]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/um/kernel/process.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / arch / um / kernel / process.c
1 /*
2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5 * Copyright 2003 PathScale, Inc.
6 * Licensed under the GPL
7 */
8
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/seq_file.h>
24 #include <linux/tick.h>
25 #include <linux/threads.h>
26 #include <linux/tracehook.h>
27 #include <asm/current.h>
28 #include <asm/pgtable.h>
29 #include <asm/mmu_context.h>
30 #include <linux/uaccess.h>
31 #include <as-layout.h>
32 #include <kern_util.h>
33 #include <os.h>
34 #include <skas.h>
35 #include <timer-internal.h>
36
37 /*
38 * This is a per-cpu array. A processor only modifies its entry and it only
39 * cares about its entry, so it's OK if another processor is modifying its
40 * entry.
41 */
42 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
43
44 static inline int external_pid(void)
45 {
46 /* FIXME: Need to look up userspace_pid by cpu */
47 return userspace_pid[0];
48 }
49
50 int pid_to_processor_id(int pid)
51 {
52 int i;
53
54 for (i = 0; i < ncpus; i++) {
55 if (cpu_tasks[i].pid == pid)
56 return i;
57 }
58 return -1;
59 }
60
61 void free_stack(unsigned long stack, int order)
62 {
63 free_pages(stack, order);
64 }
65
66 unsigned long alloc_stack(int order, int atomic)
67 {
68 unsigned long page;
69 gfp_t flags = GFP_KERNEL;
70
71 if (atomic)
72 flags = GFP_ATOMIC;
73 page = __get_free_pages(flags, order);
74
75 return page;
76 }
77
78 static inline void set_current(struct task_struct *task)
79 {
80 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
81 { external_pid(), task });
82 }
83
84 extern void arch_switch_to(struct task_struct *to);
85
86 void *__switch_to(struct task_struct *from, struct task_struct *to)
87 {
88 to->thread.prev_sched = from;
89 set_current(to);
90
91 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
92 arch_switch_to(current);
93
94 return current->thread.prev_sched;
95 }
96
97 void interrupt_end(void)
98 {
99 struct pt_regs *regs = &current->thread.regs;
100
101 if (need_resched())
102 schedule();
103 if (test_thread_flag(TIF_SIGPENDING))
104 do_signal(regs);
105 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
106 tracehook_notify_resume(regs);
107 }
108
109 int get_current_pid(void)
110 {
111 return task_pid_nr(current);
112 }
113
114 /*
115 * This is called magically, by its address being stuffed in a jmp_buf
116 * and being longjmp-d to.
117 */
118 void new_thread_handler(void)
119 {
120 int (*fn)(void *), n;
121 void *arg;
122
123 if (current->thread.prev_sched != NULL)
124 schedule_tail(current->thread.prev_sched);
125 current->thread.prev_sched = NULL;
126
127 fn = current->thread.request.u.thread.proc;
128 arg = current->thread.request.u.thread.arg;
129
130 /*
131 * callback returns only if the kernel thread execs a process
132 */
133 n = fn(arg);
134 userspace(&current->thread.regs.regs);
135 }
136
137 /* Called magically, see new_thread_handler above */
138 void fork_handler(void)
139 {
140 force_flush_all();
141
142 schedule_tail(current->thread.prev_sched);
143
144 /*
145 * XXX: if interrupt_end() calls schedule, this call to
146 * arch_switch_to isn't needed. We could want to apply this to
147 * improve performance. -bb
148 */
149 arch_switch_to(current);
150
151 current->thread.prev_sched = NULL;
152
153 userspace(&current->thread.regs.regs);
154 }
155
156 int copy_thread(unsigned long clone_flags, unsigned long sp,
157 unsigned long arg, struct task_struct * p)
158 {
159 void (*handler)(void);
160 int kthread = current->flags & PF_KTHREAD;
161 int ret = 0;
162
163 p->thread = (struct thread_struct) INIT_THREAD;
164
165 if (!kthread) {
166 memcpy(&p->thread.regs.regs, current_pt_regs(),
167 sizeof(p->thread.regs.regs));
168 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
169 if (sp != 0)
170 REGS_SP(p->thread.regs.regs.gp) = sp;
171
172 handler = fork_handler;
173
174 arch_copy_thread(&current->thread.arch, &p->thread.arch);
175 } else {
176 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
177 p->thread.request.u.thread.proc = (int (*)(void *))sp;
178 p->thread.request.u.thread.arg = (void *)arg;
179 handler = new_thread_handler;
180 }
181
182 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
183
184 if (!kthread) {
185 clear_flushed_tls(p);
186
187 /*
188 * Set a new TLS for the child thread?
