 /*
160 * This function initializes a certain range of kernel virtual memory
161 * with new bootmem page tables, everywhere page tables are missing in
162 * the given range.
163 */
164
165 /*
166 * NOTE: The pagetables are allocated contiguous on the physical space
167 * so we can cache the place of the first one and move around without
168 * checking the pgd every time.
169 */
170 static void __init page_table_range_init(unsigned long start,
171 unsigned long end, pgd_t *pgd_base)
172 {
173 pgd_t *pgd;
174 int pgd_idx;
175 unsigned long vaddr;
176
177 vaddr = start;
178 pgd_idx = pgd_index(vaddr);
179 pgd = pgd_base + pgd_idx;
180
181 for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
182 pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
183 if (pmd_none(*pmd))
184 assign_pte(pmd, alloc_pte());
185 vaddr += PMD_SIZE;
186 }
187 }
188 #endif /* CONFIG_HIGHMEM */
189
190
191 #if CHIP_HAS_CBOX_HOME_MAP()
192
193 static int __initdata ktext_hash = 1; /* .text pages */
194 static int __initdata kdata_hash = 1; /* .data and .bss pages */
195 int __write_once hash_default = 1; /* kernel allocator pages */
196 EXPORT_SYMBOL(hash_default);
197 int __write_once kstack_hash = 1; /* if no homecaching, use h4h */
198 #endif /* CHIP_HAS_CBOX_HOME_MAP */
199
200 /*
201 * CPUs to use to for striping the pages of kernel data. If hash-for-home
202 * is available, this is only relevant if kcache_hash sets up the
203 * .data and .bss to be page-homed, and we don't want the default mode
204 * of using the full set of kernel cpus for the striping.
205 */
206 static __initdata struct cpumask kdata_mask;
207 static __initdata int kdata_arg_seen;
208
209 int __write_once kdata_huge; /* if no homecaching, small pages */
210
211
212 /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
213 static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
214 {
215 prot = pte_set_home(prot, home);
216 #if CHIP_HAS_CBOX_HOME_MAP()
217 if (home == PAGE_HOME_IMMUTABLE) {
218 if (ktext_hash)
219 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
220 else
221 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
222 }
223 #endif
224 return prot;
225 }
226
227 /*
228 * For a given kernel data VA, how should it be cached?
229 * We return the complete pgprot_t with caching bits set.
230 */
231 static pgprot_t __init init_pgprot(ulong address)
232 {
233 int cpu;
234 unsigned long page;
235 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
236
237 #if CHIP_HAS_CBOX_HOME_MAP()
238 /* For kdata=huge, everything is just hash-for-home. */
239 if (kdata_huge)
240 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
241 #endif
242
243 /* We map the aliased pages of permanent text inaccessible. */
244 if (address < (ulong) _sinittext - CODE_DELTA)
245 return PAGE_NONE;
246
247 /*
248 * We map read-only data non-coherent for performance. We could
249 * use neighborhood caching on TILE64, but it's not clear it's a win.
250 */
251 if ((address >= (ulong) __start_rodata &&
252 address < (ulong) __end_rodata) ||
253 address == (ulong) empty_zero_page) {
254 return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
255 }
256
257 /* As a performance optimization, keep the boot init stack here. */
258 if (address >= (ulong)&init_thread_union &&
259 address < (ulong)&init_thread_union + THREAD_SIZE)
260 return construct_pgprot(PAGE_KERNEL, smp_processor_id());
261
262 #ifndef __tilegx__
263 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
264 /* Force the atomic_locks[] array page to be hash-for-home. */
265 if (address == (ulong) atomic_locks)
266 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
267 #endif
268 #endif
269
270 /*
271 * Everything else that isn't data or bss is heap, so mark it
272 * with the initial heap home (hash-for-home, or this cpu). This
273 * includes any addresses after the loaded image and any address before
274 * _einitdata, since we already captured the case of text before
275 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
276 *
277 * All the LOWMEM pages that we mark this way will get their
278 * struct page homecache properly marked later, in set_page_homes().
