]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/um/drivers/chan_kern.c
uml: remove user_util.h
[mirror_ubuntu-kernels.git] / arch / um / drivers / chan_kern.c
1 /*
2 * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
3 * Licensed under the GPL
4 */
5
6 #include <linux/stddef.h>
7 #include <linux/kernel.h>
8 #include <linux/list.h>
9 #include <linux/slab.h>
10 #include <linux/tty.h>
11 #include <linux/string.h>
12 #include <linux/tty_flip.h>
13 #include <asm/irq.h>
14 #include "chan_kern.h"
15 #include "kern.h"
16 #include "irq_user.h"
17 #include "sigio.h"
18 #include "line.h"
19 #include "os.h"
20
21 #ifdef CONFIG_NOCONFIG_CHAN
22 static void *not_configged_init(char *str, int device,
23 const struct chan_opts *opts)
24 {
25 printk("Using a channel type which is configured out of "
26 "UML\n");
27 return NULL;
28 }
29
30 static int not_configged_open(int input, int output, int primary, void *data,
31 char **dev_out)
32 {
33 printk("Using a channel type which is configured out of "
34 "UML\n");
35 return -ENODEV;
36 }
37
38 static void not_configged_close(int fd, void *data)
39 {
40 printk("Using a channel type which is configured out of "
41 "UML\n");
42 }
43
44 static int not_configged_read(int fd, char *c_out, void *data)
45 {
46 printk("Using a channel type which is configured out of "
47 "UML\n");
48 return -EIO;
49 }
50
51 static int not_configged_write(int fd, const char *buf, int len, void *data)
52 {
53 printk("Using a channel type which is configured out of "
54 "UML\n");
55 return -EIO;
56 }
57
58 static int not_configged_console_write(int fd, const char *buf, int len)
59 {
60 printk("Using a channel type which is configured out of "
61 "UML\n");
62 return -EIO;
63 }
64
65 static int not_configged_window_size(int fd, void *data, unsigned short *rows,
66 unsigned short *cols)
67 {
68 printk("Using a channel type which is configured out of "
69 "UML\n");
70 return -ENODEV;
71 }
72
73 static void not_configged_free(void *data)
74 {
75 printk("Using a channel type which is configured out of "
76 "UML\n");
77 }
78
79 static const struct chan_ops not_configged_ops = {
80 .init = not_configged_init,
81 .open = not_configged_open,
82 .close = not_configged_close,
83 .read = not_configged_read,
84 .write = not_configged_write,
85 .console_write = not_configged_console_write,
86 .window_size = not_configged_window_size,
87 .free = not_configged_free,
88 .winch = 0,
89 };
90 #endif /* CONFIG_NOCONFIG_CHAN */
91
92 void generic_close(int fd, void *unused)
93 {
94 os_close_file(fd);
95 }
96
97 int generic_read(int fd, char *c_out, void *unused)
98 {
99 int n;
100
101 n = os_read_file(fd, c_out, sizeof(*c_out));
102
103 if(n == -EAGAIN)
104 return 0;
105 else if(n == 0)
106 return -EIO;
107 return n;
108 }
109
110 /* XXX Trivial wrapper around os_write_file */
111
112 int generic_write(int fd, const char *buf, int n, void *unused)
113 {
114 return os_write_file(fd, buf, n);
115 }
116
117 int generic_window_size(int fd, void *unused, unsigned short *rows_out,
118 unsigned short *cols_out)
119 {
120 int rows, cols;
121 int ret;
122
123 ret = os_window_size(fd, &rows, &cols);
124 if(ret < 0)
125 return ret;
126
127 ret = ((*rows_out != rows) || (*cols_out != cols));
128
129 *rows_out = rows;
130 *cols_out = cols;
131
132 return ret;
133 }
134
135 void generic_free(void *data)
136 {
137 kfree(data);
138 }
139
140 static void tty_receive_char(struct tty_struct *tty, char ch)
141 {
142 if(tty == NULL) return;
143
144 if(I_IXON(tty) && !I_IXOFF(tty) && !tty->raw) {
