]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/Kconfig
mm: expose arch_mmap_rnd when available
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / Kconfig
1 # Select 32 or 64 bit
2 config 64BIT
3 bool "64-bit kernel" if ARCH = "x86"
4 default ARCH != "i386"
5 ---help---
6 Say yes to build a 64-bit kernel - formerly known as x86_64
7 Say no to build a 32-bit kernel - formerly known as i386
8
9 config X86_32
10 def_bool y
11 depends on !64BIT
12 select CLKSRC_I8253
13 select HAVE_UID16
14
15 config X86_64
16 def_bool y
17 depends on 64BIT
18 select X86_DEV_DMA_OPS
19 select ARCH_USE_CMPXCHG_LOCKREF
20 select HAVE_LIVEPATCH
21
22 ### Arch settings
23 config X86
24 def_bool y
25 select ARCH_MIGHT_HAVE_ACPI_PDC if ACPI
26 select ARCH_HAS_DEBUG_STRICT_USER_COPY_CHECKS
27 select ARCH_HAS_FAST_MULTIPLIER
28 select ARCH_HAS_GCOV_PROFILE_ALL
29 select ARCH_MIGHT_HAVE_PC_PARPORT
30 select ARCH_MIGHT_HAVE_PC_SERIO
31 select HAVE_AOUT if X86_32
32 select HAVE_UNSTABLE_SCHED_CLOCK
33 select ARCH_SUPPORTS_NUMA_BALANCING if X86_64
34 select ARCH_SUPPORTS_INT128 if X86_64
35 select HAVE_IDE
36 select HAVE_OPROFILE
37 select HAVE_PCSPKR_PLATFORM
38 select HAVE_PERF_EVENTS
39 select HAVE_IOREMAP_PROT
40 select HAVE_KPROBES
41 select HAVE_MEMBLOCK
42 select HAVE_MEMBLOCK_NODE_MAP
43 select ARCH_DISCARD_MEMBLOCK
44 select ARCH_WANT_OPTIONAL_GPIOLIB
45 select ARCH_WANT_FRAME_POINTERS
46 select HAVE_DMA_ATTRS
47 select HAVE_DMA_CONTIGUOUS
48 select HAVE_KRETPROBES
49 select GENERIC_EARLY_IOREMAP
50 select HAVE_OPTPROBES
51 select HAVE_KPROBES_ON_FTRACE
52 select HAVE_FTRACE_MCOUNT_RECORD
53 select HAVE_FENTRY if X86_64
54 select HAVE_C_RECORDMCOUNT
55 select HAVE_DYNAMIC_FTRACE
56 select HAVE_DYNAMIC_FTRACE_WITH_REGS
57 select HAVE_FUNCTION_TRACER
58 select HAVE_FUNCTION_GRAPH_TRACER
59 select HAVE_FUNCTION_GRAPH_FP_TEST
60 select HAVE_SYSCALL_TRACEPOINTS
61 select SYSCTL_EXCEPTION_TRACE
62 select HAVE_KVM
63 select HAVE_ARCH_KGDB
64 select HAVE_ARCH_TRACEHOOK
65 select HAVE_GENERIC_DMA_COHERENT if X86_32
66 select HAVE_EFFICIENT_UNALIGNED_ACCESS
67 select USER_STACKTRACE_SUPPORT
68 select HAVE_REGS_AND_STACK_ACCESS_API
69 select HAVE_DMA_API_DEBUG
70 select HAVE_KERNEL_GZIP
71 select HAVE_KERNEL_BZIP2
72 select HAVE_KERNEL_LZMA
73 select HAVE_KERNEL_XZ
74 select HAVE_KERNEL_LZO
75 select HAVE_KERNEL_LZ4
76 select HAVE_HW_BREAKPOINT
77 select HAVE_MIXED_BREAKPOINTS_REGS
78 select PERF_EVENTS
79 select HAVE_PERF_EVENTS_NMI
80 select HAVE_PERF_REGS
81 select HAVE_PERF_USER_STACK_DUMP
82 select HAVE_DEBUG_KMEMLEAK
83 select ANON_INODES
84 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
85 select HAVE_CMPXCHG_LOCAL
86 select HAVE_CMPXCHG_DOUBLE
87 select HAVE_ARCH_KMEMCHECK
88 select HAVE_ARCH_KASAN if X86_64 && SPARSEMEM_VMEMMAP
89 select HAVE_USER_RETURN_NOTIFIER
90 select ARCH_BINFMT_ELF_RANDOMIZE_PIE
91 select ARCH_HAS_ELF_RANDOMIZE
92 select HAVE_ARCH_JUMP_LABEL
93 select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
94 select SPARSE_IRQ
95 select GENERIC_FIND_FIRST_BIT
96 select GENERIC_IRQ_PROBE
97 select GENERIC_PENDING_IRQ if SMP
98 select GENERIC_IRQ_SHOW
99 select GENERIC_CLOCKEVENTS_MIN_ADJUST
100 select IRQ_FORCED_THREADING
101 select HAVE_BPF_JIT if X86_64
102 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
103 select HAVE_ARCH_HUGE_VMAP if X86_64 || (X86_32 && X86_PAE)
104 select ARCH_HAS_SG_CHAIN
105 select CLKEVT_I8253
106 select ARCH_HAVE_NMI_SAFE_CMPXCHG
107 select GENERIC_IOMAP
108 select DCACHE_WORD_ACCESS
109 select GENERIC_SMP_IDLE_THREAD
110 select ARCH_WANT_IPC_PARSE_VERSION if X86_32
111 select HAVE_ARCH_SECCOMP_FILTER
112 select BUILDTIME_EXTABLE_SORT
113 select GENERIC_CMOS_UPDATE
114 select HAVE_ARCH_SOFT_DIRTY if X86_64
115 select CLOCKSOURCE_WATCHDOG
116 select GENERIC_CLOCKEVENTS
117 select ARCH_CLOCKSOURCE_DATA
118 select CLOCKSOURCE_VALIDATE_LAST_CYCLE
119 select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC)
120 select GENERIC_TIME_VSYSCALL
121 select GENERIC_STRNCPY_FROM_USER
122 select GENERIC_STRNLEN_USER
123 select HAVE_CONTEXT_TRACKING if X86_64
124 select HAVE_IRQ_TIME_ACCOUNTING
125 select VIRT_TO_BUS
126 select MODULES_USE_ELF_REL if X86_32
127 select MODULES_USE_ELF_RELA if X86_64
128 select CLONE_BACKWARDS if X86_32
129 select ARCH_USE_BUILTIN_BSWAP
130 select ARCH_USE_QUEUE_RWLOCK
131 select OLD_SIGSUSPEND3 if X86_32 || IA32_EMULATION
132 select OLD_SIGACTION if X86_32
133 select COMPAT_OLD_SIGACTION if IA32_EMULATION
134 select RTC_LIB
135 select HAVE_DEBUG_STACKOVERFLOW
136 select HAVE_IRQ_EXIT_ON_IRQ_STACK if X86_64
137 select HAVE_CC_STACKPROTECTOR
138 select GENERIC_CPU_AUTOPROBE
139 select HAVE_ARCH_AUDITSYSCALL
140 select ARCH_SUPPORTS_ATOMIC_RMW
141 select HAVE_ACPI_APEI if ACPI
142 select HAVE_ACPI_APEI_NMI if ACPI
143 select ACPI_LEGACY_TABLES_LOOKUP if ACPI
144 select X86_FEATURE_NAMES if PROC_FS
145 select SRCU
146
147 config INSTRUCTION_DECODER
148 def_bool y
149 depends on KPROBES || PERF_EVENTS || UPROBES
150
151 config PERF_EVENTS_INTEL_UNCORE
152 def_bool y
153 depends on PERF_EVENTS && CPU_SUP_INTEL && PCI
154
155 config OUTPUT_FORMAT
156 string
157 default "elf32-i386" if X86_32
158 default "elf64-x86-64" if X86_64
159
160 config ARCH_DEFCONFIG
161 string
162 default "arch/x86/configs/i386_defconfig" if X86_32
163 default "arch/x86/configs/x86_64_defconfig" if X86_64
164
165 config LOCKDEP_SUPPORT
166 def_bool y
167
168 config STACKTRACE_SUPPORT
169 def_bool y
170
171 config HAVE_LATENCYTOP_SUPPORT
172 def_bool y
173
174 config MMU
175 def_bool y
176
177 config SBUS
178 bool
179
180 config NEED_DMA_MAP_STATE
181 def_bool y
182 depends on X86_64 || INTEL_IOMMU || DMA_API_DEBUG
183
184 config NEED_SG_DMA_LENGTH
185 def_bool y
186
187 config GENERIC_ISA_DMA
188 def_bool y
189 depends on ISA_DMA_API
190
191 config GENERIC_BUG
192 def_bool y
193 depends on BUG
194 select GENERIC_BUG_RELATIVE_POINTERS if X86_64
195
196 config GENERIC_BUG_RELATIVE_POINTERS
197 bool
198
199 config GENERIC_HWEIGHT
200 def_bool y
201
202 config ARCH_MAY_HAVE_PC_FDC
203 def_bool y
204 depends on ISA_DMA_API
205
206 config RWSEM_XCHGADD_ALGORITHM
207 def_bool y
208
209 config GENERIC_CALIBRATE_DELAY
210 def_bool y
211
212 config ARCH_HAS_CPU_RELAX
213 def_bool y
214
215 config ARCH_HAS_CACHE_LINE_SIZE
216 def_bool y
217
218 config HAVE_SETUP_PER_CPU_AREA
219 def_bool y
220
221 config NEED_PER_CPU_EMBED_FIRST_CHUNK
222 def_bool y
223
224 config NEED_PER_CPU_PAGE_FIRST_CHUNK
225 def_bool y
226
227 config ARCH_HIBERNATION_POSSIBLE
228 def_bool y
229
230 config ARCH_SUSPEND_POSSIBLE
231 def_bool y
232
233 config ARCH_WANT_HUGE_PMD_SHARE
234 def_bool y
235
236 config ARCH_WANT_GENERAL_HUGETLB
237 def_bool y
238
239 config ZONE_DMA32
240 def_bool y if X86_64
241
242 config AUDIT_ARCH
243 def_bool y if X86_64
244
245 config ARCH_SUPPORTS_OPTIMIZED_INLINING
246 def_bool y
247
248 config ARCH_SUPPORTS_DEBUG_PAGEALLOC
249 def_bool y
250
251 config HAVE_INTEL_TXT
252 def_bool y
253 depends on INTEL_IOMMU && ACPI
254
255 config X86_32_SMP
256 def_bool y
257 depends on X86_32 && SMP
258
259 config X86_64_SMP
260 def_bool y
261 depends on X86_64 && SMP
262
263 config X86_HT
264 def_bool y
265 depends on SMP
266
267 config X86_32_LAZY_GS
268 def_bool y
269 depends on X86_32 && !CC_STACKPROTECTOR
270
271 config ARCH_HWEIGHT_CFLAGS
272 string
273 default "-fcall-saved-ecx -fcall-saved-edx" if X86_32
274 default "-fcall-saved-rdi -fcall-saved-rsi -fcall-saved-rdx -fcall-saved-rcx -fcall-saved-r8 -fcall-saved-r9 -fcall-saved-r10 -fcall-saved-r11" if X86_64
275
276 config ARCH_SUPPORTS_UPROBES
277 def_bool y
278
279 config FIX_EARLYCON_MEM
280 def_bool y
281
282 config PGTABLE_LEVELS
283 int
284 default 4 if X86_64
285 default 3 if X86_PAE
286 default 2
287
288 source "init/Kconfig"
289 source "kernel/Kconfig.freezer"
290
291 menu "Processor type and features"
292
293 config ZONE_DMA
294 bool "DMA memory allocation support" if EXPERT
295 default y
296 help
297 DMA memory allocation support allows devices with less than 32-bit
298 addressing to allocate within the first 16MB of address space.