279 * The HIGHMEM pages we leave with a default zero for their
280 * homes, but with a zero free_time we don't have to actually
281 * do a flush action the first time we use them, either.
282 */
283 if (address >= (ulong) _end || address < (ulong) _einitdata)
284 return construct_pgprot(PAGE_KERNEL, initial_heap_home());
285
286 #if CHIP_HAS_CBOX_HOME_MAP()
287 /* Use hash-for-home if requested for data/bss. */
288 if (kdata_hash)
289 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
290 #endif
291
292 /*
293 * Make the w1data homed like heap to start with, to avoid
294 * making it part of the page-striped data area when we're just
295 * going to convert it to read-only soon anyway.
296 */
297 if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
298 return construct_pgprot(PAGE_KERNEL, initial_heap_home());
299
300 /*
301 * Otherwise we just hand out consecutive cpus. To avoid
302 * requiring this function to hold state, we just walk forward from
303 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
304 * the requested address, while walking cpu home around kdata_mask.
305 * This is typically no more than a dozen or so iterations.
306 */
307 page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
308 BUG_ON(address < page || address >= (ulong)_end);
309 cpu = cpumask_first(&kdata_mask);
310 for (; page < address; page += PAGE_SIZE) {
311 if (page >= (ulong)&init_thread_union &&
312 page < (ulong)&init_thread_union + THREAD_SIZE)
313 continue;
314 if (page == (ulong)empty_zero_page)
315 continue;
316 #ifndef __tilegx__
317 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
318 if (page == (ulong)atomic_locks)
319 continue;
320 #endif
321 #endif
322 cpu = cpumask_next(cpu, &kdata_mask);
323 if (cpu == NR_CPUS)
324 cpu = cpumask_first(&kdata_mask);
325 }
326 return construct_pgprot(PAGE_KERNEL, cpu);
327 }
328
329 /*
330 * This function sets up how we cache the kernel text. If we have
331 * hash-for-home support, normally that is used instead (see the
332 * kcache_hash boot flag for more information). But if we end up
333 * using a page-based caching technique, this option sets up the
334 * details of that. In addition, the "ktext=nocache" option may
335 * always be used to disable local caching of text pages, if desired.
336 */
337
338 static int __initdata ktext_arg_seen;
339 static int __initdata ktext_small;
340 static int __initdata ktext_local;
341 static int __initdata ktext_all;
342 static int __initdata ktext_nondataplane;
343 static int __initdata ktext_nocache;
344 static struct cpumask __initdata ktext_mask;
345
346 static int __init setup_ktext(char *str)
347 {
348 if (str == NULL)
349 return -EINVAL;
350
351 /* If you have a leading "nocache", turn off ktext caching */
352 if (strncmp(str, "nocache", 7) == 0) {
353 ktext_nocache = 1;
354 pr_info("ktext: disabling local caching of kernel text\n");
355 str += 7;
356 if (*str == ',')
357 ++str;
358 if (*str == '\0')
359 return 0;
360 }
361
362 ktext_arg_seen = 1;
363
364 /* Default setting on Tile64: use a huge page */
365 if (strcmp(str, "huge") == 0)
366 pr_info("ktext: using one huge locally cached page\n");
367
368 /* Pay TLB cost but get no cache benefit: cache small pages locally */
369 else if (strcmp(str, "local") == 0) {
370 ktext_small = 1;
371 ktext_local = 1;
372 pr_info("ktext: using small pages with local caching\n");
