]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/v850/kernel/rte_mb_a_pci.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / arch / v850 / kernel / rte_mb_a_pci.c
1 /*
2 * arch/v850/kernel/mb_a_pci.c -- PCI support for Midas lab RTE-MOTHER-A board
3 *
4 * Copyright (C) 2001,02,03 NEC Electronics Corporation
5 * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org>
6 *
7 * This file is subject to the terms and conditions of the GNU General
8 * Public License. See the file COPYING in the main directory of this
9 * archive for more details.
10 *
11 * Written by Miles Bader <miles@gnu.org>
12 */
13
14 #include <linux/config.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 #include <linux/pci.h>
21
22 #include <asm/machdep.h>
23
24 /* __nomods_init is like __devinit, but is a no-op when modules are enabled.
25 This is used by some routines that can be called either during boot
26 or by a module. */
27 #ifdef CONFIG_MODULES
28 #define __nomods_init /*nothing*/
29 #else
30 #define __nomods_init __devinit
31 #endif
32
33 /* PCI devices on the Mother-A board can only do DMA to/from the MB SRAM
34 (the RTE-V850E/MA1-CB cpu board doesn't support PCI access to
35 CPU-board memory), and since linux DMA buffers are allocated in
36 normal kernel memory, we basically have to copy DMA blocks around
37 (this is like a `bounce buffer'). When a DMA block is `mapped', we
38 allocate an identically sized block in MB SRAM, and if we're doing
39 output to the device, copy the CPU-memory block to the MB-SRAM block.
40 When an active block is `unmapped', we will copy the block back to
41 CPU memory if necessary, and then deallocate the MB SRAM block.
42 Ack. */
43
44 /* Where the motherboard SRAM is in the PCI-bus address space (the
45 first 512K of it is also mapped at PCI address 0). */
46 #define PCI_MB_SRAM_ADDR 0x800000
47
48 /* Convert CPU-view MB SRAM address to/from PCI-view addresses of the
49 same memory. */
50 #define MB_SRAM_TO_PCI(mb_sram_addr) \
51 ((dma_addr_t)mb_sram_addr - MB_A_SRAM_ADDR + PCI_MB_SRAM_ADDR)
52 #define PCI_TO_MB_SRAM(pci_addr) \
53 (void *)(pci_addr - PCI_MB_SRAM_ADDR + MB_A_SRAM_ADDR)
54
55 static void pcibios_assign_resources (void);
56
57 struct mb_pci_dev_irq {
58 unsigned dev; /* PCI device number */
59 unsigned irq_base; /* First IRQ */
60 unsigned query_pin; /* True if we should read the device's
61 Interrupt Pin info, and allocate
62 interrupt IRQ_BASE + PIN. */
63 };
64
65 /* PCI interrupts are mapped statically to GBUS interrupts. */
66 static struct mb_pci_dev_irq mb_pci_dev_irqs[] = {
67 /* Motherboard SB82558 ethernet controller */
68 { 10, IRQ_MB_A_LAN, 0 },
69 /* PCI slot 1 */
70 { 8, IRQ_MB_A_PCI1(0), 1 },
71 /* PCI slot 2 */
72 { 9, IRQ_MB_A_PCI2(0), 1 }
73 };
74 #define NUM_MB_PCI_DEV_IRQS \
75 (sizeof mb_pci_dev_irqs / sizeof mb_pci_dev_irqs[0])
76
77 \f
78 /* PCI configuration primitives. */
79
80 #define CONFIG_DMCFGA(bus, devfn, offs) \
81 (0x80000000 \
82 | ((offs) & ~0x3) \
83 | ((devfn) << 8) \
84 | ((bus)->number << 16))
85
86 static int
87 mb_pci_read (struct pci_bus *bus, unsigned devfn, int offs, int size, u32 *rval)
88 {
89 u32 addr;
90 int flags;
91
92 local_irq_save (flags);
93
