]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/um/kernel/process.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / arch / um / kernel / process.c
1 /*
2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5 * Copyright 2003 PathScale, Inc.
6 * Licensed under the GPL
7 */
8
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/seq_file.h>
22 #include <linux/tick.h>
23 #include <linux/threads.h>
24 #include <linux/tracehook.h>
25 #include <asm/current.h>
26 #include <asm/pgtable.h>
27 #include <asm/mmu_context.h>
28 #include <linux/uaccess.h>
29 #include <as-layout.h>
30 #include <kern_util.h>
31 #include <os.h>
32 #include <skas.h>
33 #include <timer-internal.h>
34
35 /*
36 * This is a per-cpu array. A processor only modifies its entry and it only
37 * cares about its entry, so it's OK if another processor is modifying its
38 * entry.
39 */
40 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
41
42 static inline int external_pid(void)
43 {
44 /* FIXME: Need to look up userspace_pid by cpu */
45 return userspace_pid[0];
46 }
47
48 int pid_to_processor_id(int pid)
49 {
50 int i;
51
52 for (i = 0; i < ncpus; i++) {
53 if (cpu_tasks[i].pid == pid)
54 return i;
55 }
56 return -1;
57 }
58
59 void free_stack(unsigned long stack, int order)
60 {
61 free_pages(stack, order);
62 }
63
64 unsigned long alloc_stack(int order, int atomic)
65 {
66 unsigned long page;
67 gfp_t flags = GFP_KERNEL;
68
69 if (atomic)
70 flags = GFP_ATOMIC;
71 page = __get_free_pages(flags, order);
72
73 return page;
74 }
75
76 static inline void set_current(struct task_struct *task)
77 {
78 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
79 { external_pid(), task });
80 }
81
82 extern void arch_switch_to(struct task_struct *to);
83
84 void *__switch_to(struct task_struct *from, struct task_struct *to)
85 {
86 to->thread.prev_sched = from;
87 set_current(to);
88
89 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
90 arch_switch_to(current);
91
92 return current->thread.prev_sched;
93 }
94
95 void interrupt_end(void)
96 {
97 struct pt_regs *regs = &current->thread.regs;
98
99 if (need_resched())
100 schedule();
101 if (test_thread_flag(TIF_SIGPENDING))
102 do_signal(regs);
103 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
104 tracehook_notify_resume(regs);
105 }
106
107 int get_current_pid(void)
108 {
109 return task_pid_nr(current);
110 }
111
112 /*
113 * This is called magically, by its address being stuffed in a jmp_buf
114 * and being longjmp-d to.
115 */
116 void new_thread_handler(void)
117 {
118 int (*fn)(void *), n;
119 void *arg;
120
121 if (current->thread.prev_sched != NULL)
122 schedule_tail(current->thread.prev_sched);
123 current->thread.prev_sched = NULL;
124
125 fn = current->thread.request.u.thread.proc;
126 arg = current->thread.request.u.thread.arg;
127
128 /*
129 * callback returns only if the kernel thread execs a process
130 */
131 n = fn(arg);
132 userspace(&current->thread.regs.regs);
133 }
134
135 /* Called magically, see new_thread_handler above */
136 void fork_handler(void)
137 {
138 force_flush_all();
139
140 schedule_tail(current->thread.prev_sched);
141
142 /*
143 * XXX: if interrupt_end() calls schedule, this call to
144 * arch_switch_to isn't needed. We could want to apply this to
145 * improve performance. -bb
146 */
147 arch_switch_to(current);
148
149 current->thread.prev_sched = NULL;
150
151 userspace(&current->thread.regs.regs);
152 }
153
154 int copy_thread(unsigned long clone_flags, unsigned long sp,
155 unsigned long arg, struct task_struct * p)
156 {
157 void (*handler)(void);
158 int kthread = current->flags & PF_KTHREAD;
159 int ret = 0;
160
161 p->thread = (struct thread_struct) INIT_THREAD;
162
163 if (!kthread) {
164 memcpy(&p->thread.regs.regs, current_pt_regs(),
165 sizeof(p->thread.regs.regs));
166 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
167 if (sp != 0)
168 REGS_SP(p->thread.regs.regs.gp) = sp;
169
170 handler = fork_handler;
171
172 arch_copy_thread(&current->thread.arch, &p->thread.arch);
173 } else {
174 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
175 p->thread.request.u.thread.proc = (int (*)(void *))sp;
176 p->thread.request.u.thread.arg = (void *)arg;
177 handler = new_thread_handler;
178 }
179
180 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
181
182 if (!kthread) {
183 clear_flushed_tls(p);
184
185 /*
186 * Set a new TLS for the child thread?
