]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/um/include/asm/pgtable.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[mirror_ubuntu-jammy-kernel.git] / arch / um / include / asm / pgtable.h
1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
6 */
7
8 #ifndef __UM_PGTABLE_H
9 #define __UM_PGTABLE_H
10
11 #include <asm/fixmap.h>
12
13 #define _PAGE_PRESENT 0x001
14 #define _PAGE_NEWPAGE 0x002
15 #define _PAGE_NEWPROT 0x004
16 #define _PAGE_RW 0x020
17 #define _PAGE_USER 0x040
18 #define _PAGE_ACCESSED 0x080
19 #define _PAGE_DIRTY 0x100
20 /* If _PAGE_PRESENT is clear, we use these: */
21 #define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */
22 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
23 pte_present gives true */
24
25 #ifdef CONFIG_3_LEVEL_PGTABLES
26 #include "asm/pgtable-3level.h"
27 #else
28 #include "asm/pgtable-2level.h"
29 #endif
30
31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
32
33 /* zero page used for uninitialized stuff */
34 extern unsigned long *empty_zero_page;
35
36 #define pgtable_cache_init() do ; while (0)
37
38 /* Just any arbitrary offset to the start of the vmalloc VM area: the
39 * current 8MB value just means that there will be a 8MB "hole" after the
40 * physical memory until the kernel virtual memory starts. That means that
41 * any out-of-bounds memory accesses will hopefully be caught.
42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43 * area for the same reason. ;)
44 */
45
46 extern unsigned long end_iomem;
47
48 #define VMALLOC_OFFSET (__va_space)
49 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
50 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
51 #ifdef CONFIG_HIGHMEM
52 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
53 #else
54 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
55 #endif
56 #define MODULES_VADDR VMALLOC_START
57 #define MODULES_END VMALLOC_END
58 #define MODULES_LEN (MODULES_VADDR - MODULES_END)
59
60 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
61 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
62 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
63 #define __PAGE_KERNEL_EXEC \
64 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
65 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
66 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
67 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
68 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
69 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
70 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
71
72 /*
73 * The i386 can't do page protection for execute, and considers that the same
74 * are read.
75 * Also, write permissions imply read permissions. This is the closest we can
76 * get..
77 */
78 #define __P000 PAGE_NONE
79 #define __P001 PAGE_READONLY
80 #define __P010 PAGE_COPY
81 #define __P011 PAGE_COPY
82 #define __P100 PAGE_READONLY
83 #define __P101 PAGE_READONLY
84 #define __P110 PAGE_COPY
85 #define __P111 PAGE_COPY
86
87 #define __S000 PAGE_NONE
88 #define __S001 PAGE_READONLY
89 #define __S010 PAGE_SHARED
90 #define __S011 PAGE_SHARED
91 #define __S100 PAGE_READONLY
92 #define __S101 PAGE_READONLY
93 #define __S110 PAGE_SHARED
94 #define __S111 PAGE_SHARED
95
96 /*
97 * ZERO_PAGE is a global shared page that is always zero: used
98 * for zero-mapped memory areas etc..
99 */
100 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
101
102 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
103
104 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
105 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
106
107 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
108 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
109
110 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
111 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
112
113 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
114 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
115
116 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
117
118 #define pte_page(x) pfn_to_page(pte_pfn(x))
119
120 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
121
122 /*
123 * =================================
124 * Flags checking section.
125 * =================================
126 */
127
128 static inline int pte_none(pte_t pte)
129 {
130 return pte_is_zero(pte);
131 }
132
133 /*
134 * The following only work if pte_present() is true.
135 * Undefined behaviour if not..
136 */
137 static inline int pte_read(pte_t pte)
138 {
139 return((pte_get_bits(pte, _PAGE_USER)) &&
140 !(pte_get_bits(pte, _PAGE_PROTNONE)));
141 }
142
143 static inline int pte_exec(pte_t pte){
144 return((pte_get_bits(pte, _PAGE_USER)) &&
145 !(pte_get_bits(pte, _PAGE_PROTNONE)));
146 }
147
148 static inline int pte_write(pte_t pte)
149 {
150 return((pte_get_bits(pte, _PAGE_RW)) &&
151 !(pte_get_bits(pte, _PAGE_PROTNONE)));
152 }
153
154 /*
155 * The following only works if pte_present() is not true.
156 */
157 static inline int pte_file(pte_t pte)
158 {
159 return pte_get_bits(pte, _PAGE_FILE);
160 }
161
162 static inline int pte_dirty(pte_t pte)
163 {
164 return pte_get_bits(pte, _PAGE_DIRTY);
165 }
166
167 static inline int pte_young(pte_t pte)
168 {
169 return pte_get_bits(pte, _PAGE_ACCESSED);
170 }
171
172 static inline int pte_newpage(pte_t pte)
173 {
174 return pte_get_bits(pte, _PAGE_NEWPAGE);
175 }
176
177 static inline int pte_newprot(pte_t pte)
178 {
179 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
180 }
181
182 static inline int pte_special(pte_t pte)
183 {
184 return 0;
185 }
186
187 /*
188 * =================================
189 * Flags setting section.