373 }
374
375 /* Neighborhood cache ktext pages on all cpus. */
376 else if (strcmp(str, "all") == 0) {
377 ktext_small = 1;
378 ktext_all = 1;
379 pr_info("ktext: using maximal caching neighborhood\n");
380 }
381
382
383 /* Neighborhood ktext pages on specified mask */
384 else if (cpulist_parse(str, &ktext_mask) == 0) {
385 char buf[NR_CPUS * 5];
386 cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
387 if (cpumask_weight(&ktext_mask) > 1) {
388 ktext_small = 1;
389 pr_info("ktext: using caching neighborhood %s "
390 "with small pages\n", buf);
391 } else {
392 pr_info("ktext: caching on cpu %s with one huge page\n",
393 buf);
394 }
395 }
396
397 else if (*str)
398 return -EINVAL;
399
400 return 0;
401 }
402
403 early_param("ktext", setup_ktext);
404
405
406 static inline pgprot_t ktext_set_nocache(pgprot_t prot)
407 {
408 if (!ktext_nocache)
409 prot = hv_pte_set_nc(prot);
410 #if CHIP_HAS_NC_AND_NOALLOC_BITS()
411 else
412 prot = hv_pte_set_no_alloc_l2(prot);
413 #endif
414 return prot;
415 }
416
417 #ifndef __tilegx__
418 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
419 {
420 return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
421 }
422 #else
423 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
424 {
425 pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
426 if (pud_none(*pud))
427 assign_pmd(pud, alloc_pmd());
428 return pmd_offset(pud, va);
429 }
430 #endif
431
432 /* Temporary page table we use for staging. */
433 static pgd_t pgtables[PTRS_PER_PGD]
434 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
435
436 /*
437 * This maps the physical memory to kernel virtual address space, a total
438 * of max_low_pfn pages, by creating page tables starting from address
439 * PAGE_OFFSET.
440 *
441 * This routine transitions us from using a set of compiled-in large
442 * pages to using some more precise caching, including removing access
443 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
444 * marking read-only data as locally cacheable, striping the remaining
445 * .data and .bss across all the available tiles, and removing access
446 * to pages above the top of RAM (thus ensuring a page fault from a bad
447 * virtual address rather than a hypervisor shoot down for accessing
448 * memory outside the assigned limits).
449 */
450 static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
451 {
452 unsigned long address, pfn;
453 pmd_t *pmd;
454 pte_t *pte;
455 int pte_ofs;
456 const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
457 struct cpumask kstripe_mask;
458 int rc, i;
459
460 #if CHIP_HAS_CBOX_HOME_MAP()
461 if (ktext_arg_seen && ktext_hash) {
462 pr_warning("warning: \"ktext\" boot argument ignored"
463 " if \"kcache_hash\" sets up text hash-for-home\n");
464 ktext_small = 0;
465 }
466
467 if (kdata_arg_seen && kdata_hash) {
468 pr_warning("warning: \"kdata\" boot argument ignored"
469 " if \"kcache_hash\" sets up data hash-for-home\n");
470 }
471
472 if (kdata_huge && !hash_default) {
473 pr_warning("warning: disabling \"kdata=huge\"; requires"
474 " kcache_hash=all or =allbutstack\n");
475 kdata_huge = 0;
476 }
477 #endif
478
479 /*
480 * Set up a mask for cpus to use for kernel striping.
481 * This is normally all cpus, but minus dataplane cpus if any.
482 * If the dataplane covers the whole chip, we stripe over
483 * the whole chip too.