94 MB_A_PCI_PCICR = 0x7;
95 MB_A_PCI_DMCFGA = CONFIG_DMCFGA (bus, devfn, offs);
96
97 addr = MB_A_PCI_IO_ADDR + (offs & 0x3);
98
99 switch (size) {
100 case 1: *rval = *(volatile u8 *)addr; break;
101 case 2: *rval = *(volatile u16 *)addr; break;
102 case 4: *rval = *(volatile u32 *)addr; break;
103 }
104
105 if (MB_A_PCI_PCISR & 0x2000) {
106 MB_A_PCI_PCISR = 0x2000;
107 *rval = ~0;
108 }
109
110 MB_A_PCI_DMCFGA = 0;
111
112 local_irq_restore (flags);
113
114 return PCIBIOS_SUCCESSFUL;
115 }
116
117 static int
118 mb_pci_write (struct pci_bus *bus, unsigned devfn, int offs, int size, u32 val)
119 {
120 u32 addr;
121 int flags;
122
123 local_irq_save (flags);
124
125 MB_A_PCI_PCICR = 0x7;
126 MB_A_PCI_DMCFGA = CONFIG_DMCFGA (bus, devfn, offs);
127
128 addr = MB_A_PCI_IO_ADDR + (offs & 0x3);
129
130 switch (size) {
131 case 1: *(volatile u8 *)addr = val; break;
132 case 2: *(volatile u16 *)addr = val; break;
133 case 4: *(volatile u32 *)addr = val; break;
134 }
135
136 if (MB_A_PCI_PCISR & 0x2000)
137 MB_A_PCI_PCISR = 0x2000;
138
139 MB_A_PCI_DMCFGA = 0;
140
141 local_irq_restore (flags);
142
143 return PCIBIOS_SUCCESSFUL;
144 }
145
146 static struct pci_ops mb_pci_config_ops = {
147 .read = mb_pci_read,
148 .write = mb_pci_write,
149 };
150
151 \f
152 /* PCI Initialization. */
153
154 static struct pci_bus *mb_pci_bus = 0;
155
156 /* Do initial PCI setup. */
157 static int __devinit pcibios_init (void)
158 {
159 u32 id = MB_A_PCI_PCIHIDR;
160 u16 vendor = id & 0xFFFF;
161 u16 device = (id >> 16) & 0xFFFF;
162
163 if (vendor == PCI_VENDOR_ID_PLX && device == PCI_DEVICE_ID_PLX_9080) {
164 printk (KERN_INFO
165 "PCI: PLX Technology PCI9080 HOST/PCI bridge\n");
166
167 MB_A_PCI_PCICR = 0x147;
168
169 MB_A_PCI_PCIBAR0 = 0x007FFF00;
170 MB_A_PCI_PCIBAR1 = 0x0000FF00;
171 MB_A_PCI_PCIBAR2 = 0x00800000;
172
173 MB_A_PCI_PCILTR = 0x20;
174
175 MB_A_PCI_PCIPBAM |= 0x3;
176
177 MB_A_PCI_PCISR = ~0; /* Clear errors. */
178
179 /* Reprogram the motherboard's IO/config address space,
180 as we don't support the GCS7 address space that the
181 default uses. */
182
183 /* Significant address bits used for decoding PCI GCS5 space
184 accessess. */
185 MB_A_PCI_DMRR = ~(MB_A_PCI_MEM_SIZE - 1);
186
187 /* I don't understand this, but the SolutionGear example code
188 uses such an offset, and it doesn't work without it. XXX */
189 #if GCS5_SIZE == 0x00800000
190 #define GCS5_CFG_OFFS 0x00800000
191 #else
192 #define GCS5_CFG_OFFS 0
193 #endif
194
195 /* Address bit values for matching. Note that we have to give
196 the address from the motherboard's point of view, which is
197 different than the CPU's. */
198 /* PCI memory space. */
199 MB_A_PCI_DMLBAM = GCS5_CFG_OFFS + 0x0;
200 /* PCI I/O space. */
201 MB_A_PCI_DMLBAI =
202 GCS5_CFG_OFFS + (MB_A_PCI_IO_ADDR - GCS5_ADDR);
203
204 mb_pci_bus = pci_scan_bus (0, &mb_pci_config_ops, 0);
205
206 pcibios_assign_resources ();
207 } else
208 printk (KERN_ERR "PCI: HOST/PCI bridge not found\n");
209
210 return 0;
211 }
212
213 subsys_initcall (pcibios_init);
214
215 char __devinit *pcibios_setup (char *option)
216 {
217 /* Don't handle any options. */
218 return option;
219 }
220
221 \f
222 int __nomods_init pcibios_enable_device (struct pci_dev *dev, int mask)