299 Disable if no such devices will be used.
300
301 If unsure, say Y.
302
303 config SMP
304 bool "Symmetric multi-processing support"
305 ---help---
306 This enables support for systems with more than one CPU. If you have
307 a system with only one CPU, say N. If you have a system with more
308 than one CPU, say Y.
309
310 If you say N here, the kernel will run on uni- and multiprocessor
311 machines, but will use only one CPU of a multiprocessor machine. If
312 you say Y here, the kernel will run on many, but not all,
313 uniprocessor machines. On a uniprocessor machine, the kernel
314 will run faster if you say N here.
315
316 Note that if you say Y here and choose architecture "586" or
317 "Pentium" under "Processor family", the kernel will not work on 486
318 architectures. Similarly, multiprocessor kernels for the "PPro"
319 architecture may not work on all Pentium based boards.
320
321 People using multiprocessor machines who say Y here should also say
322 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
323 Management" code will be disabled if you say Y here.
324
325 See also <file:Documentation/x86/i386/IO-APIC.txt>,
326 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
327 <http://www.tldp.org/docs.html#howto>.
328
329 If you don't know what to do here, say N.
330
331 config X86_FEATURE_NAMES
332 bool "Processor feature human-readable names" if EMBEDDED
333 default y
334 ---help---
335 This option compiles in a table of x86 feature bits and corresponding
336 names. This is required to support /proc/cpuinfo and a few kernel
337 messages. You can disable this to save space, at the expense of
338 making those few kernel messages show numeric feature bits instead.
339
340 If in doubt, say Y.
341
342 config X86_X2APIC
343 bool "Support x2apic"
344 depends on X86_LOCAL_APIC && X86_64 && IRQ_REMAP
345 ---help---
346 This enables x2apic support on CPUs that have this feature.
347
348 This allows 32-bit apic IDs (so it can support very large systems),
349 and accesses the local apic via MSRs not via mmio.
350
351 If you don't know what to do here, say N.
352
353 config X86_MPPARSE
354 bool "Enable MPS table" if ACPI || SFI
355 default y
356 depends on X86_LOCAL_APIC
357 ---help---
358 For old smp systems that do not have proper acpi support. Newer systems
359 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
360
361 config X86_BIGSMP
362 bool "Support for big SMP systems with more than 8 CPUs"
363 depends on X86_32 && SMP
364 ---help---
365 This option is needed for the systems that have more than 8 CPUs
366
367 config GOLDFISH
368 def_bool y
369 depends on X86_GOLDFISH
370
371 if X86_32
372 config X86_EXTENDED_PLATFORM
373 bool "Support for extended (non-PC) x86 platforms"
374 default y
375 ---help---
376 If you disable this option then the kernel will only support
377 standard PC platforms. (which covers the vast majority of
378 systems out there.)
379
380 If you enable this option then you'll be able to select support
381 for the following (non-PC) 32 bit x86 platforms:
382 Goldfish (Android emulator)
383 AMD Elan
384 RDC R-321x SoC
385 SGI 320/540 (Visual Workstation)
386 STA2X11-based (e.g. Northville)
387 Moorestown MID devices
388
389 If you have one of these systems, or if you want to build a
390 generic distribution kernel, say Y here - otherwise say N.
391 endif
392
393 if X86_64
394 config X86_EXTENDED_PLATFORM
395 bool "Support for extended (non-PC) x86 platforms"
396 default y
397 ---help---
398 If you disable this option then the kernel will only support
399 standard PC platforms. (which covers the vast majority of
400 systems out there.)
401
402 If you enable this option then you'll be able to select support
403 for the following (non-PC) 64 bit x86 platforms:
404 Numascale NumaChip
405 ScaleMP vSMP
406 SGI Ultraviolet
407
408 If you have one of these systems, or if you want to build a
409 generic distribution kernel, say Y here - otherwise say N.
410 endif
411 # This is an alphabetically sorted list of 64 bit extended platforms
412 # Please maintain the alphabetic order if and when there are additions
413 config X86_NUMACHIP
414 bool "Numascale NumaChip"
415 depends on X86_64
416 depends on X86_EXTENDED_PLATFORM
417 depends on NUMA
418 depends on SMP
419 depends on X86_X2APIC
420 depends on PCI_MMCONFIG
421 ---help---
422 Adds support for Numascale NumaChip large-SMP systems. Needed to
423 enable more than ~168 cores.
424 If you don't have one of these, you should say N here.
425
426 config X86_VSMP
427 bool "ScaleMP vSMP"
428 select HYPERVISOR_GUEST
429 select PARAVIRT
430 depends on X86_64 && PCI
431 depends on X86_EXTENDED_PLATFORM
432 depends on SMP
433 ---help---
434 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
435 supposed to run on these EM64T-based machines. Only choose this option
436 if you have one of these machines.
437
438 config X86_UV
439 bool "SGI Ultraviolet"
440 depends on X86_64
441 depends on X86_EXTENDED_PLATFORM
442 depends on NUMA
443 depends on X86_X2APIC
444 ---help---
445 This option is needed in order to support SGI Ultraviolet systems.
446 If you don't have one of these, you should say N here.
447
448 # Following is an alphabetically sorted list of 32 bit extended platforms
449 # Please maintain the alphabetic order if and when there are additions
450
451 config X86_GOLDFISH
452 bool "Goldfish (Virtual Platform)"
453 depends on X86_EXTENDED_PLATFORM
454 ---help---
455 Enable support for the Goldfish virtual platform used primarily
456 for Android development. Unless you are building for the Android
457 Goldfish emulator say N here.
458
459 config X86_INTEL_CE
460 bool "CE4100 TV platform"
461 depends on PCI
462 depends on PCI_GODIRECT
463 depends on X86_IO_APIC
464 depends on X86_32
465 depends on X86_EXTENDED_PLATFORM
466 select X86_REBOOTFIXUPS
467 select OF
468 select OF_EARLY_FLATTREE
469 select IRQ_DOMAIN
470 ---help---
471 Select for the Intel CE media processor (CE4100) SOC.
472 This option compiles in support for the CE4100 SOC for settop
473 boxes and media devices.
474
475 config X86_INTEL_MID
476 bool "Intel MID platform support"
477 depends on X86_32
478 depends on X86_EXTENDED_PLATFORM
479 depends on X86_PLATFORM_DEVICES
480 depends on PCI
481 depends on PCI_GOANY
482 depends on X86_IO_APIC
483 select SFI
484 select I2C
485 select DW_APB_TIMER
486 select APB_TIMER
487 select INTEL_SCU_IPC
488 select MFD_INTEL_MSIC
489 ---help---
490 Select to build a kernel capable of supporting Intel MID (Mobile
491 Internet Device) platform systems which do not have the PCI legacy
492 interfaces. If you are building for a PC class system say N here.
493
494 Intel MID platforms are based on an Intel processor and chipset which
495 consume less power than most of the x86 derivatives.
496
497 config X86_INTEL_QUARK
498 bool "Intel Quark platform support"
499 depends on X86_32
500 depends on X86_EXTENDED_PLATFORM
501 depends on X86_PLATFORM_DEVICES
502 depends on X86_TSC
503 depends on PCI
504 depends on PCI_GOANY
505 depends on X86_IO_APIC
506 select IOSF_MBI
507 select INTEL_IMR
508 select COMMON_CLK
509 ---help---
510 Select to include support for Quark X1000 SoC.
511 Say Y here if you have a Quark based system such as the Arduino
512 compatible Intel Galileo.
513
514 config X86_INTEL_LPSS
515 bool "Intel Low Power Subsystem Support"
516 depends on ACPI
517 select COMMON_CLK
518 select PINCTRL
519 ---help---
520 Select to build support for Intel Low Power Subsystem such as
521 found on Intel Lynxpoint PCH. Selecting this option enables
522 things like clock tree (common clock framework) and pincontrol
523 which are needed by the LPSS peripheral drivers.
524
525 config X86_AMD_PLATFORM_DEVICE
526 bool "AMD ACPI2Platform devices support"
527 depends on ACPI
528 select COMMON_CLK
529 select PINCTRL
530 ---help---
531 Select to interpret AMD specific ACPI device to platform device
532 such as I2C, UART, GPIO found on AMD Carrizo and later chipsets.
533 I2C and UART depend on COMMON_CLK to set clock. GPIO driver is
534 implemented under PINCTRL subsystem.
535
536 config IOSF_MBI
537 tristate "Intel SoC IOSF Sideband support for SoC platforms"
538 depends on PCI
539 ---help---
540 This option enables sideband register access support for Intel SoC
541 platforms. On these platforms the IOSF sideband is used in lieu of
542 MSR's for some register accesses, mostly but not limited to thermal
543 and power. Drivers may query the availability of this device to
544 determine if they need the sideband in order to work on these
545 platforms. The sideband is available on the following SoC products.
546 This list is not meant to be exclusive.
547 - BayTrail
548 - Braswell
549 - Quark
550
551 You should say Y if you are running a kernel on one of these SoC's.
552
553 config IOSF_MBI_DEBUG
554 bool "Enable IOSF sideband access through debugfs"
555 depends on IOSF_MBI && DEBUG_FS
556 ---help---
557 Select this option to expose the IOSF sideband access registers (MCR,
558 MDR, MCRX) through debugfs to write and read register information from
559 different units on the SoC. This is most useful for obtaining device
560 state information for debug and analysis. As this is a general access
561 mechanism, users of this option would have specific knowledge of the
562 device they want to access.