484 */
485 cpumask_copy(&kstripe_mask, cpu_possible_mask);
486 if (!kdata_arg_seen)
487 kdata_mask = kstripe_mask;
488
489 /* Allocate and fill in L2 page tables */
490 for (i = 0; i < MAX_NUMNODES; ++i) {
491 #ifdef CONFIG_HIGHMEM
492 unsigned long end_pfn = node_lowmem_end_pfn[i];
493 #else
494 unsigned long end_pfn = node_end_pfn[i];
495 #endif
496 unsigned long end_huge_pfn = 0;
497
498 /* Pre-shatter the last huge page to allow per-cpu pages. */
499 if (kdata_huge)
500 end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
501
502 pfn = node_start_pfn[i];
503
504 /* Allocate enough memory to hold L2 page tables for node. */
505 init_prealloc_ptes(i, end_pfn - pfn);
506
507 address = (unsigned long) pfn_to_kaddr(pfn);
508 while (pfn < end_pfn) {
509 BUG_ON(address & (HPAGE_SIZE-1));
510 pmd = get_pmd(pgtables, address);
511 pte = get_prealloc_pte(pfn);
512 if (pfn < end_huge_pfn) {
513 pgprot_t prot = init_pgprot(address);
514 *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
515 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
516 pfn++, pte_ofs++, address += PAGE_SIZE)
517 pte[pte_ofs] = pfn_pte(pfn, prot);
518 } else {
519 if (kdata_huge)
520 printk(KERN_DEBUG "pre-shattered huge"
521 " page at %#lx\n", address);
522 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
523 pfn++, pte_ofs++, address += PAGE_SIZE) {
524 pgprot_t prot = init_pgprot(address);
525 pte[pte_ofs] = pfn_pte(pfn, prot);
526 }
527 assign_pte(pmd, pte);
528 }
529 }
530 }
531
532 /*
533 * Set or check ktext_map now that we have cpu_possible_mask
534 * and kstripe_mask to work with.
535 */
536 if (ktext_all)
537 cpumask_copy(&ktext_mask, cpu_possible_mask);
538 else if (ktext_nondataplane)
539 ktext_mask = kstripe_mask;
540 else if (!cpumask_empty(&ktext_mask)) {
541 /* Sanity-check any mask that was requested */
542 struct cpumask bad;
543 cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
544 cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
545 if (!cpumask_empty(&bad)) {
546 char buf[NR_CPUS * 5];
547 cpulist_scnprintf(buf, sizeof(buf), &bad);
548 pr_info("ktext: not using unavailable cpus %s\n", buf);
549 }
550 if (cpumask_empty(&ktext_mask)) {
551 pr_warning("ktext: no valid cpus; caching on %d.\n",
552 smp_processor_id());
553 cpumask_copy(&ktext_mask,
554 cpumask_of(smp_processor_id()));
555 }
556 }
557
558 address = MEM_SV_INTRPT;
559 pmd = get_pmd(pgtables, address);
560 pfn = 0; /* code starts at PA 0 */
561 if (ktext_small) {
562 /* Allocate an L2 PTE for the kernel text */
563 int cpu = 0;
564 pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
565 PAGE_HOME_IMMUTABLE);
566
567 if (ktext_local) {
568 if (ktext_nocache)
569 prot = hv_pte_set_mode(prot,
570 HV_PTE_MODE_UNCACHED);
571 else
572 prot = hv_pte_set_mode(prot,
573 HV_PTE_MODE_CACHE_NO_L3);
574 } else {
575 prot = hv_pte_set_mode(prot,
576 HV_PTE_MODE_CACHE_TILE_L3);
577 cpu = cpumask_first(&ktext_mask);
578
579 prot = ktext_set_nocache(prot);
580 }
581
582 BUG_ON(address != (unsigned long)_stext);
583 pte = NULL;
584 for (; address < (unsigned long)_einittext;
585 pfn++, address += PAGE_SIZE) {
586 pte_ofs = pte_index(address);
587 if (pte_ofs == 0) {
588 if (pte)
589 assign_pte(pmd++, pte);
590 pte = alloc_pte();
591 }
592 if (!ktext_local) {
593 prot = set_remote_cache_cpu(prot, cpu);
594 cpu = cpumask_next(cpu, &ktext_mask);
595 if (cpu == NR_CPUS)
596 cpu = cpumask_first(&ktext_mask);
597 }
598 pte[pte_ofs] = pfn_pte(pfn, prot);
599 }
600 if (pte)
601 assign_pte(pmd, pte);
602 } else {
603 pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
604 pteval = pte_mkhuge(pteval);
605 #if CHIP_HAS_CBOX_HOME_MAP()
606 if (ktext_hash) {
607 pteval = hv_pte_set_mode(pteval,
608 HV_PTE_MODE_CACHE_HASH_L3);
609 pteval = ktext_set_nocache(pteval);
610 } else
611 #endif /* CHIP_HAS_CBOX_HOME_MAP() */
612 if (cpumask_weight(&ktext_mask) == 1) {
613 pteval = set_remote_cache_cpu(pteval,