223 {
224 u16 cmd, old_cmd;
225 int idx;
226 struct resource *r;
227
228 pci_read_config_word(dev, PCI_COMMAND, &cmd);
229 old_cmd = cmd;
230 for (idx = 0; idx < 6; idx++) {
231 r = &dev->resource[idx];
232 if (!r->start && r->end) {
233 printk(KERN_ERR "PCI: Device %s not available because "
234 "of resource collisions\n", pci_name(dev));
235 return -EINVAL;
236 }
237 if (r->flags & IORESOURCE_IO)
238 cmd |= PCI_COMMAND_IO;
239 if (r->flags & IORESOURCE_MEM)
240 cmd |= PCI_COMMAND_MEMORY;
241 }
242 if (cmd != old_cmd) {
243 printk("PCI: Enabling device %s (%04x -> %04x)\n",
244 pci_name(dev), old_cmd, cmd);
245 pci_write_config_word(dev, PCI_COMMAND, cmd);
246 }
247 return 0;
248 }
249
250 \f
251 /* Resource allocation. */
252 static void __devinit pcibios_assign_resources (void)
253 {
254 struct pci_dev *dev = NULL;
255 struct resource *r;
256
257 for_each_pci_dev(dev) {
258 unsigned di_num;
259 unsigned class = dev->class >> 8;
260
261 if (class && class != PCI_CLASS_BRIDGE_HOST) {
262 unsigned r_num;
263 for(r_num = 0; r_num < 6; r_num++) {
264 r = &dev->resource[r_num];
265 if (!r->start && r->end)
266 pci_assign_resource (dev, r_num);
267 }
268 }
269
270 /* Assign interrupts. */
271 for (di_num = 0; di_num < NUM_MB_PCI_DEV_IRQS; di_num++) {
272 struct mb_pci_dev_irq *di = &mb_pci_dev_irqs[di_num];
273
274 if (di->dev == PCI_SLOT (dev->devfn)) {
275 unsigned irq = di->irq_base;
276
277 if (di->query_pin) {
278 /* Find out which interrupt pin
279 this device uses (each PCI
280 slot has 4). */
281 u8 irq_pin;
282
283 pci_read_config_byte (dev,
284 PCI_INTERRUPT_PIN,
285 &irq_pin);
286
287 if (irq_pin == 0)
288 /* Doesn't use interrupts. */
289 continue;
290 else
291 irq += irq_pin - 1;
292 }
293
294 pcibios_update_irq (dev, irq);
295 }
296 }
297 }
298 }
299
300 void __devinit pcibios_update_irq (struct pci_dev *dev, int irq)
301 {
302 dev->irq = irq;
303 pci_write_config_byte (dev, PCI_INTERRUPT_LINE, irq);
304 }
305
306 void __devinit
307 pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region,
308 struct resource *res)
309 {
310 unsigned long offset = 0;
311
312 if (res->flags & IORESOURCE_IO) {
313 offset = MB_A_PCI_IO_ADDR;
314 } else if (res->flags & IORESOURCE_MEM) {
315 offset = MB_A_PCI_MEM_ADDR;
316 }
317
318 region->start = res->start - offset;
319 region->end = res->end - offset;
320 }
321
322 \f
323 /* Stubs for things we don't use. */
324
325 /* Called after each bus is probed, but before its children are examined. */
326 void pcibios_fixup_bus(struct pci_bus *b)
327 {
328 }
329
330 void
331 pcibios_align_resource (void *data, struct resource *res,
332 unsigned long size, unsigned long align)
333 {
334 }
335
336 void pcibios_set_master (struct pci_dev *dev)
337 {
338 }
339
340 \f
341 /* Mother-A SRAM memory allocation. This is a simple first-fit allocator. */
342
343 /* A memory free-list node. */
344 struct mb_sram_free_area {
345 void *mem;
346 unsigned long size;
347 struct mb_sram_free_area *next;
348 };
349
350 /* The tail of the free-list, which starts out containing all the SRAM. */
351 static struct mb_sram_free_area mb_sram_free_tail = {
352 (void *)MB_A_SRAM_ADDR, MB_A_SRAM_SIZE, 0