187 */
188 if (clone_flags & CLONE_SETTLS)
189 ret = arch_copy_tls(p);
190 }
191
192 return ret;
193 }
194
195 void initial_thread_cb(void (*proc)(void *), void *arg)
196 {
197 int save_kmalloc_ok = kmalloc_ok;
198
199 kmalloc_ok = 0;
200 initial_thread_cb_skas(proc, arg);
201 kmalloc_ok = save_kmalloc_ok;
202 }
203
204 void arch_cpu_idle(void)
205 {
206 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
207 os_idle_sleep(UM_NSEC_PER_SEC);
208 local_irq_enable();
209 }
210
211 int __cant_sleep(void) {
212 return in_atomic() || irqs_disabled() || in_interrupt();
213 /* Is in_interrupt() really needed? */
214 }
215
216 int user_context(unsigned long sp)
217 {
218 unsigned long stack;
219
220 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
221 return stack != (unsigned long) current_thread_info();
222 }
223
224 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
225
226 void do_uml_exitcalls(void)
227 {
228 exitcall_t *call;
229
230 call = &__uml_exitcall_end;
231 while (--call >= &__uml_exitcall_begin)
232 (*call)();
233 }
234
235 char *uml_strdup(const char *string)
236 {
237 return kstrdup(string, GFP_KERNEL);
238 }
239 EXPORT_SYMBOL(uml_strdup);
240
241 int copy_to_user_proc(void __user *to, void *from, int size)
242 {
243 return copy_to_user(to, from, size);
244 }
245
246 int copy_from_user_proc(void *to, void __user *from, int size)
247 {
248 return copy_from_user(to, from, size);
249 }
250
251 int clear_user_proc(void __user *buf, int size)
252 {
253 return clear_user(buf, size);
254 }
255
256 int strlen_user_proc(char __user *str)
257 {
258 return strlen_user(str);
259 }
260
261 int cpu(void)
262 {
263 return current_thread_info()->cpu;
264 }
265
266 static atomic_t using_sysemu = ATOMIC_INIT(0);
267 int sysemu_supported;
268
269 void set_using_sysemu(int value)
270 {
271 if (value > sysemu_supported)
272 return;
273 atomic_set(&using_sysemu, value);
274 }
275
276 int get_using_sysemu(void)
277 {
278 return atomic_read(&using_sysemu);
279 }
280
281 static int sysemu_proc_show(struct seq_file *m, void *v)
282 {
283 seq_printf(m, "%d\n", get_using_sysemu());
284 return 0;
285 }
286
287 static int sysemu_proc_open(struct inode *inode, struct file *file)
288 {
289 return single_open(file, sysemu_proc_show, NULL);
290 }
291
292 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
293 size_t count, loff_t *pos)
294 {
295 char tmp[2];
296
297 if (copy_from_user(tmp, buf, 1))
298 return -EFAULT;
299
300 if (tmp[0] >= '0' && tmp[0] <= '2')
301 set_using_sysemu(tmp[0] - '0');
302 /* We use the first char, but pretend to write everything */
303 return count;
304 }
305
306 static const struct file_operations sysemu_proc_fops = {
307 .owner = THIS_MODULE,
308 .open = sysemu_proc_open,
309 .read = seq_read,
310 .llseek = seq_lseek,
311 .release = single_release,
312 .write = sysemu_proc_write,
313 };
314
315 int __init make_proc_sysemu(void)
316 {
317 struct proc_dir_entry *ent;
318 if (!sysemu_supported)
319 return 0;
320
321 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
322
323 if (ent == NULL)
324 {
325 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
326 return 0;
327 }
328
329 return 0;
330 }
331
332 late_initcall(make_proc_sysemu);
333
334 int singlestepping(void * t)
335 {
336 struct task_struct *task = t ? t : current;
337
338 if (!(task->ptrace & PT_DTRACE))
339 return 0;
340
341 if (task->thread.singlestep_syscall)
342 return 1;
343
344 return 2;
345 }
346
347 /*
348 * Only x86 and x86_64 have an arch_align_stack().
349 * All other arches have "#define arch_align_stack(x) (x)"
350 * in their asm/exec.h
351 * As this is included in UML from asm-um/system-generic.h,
352 * we can use it to behave as the subarch does.
353 */
354 #ifndef arch_align_stack
355 unsigned long arch_align_stack(unsigned long sp)
356 {
357 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
358 sp -= get_random_int() % 8192;
359 return sp & ~0xf;
360 }
361 #endif
362
363 unsigned long get_wchan(struct task_struct *p)
364 {
365 unsigned long stack_page, sp, ip;
366 bool seen_sched = 0;
367
368 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
369 return 0;
370
371 stack_page = (unsigned long) task_stack_page(p);
372 /* Bail if the process has no kernel stack for some reason */
373 if (stack_page == 0)
374 return 0;
375
376 sp = p->thread.switch_buf->JB_SP;
377 /*
378 * Bail if the stack pointer is below the bottom of the kernel
379 * stack for some reason
380 */
381 if (sp < stack_page)
382 return 0;
383
384 while (sp < stack_page + THREAD_SIZE) {
385 ip = *((unsigned long *) sp);
386 if (in_sched_functions(ip))
387 /* Ignore everything until we're above the scheduler */
388 seen_sched = 1;
389 else if (kernel_text_address(ip) && seen_sched)
390 return ip;
391
392 sp += sizeof(unsigned long);
393 }
394
395 return 0;
396 }
397
398 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
399 {
400 int cpu = current_thread_info()->cpu;
401
402 return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
403 }
404