614 cpumask_first(&ktext_mask));
615 pteval = hv_pte_set_mode(pteval,
616 HV_PTE_MODE_CACHE_TILE_L3);
617 pteval = ktext_set_nocache(pteval);
618 } else if (ktext_nocache)
619 pteval = hv_pte_set_mode(pteval,
620 HV_PTE_MODE_UNCACHED);
621 else
622 pteval = hv_pte_set_mode(pteval,
623 HV_PTE_MODE_CACHE_NO_L3);
624 for (; address < (unsigned long)_einittext;
625 pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
626 *(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
627 }
628
629 /* Set swapper_pgprot here so it is flushed to memory right away. */
630 swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
631
632 /*
633 * Since we may be changing the caching of the stack and page
634 * table itself, we invoke an assembly helper to do the
635 * following steps:
636 *
637 * - flush the cache so we start with an empty slate
638 * - install pgtables[] as the real page table
639 * - flush the TLB so the new page table takes effect
640 */
641 rc = flush_and_install_context(__pa(pgtables),
642 init_pgprot((unsigned long)pgtables),
643 __get_cpu_var(current_asid),
644 cpumask_bits(my_cpu_mask));
645 BUG_ON(rc != 0);
646
647 /* Copy the page table back to the normal swapper_pg_dir. */
648 memcpy(pgd_base, pgtables, sizeof(pgtables));
649 __install_page_table(pgd_base, __get_cpu_var(current_asid),
650 swapper_pgprot);
651
652 /*
653 * We just read swapper_pgprot and thus brought it into the cache,
654 * with its new home & caching mode. When we start the other CPUs,
655 * they're going to reference swapper_pgprot via their initial fake
656 * VA-is-PA mappings, which cache everything locally. At that
657 * time, if it's in our cache with a conflicting home, the
658 * simulator's coherence checker will complain. So, flush it out
659 * of our cache; we're not going to ever use it again anyway.
660 */
661 __insn_finv(&swapper_pgprot);
662 }
663
664 /*
665 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
666 * is valid. The argument is a physical page number.
667 *
668 * On Tile, the only valid things for which we can just hand out unchecked
669 * PTEs are the kernel code and data. Anything else might change its
670 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
671 * Note that init_thread_union is released to heap soon after boot,
672 * so we include it in the init data.
673 *
674 * For TILE-Gx, we might want to consider allowing access to PA
675 * regions corresponding to PCI space, etc.
676 */
677 int devmem_is_allowed(unsigned long pagenr)
678 {
679 return pagenr < kaddr_to_pfn(_end) &&
680 !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
681 pagenr < kaddr_to_pfn(_einitdata)) &&
682 !(pagenr >= kaddr_to_pfn(_sinittext) ||
683 pagenr <= kaddr_to_pfn(_einittext-1));
684 }
685
686 #ifdef CONFIG_HIGHMEM
687 static void __init permanent_kmaps_init(pgd_t *pgd_base)
688 {
689 pgd_t *pgd;
690 pud_t *pud;
691 pmd_t *pmd;
692 pte_t *pte;
693 unsigned long vaddr;
694
695 vaddr = PKMAP_BASE;
696 page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
697
698 pgd = swapper_pg_dir + pgd_index(vaddr);
699 pud = pud_offset(pgd, vaddr);
700 pmd = pmd_offset(pud, vaddr);
701 pte = pte_offset_kernel(pmd, vaddr);
702 pkmap_page_table = pte;
703 }
704 #endif /* CONFIG_HIGHMEM */
705
706
707 static void __init init_free_pfn_range(unsigned long start, unsigned long end)
708 {
709 unsigned long pfn;
710 struct page *page = pfn_to_page(start);
711
712 for (pfn = start; pfn < end; ) {
713 /* Optimize by freeing pages in large batches */
714 int order = __ffs(pfn);
715 int count, i;
716 struct page *p;
717
718 if (order >= MAX_ORDER)
719 order = MAX_ORDER-1;
720 count = 1 << order;
721 while (pfn + count > end) {
722 count >>= 1;
723 --order;
724 }
725 for (p = page, i = 0; i < count; ++i, ++p) {
726 __ClearPageReserved(p);
727 /*
728 * Hacky direct set to avoid unnecessary
729 * lock take/release for EVERY page here.