353 };
354
355 /* The free-list. */
356 static struct mb_sram_free_area *mb_sram_free_areas = &mb_sram_free_tail;
357
358 /* The free-list of free free-list nodes. (:-) */
359 static struct mb_sram_free_area *mb_sram_free_free_areas = 0;
360
361 /* Spinlock protecting the above globals. */
362 static DEFINE_SPINLOCK(mb_sram_lock);
363
364 /* Allocate a memory block at least SIZE bytes long in the Mother-A SRAM
365 space. */
366 static void *alloc_mb_sram (size_t size)
367 {
368 struct mb_sram_free_area *prev, *fa;
369 int flags;
370 void *mem = 0;
371
372 spin_lock_irqsave (mb_sram_lock, flags);
373
374 /* Look for a free area that can contain SIZE bytes. */
375 for (prev = 0, fa = mb_sram_free_areas; fa; prev = fa, fa = fa->next)
376 if (fa->size >= size) {
377 /* Found one! */
378 mem = fa->mem;
379
380 if (fa->size == size) {
381 /* In fact, it fits exactly, so remove
382 this node from the free-list. */
383 if (prev)
384 prev->next = fa->next;
385 else
386 mb_sram_free_areas = fa->next;
387 /* Put it on the free-list-entry-free-list. */
388 fa->next = mb_sram_free_free_areas;
389 mb_sram_free_free_areas = fa;
390 } else {
391 /* FA is bigger than SIZE, so just
392 reduce its size to account for this
393 allocation. */
394 fa->mem += size;
395 fa->size -= size;
396 }
397
398 break;
399 }
400
401 spin_unlock_irqrestore (mb_sram_lock, flags);
402
403 return mem;
404 }
405
406 /* Return the memory area MEM of size SIZE to the MB SRAM free pool. */
407 static void free_mb_sram (void *mem, size_t size)
408 {
409 struct mb_sram_free_area *prev, *fa, *new_fa;
410 int flags;
411 void *end = mem + size;
412
413 spin_lock_irqsave (mb_sram_lock, flags);
414
415 retry:
416 /* Find an adjacent free-list entry. */
417 for (prev = 0, fa = mb_sram_free_areas; fa; prev = fa, fa = fa->next)
418 if (fa->mem == end) {
419 /* FA is just after MEM, grow down to encompass it. */
420 fa->mem = mem;
421 fa->size += size;
422 goto done;
423 } else if (fa->mem + fa->size == mem) {
424 struct mb_sram_free_area *next_fa = fa->next;
425
426 /* FA is just before MEM, expand to encompass it. */
427 fa->size += size;
428
429 /* See if FA can now be merged with its successor. */
430 if (next_fa && fa->mem + fa->size == next_fa->mem) {
431 /* Yup; merge NEXT_FA's info into FA. */
432 fa->size += next_fa->size;
433 fa->next = next_fa->next;
434 /* Free NEXT_FA. */
435 next_fa->next = mb_sram_free_free_areas;
436 mb_sram_free_free_areas = next_fa;
437 }
438 goto done;
439 } else if (fa->mem > mem)
440 /* We've reached the right spot in the free-list
441 without finding an adjacent free-area, so add
442 a new free area to hold mem. */
443 break;
444
445 /* Make a new free-list entry. */
446
447 /* First, get a free-list entry. */
448 if (! mb_sram_free_free_areas) {
449 /* There are none, so make some. */
450 void *block;
451 size_t block_size = sizeof (struct mb_sram_free_area) * 8;
452
453 /* Don't hold the lock while calling kmalloc (I'm not
454 sure whether it would be a problem, since we use
455 GFP_ATOMIC, but it makes me nervous). */
456 spin_unlock_irqrestore (mb_sram_lock, flags);
457
458 block = kmalloc (block_size, GFP_ATOMIC);
459 if (! block)