563
564 If you don't require the option or are in doubt, say N.
565
566 config X86_RDC321X
567 bool "RDC R-321x SoC"
568 depends on X86_32
569 depends on X86_EXTENDED_PLATFORM
570 select M486
571 select X86_REBOOTFIXUPS
572 ---help---
573 This option is needed for RDC R-321x system-on-chip, also known
574 as R-8610-(G).
575 If you don't have one of these chips, you should say N here.
576
577 config X86_32_NON_STANDARD
578 bool "Support non-standard 32-bit SMP architectures"
579 depends on X86_32 && SMP
580 depends on X86_EXTENDED_PLATFORM
581 ---help---
582 This option compiles in the bigsmp and STA2X11 default
583 subarchitectures. It is intended for a generic binary
584 kernel. If you select them all, kernel will probe it one by
585 one and will fallback to default.
586
587 # Alphabetically sorted list of Non standard 32 bit platforms
588
589 config X86_SUPPORTS_MEMORY_FAILURE
590 def_bool y
591 # MCE code calls memory_failure():
592 depends on X86_MCE
593 # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
594 # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
595 depends on X86_64 || !SPARSEMEM
596 select ARCH_SUPPORTS_MEMORY_FAILURE
597
598 config STA2X11
599 bool "STA2X11 Companion Chip Support"
600 depends on X86_32_NON_STANDARD && PCI
601 select X86_DEV_DMA_OPS
602 select X86_DMA_REMAP
603 select SWIOTLB
604 select MFD_STA2X11
605 select ARCH_REQUIRE_GPIOLIB
606 default n
607 ---help---
608 This adds support for boards based on the STA2X11 IO-Hub,
609 a.k.a. "ConneXt". The chip is used in place of the standard
610 PC chipset, so all "standard" peripherals are missing. If this
611 option is selected the kernel will still be able to boot on
612 standard PC machines.
613
614 config X86_32_IRIS
615 tristate "Eurobraille/Iris poweroff module"
616 depends on X86_32
617 ---help---
618 The Iris machines from EuroBraille do not have APM or ACPI support
619 to shut themselves down properly. A special I/O sequence is
620 needed to do so, which is what this module does at
621 kernel shutdown.
622
623 This is only for Iris machines from EuroBraille.
624
625 If unused, say N.
626
627 config SCHED_OMIT_FRAME_POINTER
628 def_bool y
629 prompt "Single-depth WCHAN output"
630 depends on X86
631 ---help---
632 Calculate simpler /proc/<PID>/wchan values. If this option
633 is disabled then wchan values will recurse back to the
634 caller function. This provides more accurate wchan values,
635 at the expense of slightly more scheduling overhead.
636
637 If in doubt, say "Y".
638
639 menuconfig HYPERVISOR_GUEST
640 bool "Linux guest support"
641 ---help---
642 Say Y here to enable options for running Linux under various hyper-
643 visors. This option enables basic hypervisor detection and platform
644 setup.
645
646 If you say N, all options in this submenu will be skipped and
647 disabled, and Linux guest support won't be built in.
648
649 if HYPERVISOR_GUEST
650
651 config PARAVIRT
652 bool "Enable paravirtualization code"
653 ---help---
654 This changes the kernel so it can modify itself when it is run
655 under a hypervisor, potentially improving performance significantly
656 over full virtualization. However, when run without a hypervisor
657 the kernel is theoretically slower and slightly larger.
658
659 config PARAVIRT_DEBUG
660 bool "paravirt-ops debugging"
661 depends on PARAVIRT && DEBUG_KERNEL
662 ---help---
663 Enable to debug paravirt_ops internals. Specifically, BUG if
664 a paravirt_op is missing when it is called.
665
666 config PARAVIRT_SPINLOCKS
667 bool "Paravirtualization layer for spinlocks"
668 depends on PARAVIRT && SMP
669 select UNINLINE_SPIN_UNLOCK
670 ---help---
671 Paravirtualized spinlocks allow a pvops backend to replace the
672 spinlock implementation with something virtualization-friendly
673 (for example, block the virtual CPU rather than spinning).
674
675 It has a minimal impact on native kernels and gives a nice performance
676 benefit on paravirtualized KVM / Xen kernels.
677
678 If you are unsure how to answer this question, answer Y.
679
680 source "arch/x86/xen/Kconfig"
681
682 config KVM_GUEST
683 bool "KVM Guest support (including kvmclock)"
684 depends on PARAVIRT
685 select PARAVIRT_CLOCK
686 default y
687 ---help---
688 This option enables various optimizations for running under the KVM
689 hypervisor. It includes a paravirtualized clock, so that instead
690 of relying on a PIT (or probably other) emulation by the
691 underlying device model, the host provides the guest with
692 timing infrastructure such as time of day, and system time
693
694 config KVM_DEBUG_FS
695 bool "Enable debug information for KVM Guests in debugfs"
696 depends on KVM_GUEST && DEBUG_FS
697 default n
698 ---help---
699 This option enables collection of various statistics for KVM guest.
700 Statistics are displayed in debugfs filesystem. Enabling this option
701 may incur significant overhead.
702
703 source "arch/x86/lguest/Kconfig"
704
705 config PARAVIRT_TIME_ACCOUNTING
706 bool "Paravirtual steal time accounting"
707 depends on PARAVIRT
708 default n
709 ---help---
710 Select this option to enable fine granularity task steal time
711 accounting. Time spent executing other tasks in parallel with
712 the current vCPU is discounted from the vCPU power. To account for
713 that, there can be a small performance impact.
714
715 If in doubt, say N here.
716
717 config PARAVIRT_CLOCK
718 bool
719
720 endif #HYPERVISOR_GUEST
721
722 config NO_BOOTMEM
723 def_bool y
724
725 config MEMTEST
726 bool "Memtest"
727 ---help---
728 This option adds a kernel parameter 'memtest', which allows memtest
729 to be set.
730 memtest=0, mean disabled; -- default
731 memtest=1, mean do 1 test pattern;
732 ...
733 memtest=4, mean do 4 test patterns.
734 If you are unsure how to answer this question, answer N.
735
736 source "arch/x86/Kconfig.cpu"
737
738 config HPET_TIMER
739 def_bool X86_64
740 prompt "HPET Timer Support" if X86_32
741 ---help---
742 Use the IA-PC HPET (High Precision Event Timer) to manage
743 time in preference to the PIT and RTC, if a HPET is
744 present.
745 HPET is the next generation timer replacing legacy 8254s.
746 The HPET provides a stable time base on SMP
747 systems, unlike the TSC, but it is more expensive to access,
748 as it is off-chip. You can find the HPET spec at
749 <http://www.intel.com/hardwaredesign/hpetspec_1.pdf>.
750
751 You can safely choose Y here. However, HPET will only be
752 activated if the platform and the BIOS support this feature.
753 Otherwise the 8254 will be used for timing services.
754
755 Choose N to continue using the legacy 8254 timer.
756
757 config HPET_EMULATE_RTC
758 def_bool y
759 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
760
761 config APB_TIMER
762 def_bool y if X86_INTEL_MID
763 prompt "Intel MID APB Timer Support" if X86_INTEL_MID
764 select DW_APB_TIMER
765 depends on X86_INTEL_MID && SFI
766 help
767 APB timer is the replacement for 8254, HPET on X86 MID platforms.
768 The APBT provides a stable time base on SMP
769 systems, unlike the TSC, but it is more expensive to access,
770 as it is off-chip. APB timers are always running regardless of CPU
771 C states, they are used as per CPU clockevent device when possible.
772
773 # Mark as expert because too many people got it wrong.
774 # The code disables itself when not needed.
775 config DMI
776 default y
777 select DMI_SCAN_MACHINE_NON_EFI_FALLBACK
778 bool "Enable DMI scanning" if EXPERT
779 ---help---
780 Enabled scanning of DMI to identify machine quirks. Say Y
781 here unless you have verified that your setup is not
782 affected by entries in the DMI blacklist. Required by PNP
783 BIOS code.
784
785 config GART_IOMMU
786 bool "Old AMD GART IOMMU support"
787 select SWIOTLB
788 depends on X86_64 && PCI && AMD_NB
789 ---help---
790 Provides a driver for older AMD Athlon64/Opteron/Turion/Sempron
791 GART based hardware IOMMUs.
792
793 The GART supports full DMA access for devices with 32-bit access
794 limitations, on systems with more than 3 GB. This is usually needed
795 for USB, sound, many IDE/SATA chipsets and some other devices.
796
797 Newer systems typically have a modern AMD IOMMU, supported via
798 the CONFIG_AMD_IOMMU=y config option.
799
800 In normal configurations this driver is only active when needed:
801 there's more than 3 GB of memory and the system contains a
802 32-bit limited device.
803
804 If unsure, say Y.
805
806 config CALGARY_IOMMU
807 bool "IBM Calgary IOMMU support"
808 select SWIOTLB
809 depends on X86_64 && PCI
810 ---help---
811 Support for hardware IOMMUs in IBM's xSeries x366 and x460
812 systems. Needed to run systems with more than 3GB of memory
813 properly with 32-bit PCI devices that do not support DAC
814 (Double Address Cycle). Calgary also supports bus level
815 isolation, where all DMAs pass through the IOMMU. This
816 prevents them from going anywhere except their intended
817 destination. This catches hard-to-find kernel bugs and
818 mis-behaving drivers and devices that do not use the DMA-API
819 properly to set up their DMA buffers. The IOMMU can be
820 turned off at boot time with the iommu=off parameter.
821 Normally the kernel will make the right choice by itself.
822 If unsure, say Y.
823
824 config CALGARY_IOMMU_ENABLED_BY_DEFAULT
825 def_bool y
826 prompt "Should Calgary be enabled by default?"
827 depends on CALGARY_IOMMU
828 ---help---
829 Should Calgary be enabled by default? if you choose 'y', Calgary
830 will be used (if it exists). If you choose 'n', Calgary will not be
831 used even if it exists. If you choose 'n' and would like to use
832 Calgary anyway, pass 'iommu=calgary' on the kernel command line.
833 If unsure, say Y.
834
835 # need this always selected by IOMMU for the VIA workaround
836 config SWIOTLB
837 def_bool y if X86_64
838 ---help---
839 Support for software bounce buffers used on x86-64 systems
840 which don't have a hardware IOMMU. Using this PCI devices
841 which can only access 32-bits of memory can be used on systems
842 with more than 3 GB of memory.