145 if(ch == STOP_CHAR(tty)){
146 stop_tty(tty);
147 return;
148 }
149 else if(ch == START_CHAR(tty)){
150 start_tty(tty);
151 return;
152 }
153 }
154
155 tty_insert_flip_char(tty, ch, TTY_NORMAL);
156 }
157
158 static int open_one_chan(struct chan *chan)
159 {
160 int fd;
161
162 if(chan->opened)
163 return 0;
164
165 if(chan->ops->open == NULL)
166 fd = 0;
167 else fd = (*chan->ops->open)(chan->input, chan->output, chan->primary,
168 chan->data, &chan->dev);
169 if(fd < 0)
170 return fd;
171 chan->fd = fd;
172
173 chan->opened = 1;
174 return 0;
175 }
176
177 int open_chan(struct list_head *chans)
178 {
179 struct list_head *ele;
180 struct chan *chan;
181 int ret, err = 0;
182
183 list_for_each(ele, chans){
184 chan = list_entry(ele, struct chan, list);
185 ret = open_one_chan(chan);
186 if(chan->primary)
187 err = ret;
188 }
189 return err;
190 }
191
192 void chan_enable_winch(struct list_head *chans, struct tty_struct *tty)
193 {
194 struct list_head *ele;
195 struct chan *chan;
196
197 list_for_each(ele, chans){
198 chan = list_entry(ele, struct chan, list);
199 if(chan->primary && chan->output && chan->ops->winch){
200 register_winch(chan->fd, tty);
201 return;
202 }
203 }
204 }
205
206 void enable_chan(struct line *line)
207 {
208 struct list_head *ele;
209 struct chan *chan;
210
211 list_for_each(ele, &line->chan_list){
212 chan = list_entry(ele, struct chan, list);
213 if(open_one_chan(chan))
214 continue;
215
216 if(chan->enabled)
217 continue;
218 line_setup_irq(chan->fd, chan->input, chan->output, line,
219 chan);
220 chan->enabled = 1;
221 }
222 }
223
224 /* Items are added in IRQ context, when free_irq can't be called, and
225 * removed in process context, when it can.
226 * This handles interrupt sources which disappear, and which need to
227 * be permanently disabled. This is discovered in IRQ context, but
228 * the freeing of the IRQ must be done later.
229 */
230 static DEFINE_SPINLOCK(irqs_to_free_lock);
231 static LIST_HEAD(irqs_to_free);
232
233 void free_irqs(void)
234 {
235 struct chan *chan;
236 LIST_HEAD(list);
237 struct list_head *ele;
238 unsigned long flags;
239
240 spin_lock_irqsave(&irqs_to_free_lock, flags);
241 list_splice_init(&irqs_to_free, &list);
242 spin_unlock_irqrestore(&irqs_to_free_lock, flags);
243
244 list_for_each(ele, &list){
245 chan = list_entry(ele, struct chan, free_list);
246
247 if(chan->input)
248 free_irq(chan->line->driver->read_irq, chan);
249 if(chan->output)
250 free_irq(chan->line->driver->write_irq, chan);
251 chan->enabled = 0;
252 }
253 }
254
255 static void close_one_chan(struct chan *chan, int delay_free_irq)
256 {
257 unsigned long flags;
258
259 if(!chan->opened)
260 return;
261
262 if(delay_free_irq){
263 spin_lock_irqsave(&irqs_to_free_lock, flags);
264 list_add(&chan->free_list, &irqs_to_free);
265 spin_unlock_irqrestore(&irqs_to_free_lock, flags);
266 }
267 else {
268 if(chan->input)
269 free_irq(chan->line->driver->read_irq, chan);
270 if(chan->output)
271 free_irq(chan->line->driver->write_irq, chan);
272 chan->enabled = 0;
273 }
274 if(chan->ops->close != NULL)
275 (*chan->ops->close)(chan->fd, chan->data);
276
277 chan->opened = 0;
278 chan->fd = -1;
279 }
280
281 void close_chan(struct list_head *chans, int delay_free_irq)
282 {
283 struct chan *chan;
284
285 /* Close in reverse order as open in case more than one of them
286 * refers to the same device and they save and restore that device's
287 * state. Then, the first one opened will have the original state,
288 * so it must be the last closed.