460 panic ("free_mb_sram: can't allocate free-list entry");
461
462 /* Now get the lock back. */
463 spin_lock_irqsave (mb_sram_lock, flags);
464
465 /* Add the new free free-list entries. */
466 while (block_size > 0) {
467 struct mb_sram_free_area *nfa = block;
468 nfa->next = mb_sram_free_free_areas;
469 mb_sram_free_free_areas = nfa;
470 block += sizeof *nfa;
471 block_size -= sizeof *nfa;
472 }
473
474 /* Since we dropped the lock to call kmalloc, the
475 free-list could have changed, so retry from the
476 beginning. */
477 goto retry;
478 }
479
480 /* Remove NEW_FA from the free-list of free-list entries. */
481 new_fa = mb_sram_free_free_areas;
482 mb_sram_free_free_areas = new_fa->next;
483
484 /* NEW_FA initially holds only MEM. */
485 new_fa->mem = mem;
486 new_fa->size = size;
487
488 /* Insert NEW_FA in the free-list between PREV and FA. */
489 new_fa->next = fa;
490 if (prev)
491 prev->next = new_fa;
492 else
493 mb_sram_free_areas = new_fa;
494
495 done:
496 spin_unlock_irqrestore (mb_sram_lock, flags);
497 }
498
499 \f
500 /* Maintainence of CPU -> Mother-A DMA mappings. */
501
502 struct dma_mapping {
503 void *cpu_addr;
504 void *mb_sram_addr;
505 size_t size;
506 struct dma_mapping *next;
507 };
508
509 /* A list of mappings from CPU addresses to MB SRAM addresses for active
510 DMA blocks (that have been `granted' to the PCI device). */
511 static struct dma_mapping *active_dma_mappings = 0;
512
513 /* A list of free mapping objects. */
514 static struct dma_mapping *free_dma_mappings = 0;
515
516 /* Spinlock protecting the above globals. */
517 static DEFINE_SPINLOCK(dma_mappings_lock);
518
519 static struct dma_mapping *new_dma_mapping (size_t size)
520 {
521 int flags;
522 struct dma_mapping *mapping;
523 void *mb_sram_block = alloc_mb_sram (size);
524
525 if (! mb_sram_block)
526 return 0;
527
528 spin_lock_irqsave (dma_mappings_lock, flags);
529
530 if (! free_dma_mappings) {
531 /* We're out of mapping structures, make more. */
532 void *mblock;
533 size_t mblock_size = sizeof (struct dma_mapping) * 8;
534
535 /* Don't hold the lock while calling kmalloc (I'm not
536 sure whether it would be a problem, since we use
537 GFP_ATOMIC, but it makes me nervous). */
538 spin_unlock_irqrestore (dma_mappings_lock, flags);
539
540 mblock = kmalloc (mblock_size, GFP_ATOMIC);
541 if (! mblock) {
542 free_mb_sram (mb_sram_block, size);
543 return 0;
544 }
545
546 /* Get the lock back. */
547 spin_lock_irqsave (dma_mappings_lock, flags);
548
549 /* Add the new mapping structures to the free-list. */
550 while (mblock_size > 0) {
551 struct dma_mapping *fm = mblock;
552 fm->next = free_dma_mappings;
553 free_dma_mappings = fm;
554 mblock += sizeof *fm;
555 mblock_size -= sizeof *fm;
556 }
557 }
558
559 /* Get a mapping struct from the freelist. */
560 mapping = free_dma_mappings;
561 free_dma_mappings = mapping->next;
562
563 /* Initialize the mapping. Other fields should be filled in by
564 caller. */
565 mapping->mb_sram_addr = mb_sram_block;
566 mapping->size = size;
567
568 /* Add it to the list of active mappings. */
569 mapping->next = active_dma_mappings;
570 active_dma_mappings = mapping;
571
572 spin_unlock_irqrestore (dma_mappings_lock, flags);
573