843 If unsure, say Y.
844
845 config IOMMU_HELPER
846 def_bool y
847 depends on CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU
848
849 config MAXSMP
850 bool "Enable Maximum number of SMP Processors and NUMA Nodes"
851 depends on X86_64 && SMP && DEBUG_KERNEL
852 select CPUMASK_OFFSTACK
853 ---help---
854 Enable maximum number of CPUS and NUMA Nodes for this architecture.
855 If unsure, say N.
856
857 config NR_CPUS
858 int "Maximum number of CPUs" if SMP && !MAXSMP
859 range 2 8 if SMP && X86_32 && !X86_BIGSMP
860 range 2 512 if SMP && !MAXSMP && !CPUMASK_OFFSTACK
861 range 2 8192 if SMP && !MAXSMP && CPUMASK_OFFSTACK && X86_64
862 default "1" if !SMP
863 default "8192" if MAXSMP
864 default "32" if SMP && X86_BIGSMP
865 default "8" if SMP
866 ---help---
867 This allows you to specify the maximum number of CPUs which this
868 kernel will support. If CPUMASK_OFFSTACK is enabled, the maximum
869 supported value is 4096, otherwise the maximum value is 512. The
870 minimum value which makes sense is 2.
871
872 This is purely to save memory - each supported CPU adds
873 approximately eight kilobytes to the kernel image.
874
875 config SCHED_SMT
876 bool "SMT (Hyperthreading) scheduler support"
877 depends on X86_HT
878 ---help---
879 SMT scheduler support improves the CPU scheduler's decision making
880 when dealing with Intel Pentium 4 chips with HyperThreading at a
881 cost of slightly increased overhead in some places. If unsure say
882 N here.
883
884 config SCHED_MC
885 def_bool y
886 prompt "Multi-core scheduler support"
887 depends on X86_HT
888 ---help---
889 Multi-core scheduler support improves the CPU scheduler's decision
890 making when dealing with multi-core CPU chips at a cost of slightly
891 increased overhead in some places. If unsure say N here.
892
893 source "kernel/Kconfig.preempt"
894
895 config UP_LATE_INIT
896 def_bool y
897 depends on !SMP && X86_LOCAL_APIC
898
899 config X86_UP_APIC
900 bool "Local APIC support on uniprocessors" if !PCI_MSI
901 default PCI_MSI
902 depends on X86_32 && !SMP && !X86_32_NON_STANDARD
903 ---help---
904 A local APIC (Advanced Programmable Interrupt Controller) is an
905 integrated interrupt controller in the CPU. If you have a single-CPU
906 system which has a processor with a local APIC, you can say Y here to
907 enable and use it. If you say Y here even though your machine doesn't
908 have a local APIC, then the kernel will still run with no slowdown at
909 all. The local APIC supports CPU-generated self-interrupts (timer,
910 performance counters), and the NMI watchdog which detects hard
911 lockups.
912
913 config X86_UP_IOAPIC
914 bool "IO-APIC support on uniprocessors"
915 depends on X86_UP_APIC
916 ---help---
917 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
918 SMP-capable replacement for PC-style interrupt controllers. Most
919 SMP systems and many recent uniprocessor systems have one.
920
921 If you have a single-CPU system with an IO-APIC, you can say Y here
922 to use it. If you say Y here even though your machine doesn't have
923 an IO-APIC, then the kernel will still run with no slowdown at all.
924
925 config X86_LOCAL_APIC
926 def_bool y
927 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI
928 select GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
929
930 config X86_IO_APIC
931 def_bool y
932 depends on X86_LOCAL_APIC || X86_UP_IOAPIC
933 select IRQ_DOMAIN
934
935 config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
936 bool "Reroute for broken boot IRQs"
937 depends on X86_IO_APIC
938 ---help---
939 This option enables a workaround that fixes a source of
940 spurious interrupts. This is recommended when threaded
941 interrupt handling is used on systems where the generation of
942 superfluous "boot interrupts" cannot be disabled.
943
944 Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
945 entry in the chipset's IO-APIC is masked (as, e.g. the RT
946 kernel does during interrupt handling). On chipsets where this
947 boot IRQ generation cannot be disabled, this workaround keeps
948 the original IRQ line masked so that only the equivalent "boot
949 IRQ" is delivered to the CPUs. The workaround also tells the
950 kernel to set up the IRQ handler on the boot IRQ line. In this
951 way only one interrupt is delivered to the kernel. Otherwise
952 the spurious second interrupt may cause the kernel to bring
953 down (vital) interrupt lines.
954
955 Only affects "broken" chipsets. Interrupt sharing may be
956 increased on these systems.
957
958 config X86_MCE
959 bool "Machine Check / overheating reporting"
960 default y
961 ---help---
962 Machine Check support allows the processor to notify the
963 kernel if it detects a problem (e.g. overheating, data corruption).
964 The action the kernel takes depends on the severity of the problem,
965 ranging from warning messages to halting the machine.
966
967 config X86_MCE_INTEL
968 def_bool y
969 prompt "Intel MCE features"
970 depends on X86_MCE && X86_LOCAL_APIC
971 ---help---
972 Additional support for intel specific MCE features such as
973 the thermal monitor.
974
975 config X86_MCE_AMD
976 def_bool y
977 prompt "AMD MCE features"
978 depends on X86_MCE && X86_LOCAL_APIC
979 ---help---
980 Additional support for AMD specific MCE features such as
981 the DRAM Error Threshold.
982
983 config X86_ANCIENT_MCE
984 bool "Support for old Pentium 5 / WinChip machine checks"
985 depends on X86_32 && X86_MCE
986 ---help---
987 Include support for machine check handling on old Pentium 5 or WinChip
988 systems. These typically need to be enabled explicitly on the command
989 line.
990
991 config X86_MCE_THRESHOLD
992 depends on X86_MCE_AMD || X86_MCE_INTEL
993 def_bool y
994
995 config X86_MCE_INJECT
996 depends on X86_MCE
997 tristate "Machine check injector support"
998 ---help---
999 Provide support for injecting machine checks for testing purposes.
1000 If you don't know what a machine check is and you don't do kernel
1001 QA it is safe to say n.
1002
1003 config X86_THERMAL_VECTOR
1004 def_bool y
1005 depends on X86_MCE_INTEL
1006
1007 config VM86
1008 bool "Enable VM86 support" if EXPERT
1009 default y
1010 depends on X86_32
1011 ---help---
1012 This option is required by programs like DOSEMU to run
1013 16-bit real mode legacy code on x86 processors. It also may
1014 be needed by software like XFree86 to initialize some video
1015 cards via BIOS. Disabling this option saves about 6K.
1016
1017 config X86_16BIT
1018 bool "Enable support for 16-bit segments" if EXPERT
1019 default y
1020 ---help---
1021 This option is required by programs like Wine to run 16-bit
1022 protected mode legacy code on x86 processors. Disabling
1023 this option saves about 300 bytes on i386, or around 6K text
1024 plus 16K runtime memory on x86-64,
1025
1026 config X86_ESPFIX32
1027 def_bool y
1028 depends on X86_16BIT && X86_32
1029
1030 config X86_ESPFIX64
1031 def_bool y
1032 depends on X86_16BIT && X86_64
1033
1034 config X86_VSYSCALL_EMULATION
1035 bool "Enable vsyscall emulation" if EXPERT
1036 default y
1037 depends on X86_64
1038 ---help---
1039 This enables emulation of the legacy vsyscall page. Disabling
1040 it is roughly equivalent to booting with vsyscall=none, except
1041 that it will also disable the helpful warning if a program
1042 tries to use a vsyscall. With this option set to N, offending
1043 programs will just segfault, citing addresses of the form
1044 0xffffffffff600?00.
1045
1046 This option is required by many programs built before 2013, and
1047 care should be used even with newer programs if set to N.
1048
1049 Disabling this option saves about 7K of kernel size and
1050 possibly 4K of additional runtime pagetable memory.
1051
1052 config TOSHIBA
1053 tristate "Toshiba Laptop support"
1054 depends on X86_32
1055 ---help---
1056 This adds a driver to safely access the System Management Mode of
1057 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
1058 not work on models with a Phoenix BIOS. The System Management Mode
1059 is used to set the BIOS and power saving options on Toshiba portables.
1060
1061 For information on utilities to make use of this driver see the
1062 Toshiba Linux utilities web site at:
1063 <http://www.buzzard.org.uk/toshiba/>.
1064
1065 Say Y if you intend to run this kernel on a Toshiba portable.
1066 Say N otherwise.
1067
1068 config I8K
1069 tristate "Dell laptop support"
1070 select HWMON
1071 ---help---
1072 This adds a driver to safely access the System Management Mode
1073 of the CPU on the Dell Inspiron 8000. The System Management Mode
1074 is used to read cpu temperature and cooling fan status and to
1075 control the fans on the I8K portables.
1076
1077 This driver has been tested only on the Inspiron 8000 but it may
1078 also work with other Dell laptops. You can force loading on other
1079 models by passing the parameter `force=1' to the module. Use at
1080 your own risk.
1081
1082 For information on utilities to make use of this driver see the
1083 I8K Linux utilities web site at:
1084 <http://people.debian.org/~dz/i8k/>
1085
1086 Say Y if you intend to run this kernel on a Dell Inspiron 8000.
1087 Say N otherwise.
1088
1089 config X86_REBOOTFIXUPS
1090 bool "Enable X86 board specific fixups for reboot"
1091 depends on X86_32
1092 ---help---
1093 This enables chipset and/or board specific fixups to be done
1094 in order to get reboot to work correctly. This is only needed on
1095 some combinations of hardware and BIOS. The symptom, for which
1096 this config is intended, is when reboot ends with a stalled/hung
1097 system.
1098
1099 Currently, the only fixup is for the Geode machines using
1100 CS5530A and CS5536 chipsets and the RDC R-321x SoC.
1101
1102 Say Y if you want to enable the fixup. Currently, it's safe to
1103 enable this option even if you don't need it.
1104 Say N otherwise.
1105
1106 config MICROCODE
1107 tristate "CPU microcode loading support"
1108 depends on CPU_SUP_AMD || CPU_SUP_INTEL
1109 select FW_LOADER
1110 ---help---
1111
1112 If you say Y here, you will be able to update the microcode on
1113 certain Intel and AMD processors. The Intel support is for the
1114 IA32 family, e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4,
1115 Xeon etc. The AMD support is for families 0x10 and later. You will
1116 obviously need the actual microcode binary data itself which is not
1117 shipped with the Linux kernel.
1118
1119 This option selects the general module only, you need to select
1120 at least one vendor specific module as well.
1121
1122 To compile this driver as a module, choose M here: the module
1123 will be called microcode.
1124
1125 config MICROCODE_INTEL
1126 bool "Intel microcode loading support"
1127 depends on MICROCODE
1128 default MICROCODE
1129 select FW_LOADER
1130 ---help---
1131 This options enables microcode patch loading support for Intel
1132 processors.
1133
1134 For the current Intel microcode data package go to
1135 <https://downloadcenter.intel.com> and search for
1136 'Linux Processor Microcode Data File'.