190 * =================================
191 */
192
193 static inline pte_t pte_mknewprot(pte_t pte)
194 {
195 pte_set_bits(pte, _PAGE_NEWPROT);
196 return(pte);
197 }
198
199 static inline pte_t pte_mkclean(pte_t pte)
200 {
201 pte_clear_bits(pte, _PAGE_DIRTY);
202 return(pte);
203 }
204
205 static inline pte_t pte_mkold(pte_t pte)
206 {
207 pte_clear_bits(pte, _PAGE_ACCESSED);
208 return(pte);
209 }
210
211 static inline pte_t pte_wrprotect(pte_t pte)
212 {
213 pte_clear_bits(pte, _PAGE_RW);
214 return(pte_mknewprot(pte));
215 }
216
217 static inline pte_t pte_mkread(pte_t pte)
218 {
219 pte_set_bits(pte, _PAGE_USER);
220 return(pte_mknewprot(pte));
221 }
222
223 static inline pte_t pte_mkdirty(pte_t pte)
224 {
225 pte_set_bits(pte, _PAGE_DIRTY);
226 return(pte);
227 }
228
229 static inline pte_t pte_mkyoung(pte_t pte)
230 {
231 pte_set_bits(pte, _PAGE_ACCESSED);
232 return(pte);
233 }
234
235 static inline pte_t pte_mkwrite(pte_t pte)
236 {
237 pte_set_bits(pte, _PAGE_RW);
238 return(pte_mknewprot(pte));
239 }
240
241 static inline pte_t pte_mkuptodate(pte_t pte)
242 {
243 pte_clear_bits(pte, _PAGE_NEWPAGE);
244 if(pte_present(pte))
245 pte_clear_bits(pte, _PAGE_NEWPROT);
246 return(pte);
247 }
248
249 static inline pte_t pte_mknewpage(pte_t pte)
250 {
251 pte_set_bits(pte, _PAGE_NEWPAGE);
252 return(pte);
253 }
254
255 static inline pte_t pte_mkspecial(pte_t pte)
256 {
257 return(pte);
258 }
259
260 static inline void set_pte(pte_t *pteptr, pte_t pteval)
261 {
262 pte_copy(*pteptr, pteval);
263
264 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
265 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
266 * mapped pages.
267 */
268
269 *pteptr = pte_mknewpage(*pteptr);
270 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
271 }
272 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
273
274 /*
275 * Conversion functions: convert a page and protection to a page entry,
276 * and a page entry and page directory to the page they refer to.
277 */
278
279 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
280 #define __virt_to_page(virt) phys_to_page(__pa(virt))
281 #define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
282 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
283
284 #define mk_pte(page, pgprot) \
285 ({ pte_t pte; \
286 \
287 pte_set_val(pte, page_to_phys(page), (pgprot)); \
288 if (pte_present(pte)) \
289 pte_mknewprot(pte_mknewpage(pte)); \
290 pte;})
291
292 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
293 {
294 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
295 return pte;
296 }
297
298 /*
299 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
300 *
301 * this macro returns the index of the entry in the pgd page which would
302 * control the given virtual address
303 */
304 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
305
306 /*
307 * pgd_offset() returns a (pgd_t *)
308 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
309 */
310 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
311
312 /*
313 * a shortcut which implies the use of the kernel's pgd, instead
314 * of a process's
315 */
316 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
317
318 /*
319 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
320 *
321 * this macro returns the index of the entry in the pmd page which would
322 * control the given virtual address
323 */
324 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
325 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
326
327 #define pmd_page_vaddr(pmd) \
328 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
329
330 /*
331 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
332 *
333 * this macro returns the index of the entry in the pte page which would
334 * control the given virtual address
335 */
336 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
337 #define pte_offset_kernel(dir, address) \
338 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
339 #define pte_offset_map(dir, address) \
340 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
341 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
342 #define pte_unmap(pte) do { } while (0)
343 #define pte_unmap_nested(pte) do { } while (0)
344
345 struct mm_struct;
346 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
347
348 #define update_mmu_cache(vma,address,pte) do ; while (0)
349
350 /* Encode and de-code a swap entry */
351 #define __swp_type(x) (((x).val >> 4) & 0x3f)
352 #define __swp_offset(x) ((x).val >> 11)
353
354 #define __swp_entry(type, offset) \
355 ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
356 #define __pte_to_swp_entry(pte) \
357 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
358 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
359
360 #define kern_addr_valid(addr) (1)
361
362 #include <asm-generic/pgtable.h>
363
364 /* Clear a kernel PTE and flush it from the TLB */
365 #define kpte_clear_flush(ptep, vaddr) \
366 do { \
367 pte_clear(&init_mm, (vaddr), (ptep)); \
368 __flush_tlb_one((vaddr)); \
369 } while (0)
370
371 #endif