730 */
731 p->_count.counter = 0;
732 p->_mapcount.counter = -1;
733 }
734 init_page_count(page);
735 __free_pages(page, order);
736 totalram_pages += count;
737
738 page += count;
739 pfn += count;
740 }
741 }
742
743 static void __init set_non_bootmem_pages_init(void)
744 {
745 struct zone *z;
746 for_each_zone(z) {
747 unsigned long start, end;
748 int nid = z->zone_pgdat->node_id;
749 int idx = zone_idx(z);
750
751 start = z->zone_start_pfn;
752 if (start == 0)
753 continue; /* bootmem */
754 end = start + z->spanned_pages;
755 if (idx == ZONE_NORMAL) {
756 BUG_ON(start != node_start_pfn[nid]);
757 start = node_free_pfn[nid];
758 }
759 #ifdef CONFIG_HIGHMEM
760 if (idx == ZONE_HIGHMEM)
761 totalhigh_pages += z->spanned_pages;
762 #endif
763 if (kdata_huge) {
764 unsigned long percpu_pfn = node_percpu_pfn[nid];
765 if (start < percpu_pfn && end > percpu_pfn)
766 end = percpu_pfn;
767 }
768 #ifdef CONFIG_PCI
769 if (start <= pci_reserve_start_pfn &&
770 end > pci_reserve_start_pfn) {
771 if (end > pci_reserve_end_pfn)
772 init_free_pfn_range(pci_reserve_end_pfn, end);
773 end = pci_reserve_start_pfn;
774 }
775 #endif
776 init_free_pfn_range(start, end);
777 }
778 }
779
780 /*
781 * paging_init() sets up the page tables - note that all of lowmem is
782 * already mapped by head.S.
783 */
784 void __init paging_init(void)
785 {
786 #ifdef CONFIG_HIGHMEM
787 unsigned long vaddr, end;
788 #endif
789 #ifdef __tilegx__
790 pud_t *pud;
791 #endif
792 pgd_t *pgd_base = swapper_pg_dir;
793
794 kernel_physical_mapping_init(pgd_base);
795
796 #ifdef CONFIG_HIGHMEM
797 /*
798 * Fixed mappings, only the page table structure has to be
799 * created - mappings will be set by set_fixmap():
800 */
801 vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
802 end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
803 page_table_range_init(vaddr, end, pgd_base);
804 permanent_kmaps_init(pgd_base);
805 #endif
806
807 #ifdef __tilegx__
808 /*
809 * Since GX allocates just one pmd_t array worth of vmalloc space,
810 * we go ahead and allocate it statically here, then share it
811 * globally. As a result we don't have to worry about any task
812 * changing init_mm once we get up and running, and there's no
813 * need for e.g. vmalloc_sync_all().
814 */
815 BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
816 pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
817 assign_pmd(pud, alloc_pmd());
818 #endif
819 }
820
821
822 /*
823 * Walk the kernel page tables and derive the page_home() from
824 * the PTEs, so that set_pte() can properly validate the caching
825 * of all PTEs it sees.