1137
1138 config MICROCODE_AMD
1139 bool "AMD microcode loading support"
1140 depends on MICROCODE
1141 select FW_LOADER
1142 ---help---
1143 If you select this option, microcode patch loading support for AMD
1144 processors will be enabled.
1145
1146 config MICROCODE_OLD_INTERFACE
1147 def_bool y
1148 depends on MICROCODE
1149
1150 config MICROCODE_INTEL_EARLY
1151 bool
1152
1153 config MICROCODE_AMD_EARLY
1154 bool
1155
1156 config MICROCODE_EARLY
1157 bool "Early load microcode"
1158 depends on MICROCODE=y && BLK_DEV_INITRD
1159 select MICROCODE_INTEL_EARLY if MICROCODE_INTEL
1160 select MICROCODE_AMD_EARLY if MICROCODE_AMD
1161 default y
1162 help
1163 This option provides functionality to read additional microcode data
1164 at the beginning of initrd image. The data tells kernel to load
1165 microcode to CPU's as early as possible. No functional change if no
1166 microcode data is glued to the initrd, therefore it's safe to say Y.
1167
1168 config X86_MSR
1169 tristate "/dev/cpu/*/msr - Model-specific register support"
1170 ---help---
1171 This device gives privileged processes access to the x86
1172 Model-Specific Registers (MSRs). It is a character device with
1173 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
1174 MSR accesses are directed to a specific CPU on multi-processor
1175 systems.
1176
1177 config X86_CPUID
1178 tristate "/dev/cpu/*/cpuid - CPU information support"
1179 ---help---
1180 This device gives processes access to the x86 CPUID instruction to
1181 be executed on a specific processor. It is a character device
1182 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
1183 /dev/cpu/31/cpuid.
1184
1185 choice
1186 prompt "High Memory Support"
1187 default HIGHMEM4G
1188 depends on X86_32
1189
1190 config NOHIGHMEM
1191 bool "off"
1192 ---help---
1193 Linux can use up to 64 Gigabytes of physical memory on x86 systems.
1194 However, the address space of 32-bit x86 processors is only 4
1195 Gigabytes large. That means that, if you have a large amount of
1196 physical memory, not all of it can be "permanently mapped" by the
1197 kernel. The physical memory that's not permanently mapped is called
1198 "high memory".
1199
1200 If you are compiling a kernel which will never run on a machine with
1201 more than 1 Gigabyte total physical RAM, answer "off" here (default
1202 choice and suitable for most users). This will result in a "3GB/1GB"
1203 split: 3GB are mapped so that each process sees a 3GB virtual memory
1204 space and the remaining part of the 4GB virtual memory space is used
1205 by the kernel to permanently map as much physical memory as
1206 possible.
1207
1208 If the machine has between 1 and 4 Gigabytes physical RAM, then
1209 answer "4GB" here.
1210
1211 If more than 4 Gigabytes is used then answer "64GB" here. This
1212 selection turns Intel PAE (Physical Address Extension) mode on.
1213 PAE implements 3-level paging on IA32 processors. PAE is fully
1214 supported by Linux, PAE mode is implemented on all recent Intel
1215 processors (Pentium Pro and better). NOTE: If you say "64GB" here,
1216 then the kernel will not boot on CPUs that don't support PAE!
1217
1218 The actual amount of total physical memory will either be
1219 auto detected or can be forced by using a kernel command line option
1220 such as "mem=256M". (Try "man bootparam" or see the documentation of
1221 your boot loader (lilo or loadlin) about how to pass options to the
1222 kernel at boot time.)
1223
1224 If unsure, say "off".
1225
1226 config HIGHMEM4G
1227 bool "4GB"
1228 ---help---
1229 Select this if you have a 32-bit processor and between 1 and 4
1230 gigabytes of physical RAM.
1231
1232 config HIGHMEM64G
1233 bool "64GB"
1234 depends on !M486
1235 select X86_PAE
1236 ---help---
1237 Select this if you have a 32-bit processor and more than 4
1238 gigabytes of physical RAM.
1239
1240 endchoice
1241
1242 choice
1243 prompt "Memory split" if EXPERT
1244 default VMSPLIT_3G
1245 depends on X86_32
1246 ---help---
1247 Select the desired split between kernel and user memory.
1248
1249 If the address range available to the kernel is less than the
1250 physical memory installed, the remaining memory will be available
1251 as "high memory". Accessing high memory is a little more costly
1252 than low memory, as it needs to be mapped into the kernel first.
1253 Note that increasing the kernel address space limits the range
1254 available to user programs, making the address space there
1255 tighter. Selecting anything other than the default 3G/1G split
1256 will also likely make your kernel incompatible with binary-only
1257 kernel modules.
1258
1259 If you are not absolutely sure what you are doing, leave this
1260 option alone!
1261
1262 config VMSPLIT_3G
1263 bool "3G/1G user/kernel split"
1264 config VMSPLIT_3G_OPT
1265 depends on !X86_PAE
1266 bool "3G/1G user/kernel split (for full 1G low memory)"
1267 config VMSPLIT_2G
1268 bool "2G/2G user/kernel split"
1269 config VMSPLIT_2G_OPT
1270 depends on !X86_PAE
1271 bool "2G/2G user/kernel split (for full 2G low memory)"
1272 config VMSPLIT_1G
1273 bool "1G/3G user/kernel split"
1274 endchoice
1275
1276 config PAGE_OFFSET
1277 hex
1278 default 0xB0000000 if VMSPLIT_3G_OPT
1279 default 0x80000000 if VMSPLIT_2G
1280 default 0x78000000 if VMSPLIT_2G_OPT
1281 default 0x40000000 if VMSPLIT_1G
1282 default 0xC0000000
1283 depends on X86_32
1284
1285 config HIGHMEM
1286 def_bool y
1287 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
1288
1289 config X86_PAE
1290 bool "PAE (Physical Address Extension) Support"
1291 depends on X86_32 && !HIGHMEM4G
1292 ---help---
1293 PAE is required for NX support, and furthermore enables
1294 larger swapspace support for non-overcommit purposes. It
1295 has the cost of more pagetable lookup overhead, and also
1296 consumes more pagetable space per process.
1297
1298 config ARCH_PHYS_ADDR_T_64BIT
1299 def_bool y
1300 depends on X86_64 || X86_PAE
1301
1302 config ARCH_DMA_ADDR_T_64BIT
1303 def_bool y
1304 depends on X86_64 || HIGHMEM64G
1305
1306 config X86_DIRECT_GBPAGES
1307 def_bool y
1308 depends on X86_64 && !DEBUG_PAGEALLOC && !KMEMCHECK
1309 ---help---
1310 Certain kernel features effectively disable kernel
1311 linear 1 GB mappings (even if the CPU otherwise
1312 supports them), so don't confuse the user by printing
1313 that we have them enabled.
1314
1315 # Common NUMA Features
1316 config NUMA
1317 bool "Numa Memory Allocation and Scheduler Support"
1318 depends on SMP
1319 depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP)
1320 default y if X86_BIGSMP
1321 ---help---
1322 Enable NUMA (Non Uniform Memory Access) support.
1323
1324 The kernel will try to allocate memory used by a CPU on the
1325 local memory controller of the CPU and add some more
1326 NUMA awareness to the kernel.
1327
1328 For 64-bit this is recommended if the system is Intel Core i7
1329 (or later), AMD Opteron, or EM64T NUMA.
1330
1331 For 32-bit this is only needed if you boot a 32-bit
1332 kernel on a 64-bit NUMA platform.
1333
1334 Otherwise, you should say N.
1335
1336 config AMD_NUMA
1337 def_bool y
1338 prompt "Old style AMD Opteron NUMA detection"
1339 depends on X86_64 && NUMA && PCI
1340 ---help---
1341 Enable AMD NUMA node topology detection. You should say Y here if
1342 you have a multi processor AMD system. This uses an old method to
1343 read the NUMA configuration directly from the builtin Northbridge
1344 of Opteron. It is recommended to use X86_64_ACPI_NUMA instead,
1345 which also takes priority if both are compiled in.
1346
1347 config X86_64_ACPI_NUMA
1348 def_bool y
1349 prompt "ACPI NUMA detection"
1350 depends on X86_64 && NUMA && ACPI && PCI
1351 select ACPI_NUMA
1352 ---help---
1353 Enable ACPI SRAT based node topology detection.
1354
1355 # Some NUMA nodes have memory ranges that span
1356 # other nodes. Even though a pfn is valid and
1357 # between a node's start and end pfns, it may not
1358 # reside on that node. See memmap_init_zone()
1359 # for details.
1360 config NODES_SPAN_OTHER_NODES
1361 def_bool y
1362 depends on X86_64_ACPI_NUMA
1363
1364 config NUMA_EMU
1365 bool "NUMA emulation"
1366 depends on NUMA
1367 ---help---
1368 Enable NUMA emulation. A flat machine will be split
1369 into virtual nodes when booted with "numa=fake=N", where N is the
1370 number of nodes. This is only useful for debugging.
1371
1372 config NODES_SHIFT
1373 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1374 range 1 10
1375 default "10" if MAXSMP
1376 default "6" if X86_64
1377 default "3"
1378 depends on NEED_MULTIPLE_NODES
1379 ---help---
1380 Specify the maximum number of NUMA Nodes available on the target
1381 system. Increases memory reserved to accommodate various tables.
1382
1383 config ARCH_HAVE_MEMORY_PRESENT
1384 def_bool y
1385 depends on X86_32 && DISCONTIGMEM
1386
1387 config NEED_NODE_MEMMAP_SIZE
1388 def_bool y
1389 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
1390
1391 config ARCH_FLATMEM_ENABLE
1392 def_bool y
1393 depends on X86_32 && !NUMA
1394
1395 config ARCH_DISCONTIGMEM_ENABLE
1396 def_bool y
1397 depends on NUMA && X86_32
1398
1399 config ARCH_DISCONTIGMEM_DEFAULT
1400 def_bool y
1401 depends on NUMA && X86_32
1402
1403 config ARCH_SPARSEMEM_ENABLE
1404 def_bool y
1405 depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD
1406 select SPARSEMEM_STATIC if X86_32
1407 select SPARSEMEM_VMEMMAP_ENABLE if X86_64
1408
1409 config ARCH_SPARSEMEM_DEFAULT
1410 def_bool y
1411 depends on X86_64
1412
1413 config ARCH_SELECT_MEMORY_MODEL
1414 def_bool y
1415 depends on ARCH_SPARSEMEM_ENABLE
1416
1417 config ARCH_MEMORY_PROBE
1418 bool "Enable sysfs memory/probe interface"
1419 depends on X86_64 && MEMORY_HOTPLUG
1420 help
1421 This option enables a sysfs memory/probe interface for testing.
1422 See Documentation/memory-hotplug.txt for more information.
1423 If you are unsure how to answer this question, answer N.
1424
1425 config ARCH_PROC_KCORE_TEXT
1426 def_bool y
1427 depends on X86_64 && PROC_KCORE
1428
1429 config ILLEGAL_POINTER_VALUE
1430 hex
1431 default 0 if X86_32
1432 default 0xdead000000000000 if X86_64
1433
1434 source "mm/Kconfig"
1435
1436 config HIGHPTE
1437 bool "Allocate 3rd-level pagetables from highmem"
1438 depends on HIGHMEM
1439 ---help---
1440 The VM uses one page table entry for each page of physical memory.
1441 For systems with a lot of RAM, this can be wasteful of precious
1442 low memory. Setting this option will put user-space page table
1443 entries in high memory.