574 return mapping;
575 }
576
577 static struct dma_mapping *find_dma_mapping (void *mb_sram_addr)
578 {
579 int flags;
580 struct dma_mapping *mapping;
581
582 spin_lock_irqsave (dma_mappings_lock, flags);
583
584 for (mapping = active_dma_mappings; mapping; mapping = mapping->next)
585 if (mapping->mb_sram_addr == mb_sram_addr) {
586 spin_unlock_irqrestore (dma_mappings_lock, flags);
587 return mapping;
588 }
589
590 panic ("find_dma_mapping: unmapped PCI DMA addr 0x%x",
591 MB_SRAM_TO_PCI (mb_sram_addr));
592 }
593
594 static struct dma_mapping *deactivate_dma_mapping (void *mb_sram_addr)
595 {
596 int flags;
597 struct dma_mapping *mapping, *prev;
598
599 spin_lock_irqsave (dma_mappings_lock, flags);
600
601 for (prev = 0, mapping = active_dma_mappings;
602 mapping;
603 prev = mapping, mapping = mapping->next)
604 {
605 if (mapping->mb_sram_addr == mb_sram_addr) {
606 /* This is the MAPPING; deactivate it. */
607 if (prev)
608 prev->next = mapping->next;
609 else
610 active_dma_mappings = mapping->next;
611
612 spin_unlock_irqrestore (dma_mappings_lock, flags);
613
614 return mapping;
615 }
616 }
617
618 panic ("deactivate_dma_mapping: unmapped PCI DMA addr 0x%x",
619 MB_SRAM_TO_PCI (mb_sram_addr));
620 }
621
622 /* Return MAPPING to the freelist. */
623 static inline void
624 free_dma_mapping (struct dma_mapping *mapping)
625 {
626 int flags;
627
628 free_mb_sram (mapping->mb_sram_addr, mapping->size);
629
630 spin_lock_irqsave (dma_mappings_lock, flags);
631
632 mapping->next = free_dma_mappings;
633 free_dma_mappings = mapping;
634
635 spin_unlock_irqrestore (dma_mappings_lock, flags);
636 }
637
638 \f
639 /* Single PCI DMA mappings. */
640
641 /* `Grant' to PDEV the memory block at CPU_ADDR, for doing DMA. The
642 32-bit PCI bus mastering address to use is returned. the device owns
643 this memory until either pci_unmap_single or pci_dma_sync_single is
644 performed. */
645 dma_addr_t
646 pci_map_single (struct pci_dev *pdev, void *cpu_addr, size_t size, int dir)
647 {
648 struct dma_mapping *mapping = new_dma_mapping (size);
649
650 if (! mapping)
651 return 0;
652
653 mapping->cpu_addr = cpu_addr;
654
655 if (dir == PCI_DMA_BIDIRECTIONAL || dir == PCI_DMA_TODEVICE)
656 memcpy (mapping->mb_sram_addr, cpu_addr, size);
657
658 return MB_SRAM_TO_PCI (mapping->mb_sram_addr);
659 }
660
661 /* Return to the CPU the PCI DMA memory block previously `granted' to
662 PDEV, at DMA_ADDR. */
663 void pci_unmap_single (struct pci_dev *pdev, dma_addr_t dma_addr, size_t size,
664 int dir)
665 {
666 void *mb_sram_addr = PCI_TO_MB_SRAM (dma_addr);
667 struct dma_mapping *mapping = deactivate_dma_mapping (mb_sram_addr);
668
669 if (size != mapping->size)
670 panic ("pci_unmap_single: size (%d) doesn't match"
671 " size of mapping at PCI DMA addr 0x%x (%d)\n",
672 size, dma_addr, mapping->size);
673
674 /* Copy back the DMA'd contents if necessary. */
675 if (dir == PCI_DMA_BIDIRECTIONAL || dir == PCI_DMA_FROMDEVICE)
676 memcpy (mapping->cpu_addr, mb_sram_addr, size);
677
678 /* Return mapping to the freelist. */
679 free_dma_mapping (mapping);
680 }
681
682 /* Make physical memory consistent for a single streaming mode DMA
683 translation after a transfer.