189 */
190 if (clone_flags & CLONE_SETTLS)
191 ret = arch_copy_tls(p);
192 }
193
194 return ret;
195 }
196
197 void initial_thread_cb(void (*proc)(void *), void *arg)
198 {
199 int save_kmalloc_ok = kmalloc_ok;
200
201 kmalloc_ok = 0;
202 initial_thread_cb_skas(proc, arg);
203 kmalloc_ok = save_kmalloc_ok;
204 }
205
206 void arch_cpu_idle(void)
207 {
208 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
209 os_idle_sleep(UM_NSEC_PER_SEC);
210 local_irq_enable();
211 }
212
213 int __cant_sleep(void) {
214 return in_atomic() || irqs_disabled() || in_interrupt();
215 /* Is in_interrupt() really needed? */
216 }
217
218 int user_context(unsigned long sp)
219 {
220 unsigned long stack;
221
222 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
223 return stack != (unsigned long) current_thread_info();
224 }
225
226 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
227
228 void do_uml_exitcalls(void)
229 {
230 exitcall_t *call;
231
232 call = &__uml_exitcall_end;
233 while (--call >= &__uml_exitcall_begin)
234 (*call)();
235 }
236
237 char *uml_strdup(const char *string)
238 {
239 return kstrdup(string, GFP_KERNEL);
240 }
241 EXPORT_SYMBOL(uml_strdup);
242
243 int copy_to_user_proc(void __user *to, void *from, int size)
244 {
245 return copy_to_user(to, from, size);
246 }
247
248 int copy_from_user_proc(void *to, void __user *from, int size)
249 {
250 return copy_from_user(to, from, size);
251 }
252
253 int clear_user_proc(void __user *buf, int size)
254 {
255 return clear_user(buf, size);
256 }
257
258 int strlen_user_proc(char __user *str)
259 {
260 return strlen_user(str);
261 }
262
263 int cpu(void)
264 {
265 return current_thread_info()->cpu;
266 }
267
268 static atomic_t using_sysemu = ATOMIC_INIT(0);
269 int sysemu_supported;
270
271 void set_using_sysemu(int value)
272 {
273 if (value > sysemu_supported)
274 return;
275 atomic_set(&using_sysemu, value);
276 }
277
278 int get_using_sysemu(void)
279 {
280 return atomic_read(&using_sysemu);
281 }
282
283 static int sysemu_proc_show(struct seq_file *m, void *v)
284 {
285 seq_printf(m, "%d\n", get_using_sysemu());
286 return 0;
287 }
288
289 static int sysemu_proc_open(struct inode *inode, struct file *file)
290 {
291 return single_open(file, sysemu_proc_show, NULL);
292 }
293
294 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
295 size_t count, loff_t *pos)
296 {
297 char tmp[2];
298
299 if (copy_from_user(tmp, buf, 1))
300 return -EFAULT;
301
302 if (tmp[0] >= '0' && tmp[0] <= '2')
303 set_using_sysemu(tmp[0] - '0');
304 /* We use the first char, but pretend to write everything */
305 return count;
306 }
307
308 static const struct file_operations sysemu_proc_fops = {
309 .owner = THIS_MODULE,
310 .open = sysemu_proc_open,
311 .read = seq_read,
312 .llseek = seq_lseek,
313 .release = single_release,
314 .write = sysemu_proc_write,
315 };
316
317 int __init make_proc_sysemu(void)
318 {
319 struct proc_dir_entry *ent;
320 if (!sysemu_supported)
321 return 0;
322
323 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
324
325 if (ent == NULL)
326 {
327 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
328 return 0;
329 }
330
331 return 0;
332 }
333
334 late_initcall(make_proc_sysemu);
335
336 int singlestepping(void * t)
337 {
338 struct task_struct *task = t ? t : current;
339
340 if (!(task->ptrace & PT_DTRACE))
341 return 0;
342
343 if (task->thread.singlestep_syscall)
344 return 1;
345
346 return 2;
347 }
348
349 /*
350 * Only x86 and x86_64 have an arch_align_stack().
351 * All other arches have "#define arch_align_stack(x) (x)"
352 * in their asm/exec.h
353 * As this is included in UML from asm-um/system-generic.h,
354 * we can use it to behave as the subarch does.
355 */
356 #ifndef arch_align_stack
357 unsigned long arch_align_stack(unsigned long sp)
358 {
359 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
360 sp -= get_random_int() % 8192;
361 return sp & ~0xf;
362 }
363 #endif
364
365 unsigned long get_wchan(struct task_struct *p)
366 {
367 unsigned long stack_page, sp, ip;
368 bool seen_sched = 0;
369
370 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
371 return 0;
372
373 stack_page = (unsigned long) task_stack_page(p);
374 /* Bail if the process has no kernel stack for some reason */
375 if (stack_page == 0)
376 return 0;
377
378 sp = p->thread.switch_buf->JB_SP;
379 /*
380 * Bail if the stack pointer is below the bottom of the kernel
381 * stack for some reason
382 */
383 if (sp < stack_page)
384 return 0;
385
386 while (sp < stack_page + THREAD_SIZE) {
387 ip = *((unsigned long *) sp);
388 if (in_sched_functions(ip))
389 /* Ignore everything until we're above the scheduler */
390 seen_sched = 1;
391 else if (kernel_text_address(ip) && seen_sched)
392 return ip;
393
394 sp += sizeof(unsigned long);
395 }
396
397 return 0;
398 }
399
400 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
401 {
402 int cpu = current_thread_info()->cpu;
403
404 return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
405 }
406