1444
1445 config X86_CHECK_BIOS_CORRUPTION
1446 bool "Check for low memory corruption"
1447 ---help---
1448 Periodically check for memory corruption in low memory, which
1449 is suspected to be caused by BIOS. Even when enabled in the
1450 configuration, it is disabled at runtime. Enable it by
1451 setting "memory_corruption_check=1" on the kernel command
1452 line. By default it scans the low 64k of memory every 60
1453 seconds; see the memory_corruption_check_size and
1454 memory_corruption_check_period parameters in
1455 Documentation/kernel-parameters.txt to adjust this.
1456
1457 When enabled with the default parameters, this option has
1458 almost no overhead, as it reserves a relatively small amount
1459 of memory and scans it infrequently. It both detects corruption
1460 and prevents it from affecting the running system.
1461
1462 It is, however, intended as a diagnostic tool; if repeatable
1463 BIOS-originated corruption always affects the same memory,
1464 you can use memmap= to prevent the kernel from using that
1465 memory.
1466
1467 config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1468 bool "Set the default setting of memory_corruption_check"
1469 depends on X86_CHECK_BIOS_CORRUPTION
1470 default y
1471 ---help---
1472 Set whether the default state of memory_corruption_check is
1473 on or off.
1474
1475 config X86_RESERVE_LOW
1476 int "Amount of low memory, in kilobytes, to reserve for the BIOS"
1477 default 64
1478 range 4 640
1479 ---help---
1480 Specify the amount of low memory to reserve for the BIOS.
1481
1482 The first page contains BIOS data structures that the kernel
1483 must not use, so that page must always be reserved.
1484
1485 By default we reserve the first 64K of physical RAM, as a
1486 number of BIOSes are known to corrupt that memory range
1487 during events such as suspend/resume or monitor cable
1488 insertion, so it must not be used by the kernel.
1489
1490 You can set this to 4 if you are absolutely sure that you
1491 trust the BIOS to get all its memory reservations and usages
1492 right. If you know your BIOS have problems beyond the
1493 default 64K area, you can set this to 640 to avoid using the
1494 entire low memory range.
1495
1496 If you have doubts about the BIOS (e.g. suspend/resume does
1497 not work or there's kernel crashes after certain hardware
1498 hotplug events) then you might want to enable
1499 X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check
1500 typical corruption patterns.
1501
1502 Leave this to the default value of 64 if you are unsure.
1503
1504 config MATH_EMULATION
1505 bool
1506 prompt "Math emulation" if X86_32
1507 ---help---
1508 Linux can emulate a math coprocessor (used for floating point
1509 operations) if you don't have one. 486DX and Pentium processors have
1510 a math coprocessor built in, 486SX and 386 do not, unless you added
1511 a 487DX or 387, respectively. (The messages during boot time can
1512 give you some hints here ["man dmesg"].) Everyone needs either a
1513 coprocessor or this emulation.
1514
1515 If you don't have a math coprocessor, you need to say Y here; if you
1516 say Y here even though you have a coprocessor, the coprocessor will
1517 be used nevertheless. (This behavior can be changed with the kernel
1518 command line option "no387", which comes handy if your coprocessor
1519 is broken. Try "man bootparam" or see the documentation of your boot
1520 loader (lilo or loadlin) about how to pass options to the kernel at
1521 boot time.) This means that it is a good idea to say Y here if you
1522 intend to use this kernel on different machines.
1523
1524 More information about the internals of the Linux math coprocessor
1525 emulation can be found in <file:arch/x86/math-emu/README>.
1526
1527 If you are not sure, say Y; apart from resulting in a 66 KB bigger
1528 kernel, it won't hurt.
1529
1530 config MTRR
1531 def_bool y
1532 prompt "MTRR (Memory Type Range Register) support" if EXPERT
1533 ---help---
1534 On Intel P6 family processors (Pentium Pro, Pentium II and later)
1535 the Memory Type Range Registers (MTRRs) may be used to control
1536 processor access to memory ranges. This is most useful if you have
1537 a video (VGA) card on a PCI or AGP bus. Enabling write-combining
1538 allows bus write transfers to be combined into a larger transfer
1539 before bursting over the PCI/AGP bus. This can increase performance
1540 of image write operations 2.5 times or more. Saying Y here creates a
1541 /proc/mtrr file which may be used to manipulate your processor's
1542 MTRRs. Typically the X server should use this.
1543
1544 This code has a reasonably generic interface so that similar
1545 control registers on other processors can be easily supported
1546 as well:
1547
1548 The Cyrix 6x86, 6x86MX and M II processors have Address Range
1549 Registers (ARRs) which provide a similar functionality to MTRRs. For
1550 these, the ARRs are used to emulate the MTRRs.
1551 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
1552 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
1553 write-combining. All of these processors are supported by this code
1554 and it makes sense to say Y here if you have one of them.
1555
1556 Saying Y here also fixes a problem with buggy SMP BIOSes which only
1557 set the MTRRs for the boot CPU and not for the secondary CPUs. This
1558 can lead to all sorts of problems, so it's good to say Y here.
1559
1560 You can safely say Y even if your machine doesn't have MTRRs, you'll
1561 just add about 9 KB to your kernel.
1562
1563 See <file:Documentation/x86/mtrr.txt> for more information.
1564
1565 config MTRR_SANITIZER
1566 def_bool y
1567 prompt "MTRR cleanup support"
1568 depends on MTRR
1569 ---help---
1570 Convert MTRR layout from continuous to discrete, so X drivers can
1571 add writeback entries.
1572
1573 Can be disabled with disable_mtrr_cleanup on the kernel command line.
1574 The largest mtrr entry size for a continuous block can be set with
1575 mtrr_chunk_size.
1576
1577 If unsure, say Y.
1578
1579 config MTRR_SANITIZER_ENABLE_DEFAULT
1580 int "MTRR cleanup enable value (0-1)"
1581 range 0 1
1582 default "0"
1583 depends on MTRR_SANITIZER
1584 ---help---
1585 Enable mtrr cleanup default value
1586
1587 config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
1588 int "MTRR cleanup spare reg num (0-7)"
1589 range 0 7
1590 default "1"
1591 depends on MTRR_SANITIZER
1592 ---help---
1593 mtrr cleanup spare entries default, it can be changed via
1594 mtrr_spare_reg_nr=N on the kernel command line.
1595
1596 config X86_PAT
1597 def_bool y
1598 prompt "x86 PAT support" if EXPERT
1599 depends on MTRR
1600 ---help---
1601 Use PAT attributes to setup page level cache control.
1602
1603 PATs are the modern equivalents of MTRRs and are much more
1604 flexible than MTRRs.
1605
1606 Say N here if you see bootup problems (boot crash, boot hang,
1607 spontaneous reboots) or a non-working video driver.
1608
1609 If unsure, say Y.
1610
1611 config ARCH_USES_PG_UNCACHED
1612 def_bool y
1613 depends on X86_PAT
1614
1615 config ARCH_RANDOM
1616 def_bool y
1617 prompt "x86 architectural random number generator" if EXPERT
1618 ---help---
1619 Enable the x86 architectural RDRAND instruction
1620 (Intel Bull Mountain technology) to generate random numbers.
1621 If supported, this is a high bandwidth, cryptographically
1622 secure hardware random number generator.
1623
1624 config X86_SMAP
1625 def_bool y
1626 prompt "Supervisor Mode Access Prevention" if EXPERT
1627 ---help---
1628 Supervisor Mode Access Prevention (SMAP) is a security
1629 feature in newer Intel processors. There is a small
1630 performance cost if this enabled and turned on; there is
1631 also a small increase in the kernel size if this is enabled.
1632
1633 If unsure, say Y.
1634
1635 config X86_INTEL_MPX
1636 prompt "Intel MPX (Memory Protection Extensions)"
1637 def_bool n
1638 depends on CPU_SUP_INTEL
1639 ---help---
1640 MPX provides hardware features that can be used in
1641 conjunction with compiler-instrumented code to check
1642 memory references. It is designed to detect buffer
1643 overflow or underflow bugs.
1644
1645 This option enables running applications which are
1646 instrumented or otherwise use MPX. It does not use MPX
1647 itself inside the kernel or to protect the kernel
1648 against bad memory references.
1649
1650 Enabling this option will make the kernel larger:
1651 ~8k of kernel text and 36 bytes of data on a 64-bit
1652 defconfig. It adds a long to the 'mm_struct' which
1653 will increase the kernel memory overhead of each
1654 process and adds some branches to paths used during
1655 exec() and munmap().
1656
1657 For details, see Documentation/x86/intel_mpx.txt
1658
1659 If unsure, say N.
1660
1661 config EFI
1662 bool "EFI runtime service support"
1663 depends on ACPI
1664 select UCS2_STRING
1665 select EFI_RUNTIME_WRAPPERS
1666 ---help---
1667 This enables the kernel to use EFI runtime services that are
1668 available (such as the EFI variable services).
1669
1670 This option is only useful on systems that have EFI firmware.
1671 In addition, you should use the latest ELILO loader available
1672 at <http://elilo.sourceforge.net> in order to take advantage
1673 of EFI runtime services. However, even with this option, the
1674 resultant kernel should continue to boot on existing non-EFI
1675 platforms.
1676
1677 config EFI_STUB
1678 bool "EFI stub support"
1679 depends on EFI && !X86_USE_3DNOW
1680 select RELOCATABLE
1681 ---help---
1682 This kernel feature allows a bzImage to be loaded directly
1683 by EFI firmware without the use of a bootloader.
1684
1685 See Documentation/efi-stub.txt for more information.
1686
1687 config EFI_MIXED
1688 bool "EFI mixed-mode support"
1689 depends on EFI_STUB && X86_64
1690 ---help---
1691 Enabling this feature allows a 64-bit kernel to be booted
1692 on a 32-bit firmware, provided that your CPU supports 64-bit
1693 mode.
1694
1695 Note that it is not possible to boot a mixed-mode enabled
1696 kernel via the EFI boot stub - a bootloader that supports
1697 the EFI handover protocol must be used.