684
685 If you perform a pci_map_single() but wish to interrogate the
686 buffer using the cpu, yet do not wish to teardown the PCI dma
687 mapping, you must call this function before doing so. At the next
688 point you give the PCI dma address back to the card, you must first
689 perform a pci_dma_sync_for_device, and then the device again owns
690 the buffer. */
691 void
692 pci_dma_sync_single_for_cpu (struct pci_dev *pdev, dma_addr_t dma_addr, size_t size,
693 int dir)
694 {
695 void *mb_sram_addr = PCI_TO_MB_SRAM (dma_addr);
696 struct dma_mapping *mapping = find_dma_mapping (mb_sram_addr);
697
698 /* Synchronize the DMA buffer with the CPU buffer if necessary. */
699 if (dir == PCI_DMA_FROMDEVICE)
700 memcpy (mapping->cpu_addr, mb_sram_addr, size);
701 else if (dir == PCI_DMA_TODEVICE)
702 ; /* nothing to do */
703 else
704 panic("pci_dma_sync_single: unsupported sync dir: %d", dir);
705 }
706
707 void
708 pci_dma_sync_single_for_device (struct pci_dev *pdev, dma_addr_t dma_addr, size_t size,
709 int dir)
710 {
711 void *mb_sram_addr = PCI_TO_MB_SRAM (dma_addr);
712 struct dma_mapping *mapping = find_dma_mapping (mb_sram_addr);
713
714 /* Synchronize the DMA buffer with the CPU buffer if necessary. */
715 if (dir == PCI_DMA_FROMDEVICE)
716 ; /* nothing to do */
717 else if (dir == PCI_DMA_TODEVICE)
718 memcpy (mb_sram_addr, mapping->cpu_addr, size);
719 else
720 panic("pci_dma_sync_single: unsupported sync dir: %d", dir);
721 }
722
723 \f
724 /* Scatter-gather PCI DMA mappings. */
725
726 /* Do multiple DMA mappings at once. */
727 int
728 pci_map_sg (struct pci_dev *pdev, struct scatterlist *sg, int sg_len, int dir)
729 {
730 BUG ();
731 return 0;
732 }
733
734 /* Unmap multiple DMA mappings at once. */
735 void
736 pci_unmap_sg (struct pci_dev *pdev, struct scatterlist *sg, int sg_len,int dir)
737 {
738 BUG ();
739 }
740
741 /* Make physical memory consistent for a set of streaming mode DMA
742 translations after a transfer. The same as pci_dma_sync_single_* but
743 for a scatter-gather list, same rules and usage. */
744
745 void
746 pci_dma_sync_sg_for_cpu (struct pci_dev *dev, struct scatterlist *sg, int sg_len,
747 int dir)
748 {
749 BUG ();
750 }
751
752 void
753 pci_dma_sync_sg_for_device (struct pci_dev *dev, struct scatterlist *sg, int sg_len,
754 int dir)
755 {
756 BUG ();
757 }
758
759 \f
760 /* PCI mem mapping. */
761
762 /* Allocate and map kernel buffer using consistent mode DMA for PCI
763 device. Returns non-NULL cpu-view pointer to the buffer if
764 successful and sets *DMA_ADDR to the pci side dma address as well,
765 else DMA_ADDR is undefined. */
766 void *
767 pci_alloc_consistent (struct pci_dev *pdev, size_t size, dma_addr_t *dma_addr)
768 {
769 void *mb_sram_mem = alloc_mb_sram (size);
770 if (mb_sram_mem)
771 *dma_addr = MB_SRAM_TO_PCI (mb_sram_mem);
772 return mb_sram_mem;
773 }
774
775 /* Free and unmap a consistent DMA buffer. CPU_ADDR and DMA_ADDR must
776 be values that were returned from pci_alloc_consistent. SIZE must be
777 the same as what as passed into pci_alloc_consistent. References to
778 the memory and mappings assosciated with CPU_ADDR or DMA_ADDR past
779 this call are illegal. */
780 void
781 pci_free_consistent (struct pci_dev *pdev, size_t size, void *cpu_addr,
782 dma_addr_t dma_addr)
783 {
784 void *mb_sram_mem = PCI_TO_MB_SRAM (dma_addr);
785 free_mb_sram (mb_sram_mem, size);
786 }
787
788 \f
789 /* symbol exports (for modules) */
790
791 EXPORT_SYMBOL (pci_map_single);
792 EXPORT_SYMBOL (pci_unmap_single);
793 EXPORT_SYMBOL (pci_alloc_consistent);
794 EXPORT_SYMBOL (pci_free_consistent);
795 EXPORT_SYMBOL (pci_dma_sync_single_for_cpu);
796 EXPORT_SYMBOL (pci_dma_sync_single_for_device);