826 */
827 void __init set_page_homes(void)
828 {
829 }
830
831 static void __init set_max_mapnr_init(void)
832 {
833 #ifdef CONFIG_FLATMEM
834 max_mapnr = max_low_pfn;
835 #endif
836 }
837
838 void __init mem_init(void)
839 {
840 int codesize, datasize, initsize;
841 int i;
842 #ifndef __tilegx__
843 void *last;
844 #endif
845
846 #ifdef CONFIG_FLATMEM
847 BUG_ON(!mem_map);
848 #endif
849
850 #ifdef CONFIG_HIGHMEM
851 /* check that fixmap and pkmap do not overlap */
852 if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
853 pr_err("fixmap and kmap areas overlap"
854 " - this will crash\n");
855 pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
856 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
857 FIXADDR_START);
858 BUG();
859 }
860 #endif
861
862 set_max_mapnr_init();
863
864 /* this will put all bootmem onto the freelists */
865 totalram_pages += free_all_bootmem();
866
867 /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
868 set_non_bootmem_pages_init();
869
870 codesize = (unsigned long)&_etext - (unsigned long)&_text;
871 datasize = (unsigned long)&_end - (unsigned long)&_sdata;
872 initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext;
873 initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
874
875 pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
876 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
877 num_physpages << (PAGE_SHIFT-10),
878 codesize >> 10,
879 datasize >> 10,
880 initsize >> 10,
881 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
882 );
883
884 /*
885 * In debug mode, dump some interesting memory mappings.
886 */
887 #ifdef CONFIG_HIGHMEM
888 printk(KERN_DEBUG " KMAP %#lx - %#lx\n",
889 FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
890 printk(KERN_DEBUG " PKMAP %#lx - %#lx\n",
891 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
892 #endif
893 #ifdef CONFIG_HUGEVMAP
894 printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n",
895 HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
896 #endif
897 printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n",
898 _VMALLOC_START, _VMALLOC_END - 1);
899 #ifdef __tilegx__
900 for (i = MAX_NUMNODES-1; i >= 0; --i) {
901 struct pglist_data *node = &node_data[i];
902 if (node->node_present_pages) {
903 unsigned long start = (unsigned long)
904 pfn_to_kaddr(node->node_start_pfn);
905 unsigned long end = start +
906 (node->node_present_pages << PAGE_SHIFT);
907 printk(KERN_DEBUG " MEM%d %#lx - %#lx\n",
908 i, start, end - 1);
909 }
910 }
911 #else
912 last = high_memory;
913 for (i = MAX_NUMNODES-1; i >= 0; --i) {
914 if ((unsigned long)vbase_map[i] != -1UL) {
915 printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n",
916 i, (unsigned long) (vbase_map[i]),
917 (unsigned long) (last-1));
918 last = vbase_map[i];
919 }
920 }
921 #endif
922
923 #ifndef __tilegx__
924 /*
925 * Convert from using one lock for all atomic operations to
926 * one per cpu.
927 */
928 __init_atomic_per_cpu();
929 #endif
930 }
931
932 /*
933 * this is for the non-NUMA, single node SMP system case.
934 * Specifically, in the case of x86, we will always add
935 * memory to the highmem for now.
936 */
937 #ifndef CONFIG_NEED_MULTIPLE_NODES
938 int arch_add_memory(u64 start, u64 size)
939 {
940 struct pglist_data *pgdata = &contig_page_data;
941 struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
942 unsigned long start_pfn = start >> PAGE_SHIFT;
943 unsigned long nr_pages = size >> PAGE_SHIFT;
944
945 return __add_pages(zone, start_pfn, nr_pages);
946 }
947
948 int remove_memory(u64 start, u64 size)
949 {
950 return -EINVAL;
951 }
952 #endif
953
954 struct kmem_cache *pgd_cache;
955
956 void __init pgtable_cache_init(void)
957 {
958 pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
959 if (!pgd_cache)
960 panic("pgtable_cache_init(): Cannot create pgd cache");
961 }
962
963 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
964 /*
965 * The __w1data area holds data that is only written during initialization,
966 * and is read-only and thus freely cacheable thereafter. Fix the page
967 * table entries that cover that region accordingly.