1698
1699 If unsure, say N.
1700
1701 config SECCOMP
1702 def_bool y
1703 prompt "Enable seccomp to safely compute untrusted bytecode"
1704 ---help---
1705 This kernel feature is useful for number crunching applications
1706 that may need to compute untrusted bytecode during their
1707 execution. By using pipes or other transports made available to
1708 the process as file descriptors supporting the read/write
1709 syscalls, it's possible to isolate those applications in
1710 their own address space using seccomp. Once seccomp is
1711 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1712 and the task is only allowed to execute a few safe syscalls
1713 defined by each seccomp mode.
1714
1715 If unsure, say Y. Only embedded should say N here.
1716
1717 source kernel/Kconfig.hz
1718
1719 config KEXEC
1720 bool "kexec system call"
1721 ---help---
1722 kexec is a system call that implements the ability to shutdown your
1723 current kernel, and to start another kernel. It is like a reboot
1724 but it is independent of the system firmware. And like a reboot
1725 you can start any kernel with it, not just Linux.
1726
1727 The name comes from the similarity to the exec system call.
1728
1729 It is an ongoing process to be certain the hardware in a machine
1730 is properly shutdown, so do not be surprised if this code does not
1731 initially work for you. As of this writing the exact hardware
1732 interface is strongly in flux, so no good recommendation can be
1733 made.
1734
1735 config KEXEC_FILE
1736 bool "kexec file based system call"
1737 select BUILD_BIN2C
1738 depends on KEXEC
1739 depends on X86_64
1740 depends on CRYPTO=y
1741 depends on CRYPTO_SHA256=y
1742 ---help---
1743 This is new version of kexec system call. This system call is
1744 file based and takes file descriptors as system call argument
1745 for kernel and initramfs as opposed to list of segments as
1746 accepted by previous system call.
1747
1748 config KEXEC_VERIFY_SIG
1749 bool "Verify kernel signature during kexec_file_load() syscall"
1750 depends on KEXEC_FILE
1751 ---help---
1752 This option makes kernel signature verification mandatory for
1753 the kexec_file_load() syscall.
1754
1755 In addition to that option, you need to enable signature
1756 verification for the corresponding kernel image type being
1757 loaded in order for this to work.
1758
1759 config KEXEC_BZIMAGE_VERIFY_SIG
1760 bool "Enable bzImage signature verification support"
1761 depends on KEXEC_VERIFY_SIG
1762 depends on SIGNED_PE_FILE_VERIFICATION
1763 select SYSTEM_TRUSTED_KEYRING
1764 ---help---
1765 Enable bzImage signature verification support.
1766
1767 config CRASH_DUMP
1768 bool "kernel crash dumps"
1769 depends on X86_64 || (X86_32 && HIGHMEM)
1770 ---help---
1771 Generate crash dump after being started by kexec.
1772 This should be normally only set in special crash dump kernels
1773 which are loaded in the main kernel with kexec-tools into
1774 a specially reserved region and then later executed after
1775 a crash by kdump/kexec. The crash dump kernel must be compiled
1776 to a memory address not used by the main kernel or BIOS using
1777 PHYSICAL_START, or it must be built as a relocatable image
1778 (CONFIG_RELOCATABLE=y).
1779 For more details see Documentation/kdump/kdump.txt
1780
1781 config KEXEC_JUMP
1782 bool "kexec jump"
1783 depends on KEXEC && HIBERNATION
1784 ---help---
1785 Jump between original kernel and kexeced kernel and invoke
1786 code in physical address mode via KEXEC
1787
1788 config PHYSICAL_START
1789 hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
1790 default "0x1000000"
1791 ---help---
1792 This gives the physical address where the kernel is loaded.
1793
1794 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
1795 bzImage will decompress itself to above physical address and
1796 run from there. Otherwise, bzImage will run from the address where
1797 it has been loaded by the boot loader and will ignore above physical
1798 address.
1799
1800 In normal kdump cases one does not have to set/change this option
1801 as now bzImage can be compiled as a completely relocatable image
1802 (CONFIG_RELOCATABLE=y) and be used to load and run from a different
1803 address. This option is mainly useful for the folks who don't want
1804 to use a bzImage for capturing the crash dump and want to use a
1805 vmlinux instead. vmlinux is not relocatable hence a kernel needs
1806 to be specifically compiled to run from a specific memory area
1807 (normally a reserved region) and this option comes handy.
1808
1809 So if you are using bzImage for capturing the crash dump,
1810 leave the value here unchanged to 0x1000000 and set
1811 CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux
1812 for capturing the crash dump change this value to start of
1813 the reserved region. In other words, it can be set based on
1814 the "X" value as specified in the "crashkernel=YM@XM"
1815 command line boot parameter passed to the panic-ed
1816 kernel. Please take a look at Documentation/kdump/kdump.txt
1817 for more details about crash dumps.
1818
1819 Usage of bzImage for capturing the crash dump is recommended as
1820 one does not have to build two kernels. Same kernel can be used
1821 as production kernel and capture kernel. Above option should have
1822 gone away after relocatable bzImage support is introduced. But it
1823 is present because there are users out there who continue to use
1824 vmlinux for dump capture. This option should go away down the
1825 line.
1826
1827 Don't change this unless you know what you are doing.
1828
1829 config RELOCATABLE
1830 bool "Build a relocatable kernel"
1831 default y
1832 ---help---
1833 This builds a kernel image that retains relocation information
1834 so it can be loaded someplace besides the default 1MB.
1835 The relocations tend to make the kernel binary about 10% larger,
1836 but are discarded at runtime.
1837
1838 One use is for the kexec on panic case where the recovery kernel
1839 must live at a different physical address than the primary
1840 kernel.
1841
1842 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
1843 it has been loaded at and the compile time physical address
1844 (CONFIG_PHYSICAL_START) is used as the minimum location.
1845
1846 config RANDOMIZE_BASE
1847 bool "Randomize the address of the kernel image"
1848 depends on RELOCATABLE
1849 default n
1850 ---help---
1851 Randomizes the physical and virtual address at which the
1852 kernel image is decompressed, as a security feature that
1853 deters exploit attempts relying on knowledge of the location
1854 of kernel internals.
1855
1856 Entropy is generated using the RDRAND instruction if it is
1857 supported. If RDTSC is supported, it is used as well. If
1858 neither RDRAND nor RDTSC are supported, then randomness is
1859 read from the i8254 timer.
1860
1861 The kernel will be offset by up to RANDOMIZE_BASE_MAX_OFFSET,
1862 and aligned according to PHYSICAL_ALIGN. Since the kernel is
1863 built using 2GiB addressing, and PHYSICAL_ALGIN must be at a
1864 minimum of 2MiB, only 10 bits of entropy is theoretically
1865 possible. At best, due to page table layouts, 64-bit can use
1866 9 bits of entropy and 32-bit uses 8 bits.
1867
1868 If unsure, say N.
1869
1870 config RANDOMIZE_BASE_MAX_OFFSET
1871 hex "Maximum kASLR offset allowed" if EXPERT
1872 depends on RANDOMIZE_BASE
1873 range 0x0 0x20000000 if X86_32
1874 default "0x20000000" if X86_32
1875 range 0x0 0x40000000 if X86_64
1876 default "0x40000000" if X86_64
1877 ---help---
1878 The lesser of RANDOMIZE_BASE_MAX_OFFSET and available physical
1879 memory is used to determine the maximal offset in bytes that will
1880 be applied to the kernel when kernel Address Space Layout
1881 Randomization (kASLR) is active. This must be a multiple of
1882 PHYSICAL_ALIGN.
1883
1884 On 32-bit this is limited to 512MiB by page table layouts. The
1885 default is 512MiB.
1886
1887 On 64-bit this is limited by how the kernel fixmap page table is
1888 positioned, so this cannot be larger than 1GiB currently. Without
1889 RANDOMIZE_BASE, there is a 512MiB to 1.5GiB split between kernel
1890 and modules. When RANDOMIZE_BASE_MAX_OFFSET is above 512MiB, the
1891 modules area will shrink to compensate, up to the current maximum
1892 1GiB to 1GiB split. The default is 1GiB.
1893
1894 If unsure, leave at the default value.
1895
1896 # Relocation on x86 needs some additional build support
1897 config X86_NEED_RELOCS
1898 def_bool y
1899 depends on RANDOMIZE_BASE || (X86_32 && RELOCATABLE)
1900
1901 config PHYSICAL_ALIGN
1902 hex "Alignment value to which kernel should be aligned"
1903 default "0x200000"
1904 range 0x2000 0x1000000 if X86_32
1905 range 0x200000 0x1000000 if X86_64
1906 ---help---
1907 This value puts the alignment restrictions on physical address
1908 where kernel is loaded and run from. Kernel is compiled for an
1909 address which meets above alignment restriction.
1910
1911 If bootloader loads the kernel at a non-aligned address and
1912 CONFIG_RELOCATABLE is set, kernel will move itself to nearest
1913 address aligned to above value and run from there.
1914
1915 If bootloader loads the kernel at a non-aligned address and
1916 CONFIG_RELOCATABLE is not set, kernel will ignore the run time
1917 load address and decompress itself to the address it has been
1918 compiled for and run from there. The address for which kernel is
1919 compiled already meets above alignment restrictions. Hence the
1920 end result is that kernel runs from a physical address meeting
1921 above alignment restrictions.
1922
1923 On 32-bit this value must be a multiple of 0x2000. On 64-bit
1924 this value must be a multiple of 0x200000.
1925
1926 Don't change this unless you know what you are doing.
1927
1928 config HOTPLUG_CPU
1929 bool "Support for hot-pluggable CPUs"
1930 depends on SMP
1931 ---help---
1932 Say Y here to allow turning CPUs off and on. CPUs can be
1933 controlled through /sys/devices/system/cpu.
1934 ( Note: power management support will enable this option
1935 automatically on SMP systems. )
1936 Say N if you want to disable CPU hotplug.
1937
1938 config BOOTPARAM_HOTPLUG_CPU0
1939 bool "Set default setting of cpu0_hotpluggable"
1940 default n
1941 depends on HOTPLUG_CPU
1942 ---help---
1943 Set whether default state of cpu0_hotpluggable is on or off.
1944
1945 Say Y here to enable CPU0 hotplug by default. If this switch
1946 is turned on, there is no need to give cpu0_hotplug kernel
1947 parameter and the CPU0 hotplug feature is enabled by default.
1948
1949 Please note: there are two known CPU0 dependencies if you want
1950 to enable the CPU0 hotplug feature either by this switch or by
1951 cpu0_hotplug kernel parameter.
1952
1953 First, resume from hibernate or suspend always starts from CPU0.
1954 So hibernate and suspend are prevented if CPU0 is offline.
1955
1956 Second dependency is PIC interrupts always go to CPU0. CPU0 can not
1957 offline if any interrupt can not migrate out of CPU0. There may
1958 be other CPU0 dependencies.