289 */
290 list_for_each_entry_reverse(chan, chans, list) {
291 close_one_chan(chan, delay_free_irq);
292 }
293 }
294
295 void deactivate_chan(struct list_head *chans, int irq)
296 {
297 struct list_head *ele;
298
299 struct chan *chan;
300 list_for_each(ele, chans) {
301 chan = list_entry(ele, struct chan, list);
302
303 if(chan->enabled && chan->input)
304 deactivate_fd(chan->fd, irq);
305 }
306 }
307
308 void reactivate_chan(struct list_head *chans, int irq)
309 {
310 struct list_head *ele;
311 struct chan *chan;
312
313 list_for_each(ele, chans) {
314 chan = list_entry(ele, struct chan, list);
315
316 if(chan->enabled && chan->input)
317 reactivate_fd(chan->fd, irq);
318 }
319 }
320
321 int write_chan(struct list_head *chans, const char *buf, int len,
322 int write_irq)
323 {
324 struct list_head *ele;
325 struct chan *chan = NULL;
326 int n, ret = 0;
327
328 list_for_each(ele, chans) {
329 chan = list_entry(ele, struct chan, list);
330 if (!chan->output || (chan->ops->write == NULL))
331 continue;
332 n = chan->ops->write(chan->fd, buf, len, chan->data);
333 if (chan->primary) {
334 ret = n;
335 if ((ret == -EAGAIN) || ((ret >= 0) && (ret < len)))
336 reactivate_fd(chan->fd, write_irq);
337 }
338 }
339 return ret;
340 }
341
342 int console_write_chan(struct list_head *chans, const char *buf, int len)
343 {
344 struct list_head *ele;
345 struct chan *chan;
346 int n, ret = 0;
347
348 list_for_each(ele, chans){
349 chan = list_entry(ele, struct chan, list);
350 if(!chan->output || (chan->ops->console_write == NULL))
351 continue;
352 n = chan->ops->console_write(chan->fd, buf, len);
353 if(chan->primary) ret = n;
354 }
355 return ret;
356 }
357
358 int console_open_chan(struct line *line, struct console *co)
359 {
360 int err;
361
362 err = open_chan(&line->chan_list);
363 if(err)
364 return err;
365
366 printk("Console initialized on /dev/%s%d\n", co->name, co->index);
367 return 0;
368 }
369
370 int chan_window_size(struct list_head *chans, unsigned short *rows_out,
371 unsigned short *cols_out)
372 {
373 struct list_head *ele;
374 struct chan *chan;
375
376 list_for_each(ele, chans){
377 chan = list_entry(ele, struct chan, list);
378 if(chan->primary){
379 if(chan->ops->window_size == NULL)
380 return 0;
381 return chan->ops->window_size(chan->fd, chan->data,
382 rows_out, cols_out);
383 }
384 }
385 return 0;
386 }
387
388 static void free_one_chan(struct chan *chan, int delay_free_irq)
389 {
390 list_del(&chan->list);
391
392 close_one_chan(chan, delay_free_irq);
393
394 if(chan->ops->free != NULL)
395 (*chan->ops->free)(chan->data);
396
397 if(chan->primary && chan->output) ignore_sigio_fd(chan->fd);
398 kfree(chan);
399 }
400
401 static void free_chan(struct list_head *chans, int delay_free_irq)
402 {
403 struct list_head *ele, *next;
404 struct chan *chan;
405
406 list_for_each_safe(ele, next, chans){
407 chan = list_entry(ele, struct chan, list);
408 free_one_chan(chan, delay_free_irq);
409 }
410 }
411
412 static int one_chan_config_string(struct chan *chan, char *str, int size,
413 char **error_out)
414 {
415 int n = 0;
416
417 if(chan == NULL){
418 CONFIG_CHUNK(str, size, n, "none", 1);
419 return n;
420 }
421
422 CONFIG_CHUNK(str, size, n, chan->ops->type, 0);
423
424 if(chan->dev == NULL){
425 CONFIG_CHUNK(str, size, n, "", 1);
426 return n;
427 }
428
429 CONFIG_CHUNK(str, size, n, ":", 0);
430 CONFIG_CHUNK(str, size, n, chan->dev, 0);
431
432 return n;
433 }
434
435 static int chan_pair_config_string(struct chan *in, struct chan *out,
436 char *str, int size, char **error_out)
437 {
438 int n;
439
440 n = one_chan_config_string(in, str, size, error_out);
441 str += n;
442 size -= n;
443
444 if(in == out){
445 CONFIG_CHUNK(str, size, n, "", 1);
446 return n;
447 }
448
449 CONFIG_CHUNK(str, size, n, ",", 1);
450 n = one_chan_config_string(out, str, size, error_out);
451 str += n;
452 size -= n;
453 CONFIG_CHUNK(str, size, n, "", 1);
454
455 return n;
456 }
457
458 int chan_config_string(struct list_head *chans, char *str, int size,
459 char **error_out)
460 {
461 struct list_head *ele;
462 struct chan *chan, *in = NULL, *out = NULL;
463
464 list_for_each(ele, chans){
465 chan = list_entry(ele, struct chan, list);
466 if(!chan->primary)
467 continue;