968 */
969 static void mark_w1data_ro(void)
970 {
971 /* Loop over page table entries */
972 unsigned long addr = (unsigned long)__w1data_begin;
973 BUG_ON((addr & (PAGE_SIZE-1)) != 0);
974 for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
975 unsigned long pfn = kaddr_to_pfn((void *)addr);
976 pte_t *ptep = virt_to_pte(NULL, addr);
977 BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */
978 set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
979 }
980 }
981 #endif
982
983 #ifdef CONFIG_DEBUG_PAGEALLOC
984 static long __write_once initfree;
985 #else
986 static long __write_once initfree = 1;
987 #endif
988
989 /* Select whether to free (1) or mark unusable (0) the __init pages. */
990 static int __init set_initfree(char *str)
991 {
992 long val;
993 if (strict_strtol(str, 0, &val) == 0) {
994 initfree = val;
995 pr_info("initfree: %s free init pages\n",
996 initfree ? "will" : "won't");
997 }
998 return 1;
999 }
1000 __setup("initfree=", set_initfree);
1001
1002 static void free_init_pages(char *what, unsigned long begin, unsigned long end)
1003 {
1004 unsigned long addr = (unsigned long) begin;
1005
1006 if (kdata_huge && !initfree) {
1007 pr_warning("Warning: ignoring initfree=0:"
1008 " incompatible with kdata=huge\n");
1009 initfree = 1;
1010 }
1011 end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1012 local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1013 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1014 /*
1015 * Note we just reset the home here directly in the
1016 * page table. We know this is safe because our caller
1017 * just flushed the caches on all the other cpus,
1018 * and they won't be touching any of these pages.
1019 */
1020 int pfn = kaddr_to_pfn((void *)addr);
1021 struct page *page = pfn_to_page(pfn);
1022 pte_t *ptep = virt_to_pte(NULL, addr);
1023 if (!initfree) {
1024 /*
1025 * If debugging page accesses then do not free
1026 * this memory but mark them not present - any
1027 * buggy init-section access will create a
1028 * kernel page fault:
1029 */
1030 pte_clear(&init_mm, addr, ptep);
1031 continue;
1032 }
1033 __ClearPageReserved(page);
1034 init_page_count(page);
1035 if (pte_huge(*ptep))
1036 BUG_ON(!kdata_huge);
1037 else
1038 set_pte_at(&init_mm, addr, ptep,
1039 pfn_pte(pfn, PAGE_KERNEL));
1040 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1041 free_page(addr);
1042 totalram_pages++;
1043 }
1044 pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1045 }
1046
1047 void free_initmem(void)
1048 {
1049 const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1050
1051 /*
1052 * Evict the dirty initdata on the boot cpu, evict the w1data
1053 * wherever it's homed, and evict all the init code everywhere.
1054 * We are guaranteed that no one will touch the init pages any
1055 * more, and although other cpus may be touching the w1data,
1056 * we only actually change the caching on tile64, which won't
1057 * be keeping local copies in the other tiles' caches anyway.
1058 */
1059 homecache_evict(&cpu_cacheable_map);
1060
1061 /* Free the data pages that we won't use again after init. */
1062 free_init_pages("unused kernel data",
1063 (unsigned long)_sinitdata,
1064 (unsigned long)_einitdata);
1065
1066 /*
1067 * Free the pages mapped from 0xc0000000 that correspond to code
1068 * pages from MEM_SV_INTRPT that we won't use again after init.
1069 */
1070 free_init_pages("unused kernel text",
1071 (unsigned long)_sinittext - text_delta,
1072 (unsigned long)_einittext - text_delta);
1073
1074 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1075 /*
1076 * Upgrade the .w1data section to globally cached.
1077 * We don't do this on tilepro, since the cache architecture
1078 * pretty much makes it irrelevant, and in any case we end
1079 * up having racing issues with other tiles that may touch
1080 * the data after we flush the cache but before we update
1081 * the PTEs and flush the TLBs, causing sharer shootdowns
1082 * later. Even though this is to clean data, it seems like
1083 * an unnecessary complication.
1084 */
1085 mark_w1data_ro();
1086 #endif
1087
1088 /* Do a global TLB flush so everyone sees the changes. */
1089 flush_tlb_all();
1090 }