468 if(chan->input)
469 in = chan;
470 if(chan->output)
471 out = chan;
472 }
473
474 return chan_pair_config_string(in, out, str, size, error_out);
475 }
476
477 struct chan_type {
478 char *key;
479 const struct chan_ops *ops;
480 };
481
482 static const struct chan_type chan_table[] = {
483 { "fd", &fd_ops },
484
485 #ifdef CONFIG_NULL_CHAN
486 { "null", &null_ops },
487 #else
488 { "null", &not_configged_ops },
489 #endif
490
491 #ifdef CONFIG_PORT_CHAN
492 { "port", &port_ops },
493 #else
494 { "port", &not_configged_ops },
495 #endif
496
497 #ifdef CONFIG_PTY_CHAN
498 { "pty", &pty_ops },
499 { "pts", &pts_ops },
500 #else
501 { "pty", &not_configged_ops },
502 { "pts", &not_configged_ops },
503 #endif
504
505 #ifdef CONFIG_TTY_CHAN
506 { "tty", &tty_ops },
507 #else
508 { "tty", &not_configged_ops },
509 #endif
510
511 #ifdef CONFIG_XTERM_CHAN
512 { "xterm", &xterm_ops },
513 #else
514 { "xterm", &not_configged_ops },
515 #endif
516 };
517
518 static struct chan *parse_chan(struct line *line, char *str, int device,
519 const struct chan_opts *opts, char **error_out)
520 {
521 const struct chan_type *entry;
522 const struct chan_ops *ops;
523 struct chan *chan;
524 void *data;
525 int i;
526
527 ops = NULL;
528 data = NULL;
529 for(i = 0; i < ARRAY_SIZE(chan_table); i++){
530 entry = &chan_table[i];
531 if(!strncmp(str, entry->key, strlen(entry->key))){
532 ops = entry->ops;
533 str += strlen(entry->key);
534 break;
535 }
536 }
537 if(ops == NULL){
538 *error_out = "No match for configured backends";
539 return NULL;
540 }
541
542 data = (*ops->init)(str, device, opts);
543 if(data == NULL){
544 *error_out = "Configuration failed";
545 return NULL;
546 }
547
548 chan = kmalloc(sizeof(*chan), GFP_ATOMIC);
549 if(chan == NULL){
550 *error_out = "Memory allocation failed";
551 return NULL;
552 }
553 *chan = ((struct chan) { .list = LIST_HEAD_INIT(chan->list),
554 .free_list =
555 LIST_HEAD_INIT(chan->free_list),
556 .line = line,
557 .primary = 1,
558 .input = 0,
559 .output = 0,
560 .opened = 0,
561 .enabled = 0,
562 .fd = -1,
563 .ops = ops,
564 .data = data });
565 return chan;
566 }
567
568 int parse_chan_pair(char *str, struct line *line, int device,
569 const struct chan_opts *opts, char **error_out)
570 {
571 struct list_head *chans = &line->chan_list;
572 struct chan *new, *chan;
573 char *in, *out;
574
575 if(!list_empty(chans)){
576 chan = list_entry(chans->next, struct chan, list);
577 free_chan(chans, 0);
578 INIT_LIST_HEAD(chans);
579 }
580
581 out = strchr(str, ',');
582 if(out != NULL){
583 in = str;
584 *out = '\0';
585 out++;
586 new = parse_chan(line, in, device, opts, error_out);
587 if(new == NULL)
588 return -1;
589
590 new->input = 1;
591 list_add(&new->list, chans);
592
593 new = parse_chan(line, out, device, opts, error_out);
594 if(new == NULL)
595 return -1;
596
597 list_add(&new->list, chans);
598 new->output = 1;
599 }
600 else {
601 new = parse_chan(line, str, device, opts, error_out);
602 if(new == NULL)
603 return -1;
604
605 list_add(&new->list, chans);
606 new->input = 1;
607 new->output = 1;
608 }
609 return 0;
610 }
611
612 int chan_out_fd(struct list_head *chans)
613 {
614 struct list_head *ele;
615 struct chan *chan;
616
617 list_for_each(ele, chans){
618 chan = list_entry(ele, struct chan, list);
619 if(chan->primary && chan->output)
620 return chan->fd;
621 }
622 return -1;
623 }
624
625 void chan_interrupt(struct list_head *chans, struct delayed_work *task,
626 struct tty_struct *tty, int irq)
627 {
628 struct list_head *ele, *next;
629 struct chan *chan;
630 int err;
631 char c;
632
633 list_for_each_safe(ele, next, chans){
634 chan = list_entry(ele, struct chan, list);
635 if(!chan->input || (chan->ops->read == NULL)) continue;
636 do {
637 if (tty && !tty_buffer_request_room(tty, 1)) {
638 schedule_delayed_work(task, 1);
639 goto out;
640 }
641 err = chan->ops->read(chan->fd, &c, chan->data);
642 if(err > 0)
643 tty_receive_char(tty, c);
644 } while(err > 0);
645
646 if(err == 0) reactivate_fd(chan->fd, irq);
647 if(err == -EIO){
648 if(chan->primary){
649 if(tty != NULL)
650 tty_hangup(tty);
651 close_chan(chans, 1);
652 return;
653 }
654 else close_one_chan(chan, 1);
655 }
656 }
657 out:
658 if(tty) tty_flip_buffer_push(tty);
659 }