1959
1960 Please make sure the dependencies are under your control before
1961 you enable this feature.
1962
1963 Say N if you don't want to enable CPU0 hotplug feature by default.
1964 You still can enable the CPU0 hotplug feature at boot by kernel
1965 parameter cpu0_hotplug.
1966
1967 config DEBUG_HOTPLUG_CPU0
1968 def_bool n
1969 prompt "Debug CPU0 hotplug"
1970 depends on HOTPLUG_CPU
1971 ---help---
1972 Enabling this option offlines CPU0 (if CPU0 can be offlined) as
1973 soon as possible and boots up userspace with CPU0 offlined. User
1974 can online CPU0 back after boot time.
1975
1976 To debug CPU0 hotplug, you need to enable CPU0 offline/online
1977 feature by either turning on CONFIG_BOOTPARAM_HOTPLUG_CPU0 during
1978 compilation or giving cpu0_hotplug kernel parameter at boot.
1979
1980 If unsure, say N.
1981
1982 config COMPAT_VDSO
1983 def_bool n
1984 prompt "Disable the 32-bit vDSO (needed for glibc 2.3.3)"
1985 depends on X86_32 || IA32_EMULATION
1986 ---help---
1987 Certain buggy versions of glibc will crash if they are
1988 presented with a 32-bit vDSO that is not mapped at the address
1989 indicated in its segment table.
1990
1991 The bug was introduced by f866314b89d56845f55e6f365e18b31ec978ec3a
1992 and fixed by 3b3ddb4f7db98ec9e912ccdf54d35df4aa30e04a and
1993 49ad572a70b8aeb91e57483a11dd1b77e31c4468. Glibc 2.3.3 is
1994 the only released version with the bug, but OpenSUSE 9
1995 contains a buggy "glibc 2.3.2".
1996
1997 The symptom of the bug is that everything crashes on startup, saying:
1998 dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed!
1999
2000 Saying Y here changes the default value of the vdso32 boot
2001 option from 1 to 0, which turns off the 32-bit vDSO entirely.
2002 This works around the glibc bug but hurts performance.
2003
2004 If unsure, say N: if you are compiling your own kernel, you
2005 are unlikely to be using a buggy version of glibc.
2006
2007 config CMDLINE_BOOL
2008 bool "Built-in kernel command line"
2009 ---help---
2010 Allow for specifying boot arguments to the kernel at
2011 build time. On some systems (e.g. embedded ones), it is
2012 necessary or convenient to provide some or all of the
2013 kernel boot arguments with the kernel itself (that is,
2014 to not rely on the boot loader to provide them.)
2015
2016 To compile command line arguments into the kernel,
2017 set this option to 'Y', then fill in the
2018 the boot arguments in CONFIG_CMDLINE.
2019
2020 Systems with fully functional boot loaders (i.e. non-embedded)
2021 should leave this option set to 'N'.
2022
2023 config CMDLINE
2024 string "Built-in kernel command string"
2025 depends on CMDLINE_BOOL
2026 default ""
2027 ---help---
2028 Enter arguments here that should be compiled into the kernel
2029 image and used at boot time. If the boot loader provides a
2030 command line at boot time, it is appended to this string to
2031 form the full kernel command line, when the system boots.
2032
2033 However, you can use the CONFIG_CMDLINE_OVERRIDE option to
2034 change this behavior.
2035
2036 In most cases, the command line (whether built-in or provided
2037 by the boot loader) should specify the device for the root
2038 file system.
2039
2040 config CMDLINE_OVERRIDE
2041 bool "Built-in command line overrides boot loader arguments"
2042 depends on CMDLINE_BOOL
2043 ---help---
2044 Set this option to 'Y' to have the kernel ignore the boot loader
2045 command line, and use ONLY the built-in command line.
2046
2047 This is used to work around broken boot loaders. This should
2048 be set to 'N' under normal conditions.
2049
2050 source "kernel/livepatch/Kconfig"
2051
2052 endmenu
2053
2054 config ARCH_ENABLE_MEMORY_HOTPLUG
2055 def_bool y
2056 depends on X86_64 || (X86_32 && HIGHMEM)
2057
2058 config ARCH_ENABLE_MEMORY_HOTREMOVE
2059 def_bool y
2060 depends on MEMORY_HOTPLUG
2061
2062 config USE_PERCPU_NUMA_NODE_ID
2063 def_bool y
2064 depends on NUMA
2065
2066 config ARCH_ENABLE_SPLIT_PMD_PTLOCK
2067 def_bool y
2068 depends on X86_64 || X86_PAE
2069
2070 config ARCH_ENABLE_HUGEPAGE_MIGRATION
2071 def_bool y
2072 depends on X86_64 && HUGETLB_PAGE && MIGRATION
2073
2074 menu "Power management and ACPI options"
2075
2076 config ARCH_HIBERNATION_HEADER
2077 def_bool y
2078 depends on X86_64 && HIBERNATION
2079
2080 source "kernel/power/Kconfig"
2081
2082 source "drivers/acpi/Kconfig"
2083
2084 source "drivers/sfi/Kconfig"
2085
2086 config X86_APM_BOOT
2087 def_bool y
2088 depends on APM
2089
2090 menuconfig APM
2091 tristate "APM (Advanced Power Management) BIOS support"
2092 depends on X86_32 && PM_SLEEP
2093 ---help---
2094 APM is a BIOS specification for saving power using several different
2095 techniques. This is mostly useful for battery powered laptops with
2096 APM compliant BIOSes. If you say Y here, the system time will be
2097 reset after a RESUME operation, the /proc/apm device will provide
2098 battery status information, and user-space programs will receive
2099 notification of APM "events" (e.g. battery status change).
2100
2101 If you select "Y" here, you can disable actual use of the APM
2102 BIOS by passing the "apm=off" option to the kernel at boot time.
2103
2104 Note that the APM support is almost completely disabled for
2105 machines with more than one CPU.
2106
2107 In order to use APM, you will need supporting software. For location
2108 and more information, read <file:Documentation/power/apm-acpi.txt>
2109 and the Battery Powered Linux mini-HOWTO, available from
2110 <http://www.tldp.org/docs.html#howto>.
2111
2112 This driver does not spin down disk drives (see the hdparm(8)
2113 manpage ("man 8 hdparm") for that), and it doesn't turn off
2114 VESA-compliant "green" monitors.
2115
2116 This driver does not support the TI 4000M TravelMate and the ACER
2117 486/DX4/75 because they don't have compliant BIOSes. Many "green"
2118 desktop machines also don't have compliant BIOSes, and this driver
2119 may cause those machines to panic during the boot phase.
2120
2121 Generally, if you don't have a battery in your machine, there isn't
2122 much point in using this driver and you should say N. If you get
2123 random kernel OOPSes or reboots that don't seem to be related to
2124 anything, try disabling/enabling this option (or disabling/enabling
2125 APM in your BIOS).
2126
2127 Some other things you should try when experiencing seemingly random,
2128 "weird" problems:
2129
2130 1) make sure that you have enough swap space and that it is
2131 enabled.
2132 2) pass the "no-hlt" option to the kernel
2133 3) switch on floating point emulation in the kernel and pass
2134 the "no387" option to the kernel
2135 4) pass the "floppy=nodma" option to the kernel
2136 5) pass the "mem=4M" option to the kernel (thereby disabling
2137 all but the first 4 MB of RAM)
2138 6) make sure that the CPU is not over clocked.
2139 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
2140 8) disable the cache from your BIOS settings
2141 9) install a fan for the video card or exchange video RAM
2142 10) install a better fan for the CPU
2143 11) exchange RAM chips
2144 12) exchange the motherboard.
2145
2146 To compile this driver as a module, choose M here: the
2147 module will be called apm.
2148
2149 if APM
2150
2151 config APM_IGNORE_USER_SUSPEND
2152 bool "Ignore USER SUSPEND"
2153 ---help---
2154 This option will ignore USER SUSPEND requests. On machines with a
2155 compliant APM BIOS, you want to say N. However, on the NEC Versa M
2156 series notebooks, it is necessary to say Y because of a BIOS bug.
2157
2158 config APM_DO_ENABLE
2159 bool "Enable PM at boot time"
2160 ---help---
2161 Enable APM features at boot time. From page 36 of the APM BIOS
2162 specification: "When disabled, the APM BIOS does not automatically
2163 power manage devices, enter the Standby State, enter the Suspend
2164 State, or take power saving steps in response to CPU Idle calls."
2165 This driver will make CPU Idle calls when Linux is idle (unless this
2166 feature is turned off -- see "Do CPU IDLE calls", below). This
2167 should always save battery power, but more complicated APM features
2168 will be dependent on your BIOS implementation. You may need to turn
2169 this option off if your computer hangs at boot time when using APM
2170 support, or if it beeps continuously instead of suspending. Turn
2171 this off if you have a NEC UltraLite Versa 33/C or a Toshiba
2172 T400CDT. This is off by default since most machines do fine without
2173 this feature.
2174
2175 config APM_CPU_IDLE
2176 depends on CPU_IDLE
2177 bool "Make CPU Idle calls when idle"
2178 ---help---
2179 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
2180 On some machines, this can activate improved power savings, such as
2181 a slowed CPU clock rate, when the machine is idle. These idle calls
2182 are made after the idle loop has run for some length of time (e.g.,
2183 333 mS). On some machines, this will cause a hang at boot time or
2184 whenever the CPU becomes idle. (On machines with more than one CPU,
2185 this option does nothing.)
2186
2187 config APM_DISPLAY_BLANK
2188 bool "Enable console blanking using APM"
2189 ---help---
2190 Enable console blanking using the APM. Some laptops can use this to
2191 turn off the LCD backlight when the screen blanker of the Linux
2192 virtual console blanks the screen. Note that this is only used by
2193 the virtual console screen blanker, and won't turn off the backlight
2194 when using the X Window system. This also doesn't have anything to
2195 do with your VESA-compliant power-saving monitor. Further, this
2196 option doesn't work for all laptops -- it might not turn off your
2197 backlight at all, or it might print a lot of errors to the console,
2198 especially if you are using gpm.
2199
2200 config APM_ALLOW_INTS
2201 bool "Allow interrupts during APM BIOS calls"
2202 ---help---
2203 Normally we disable external interrupts while we are making calls to
2204 the APM BIOS as a measure to lessen the effects of a badly behaving
2205 BIOS implementation. The BIOS should reenable interrupts if it
2206 needs to. Unfortunately, some BIOSes do not -- especially those in
2207 many of the newer IBM Thinkpads. If you experience hangs when you
2208 suspend, try setting this to Y. Otherwise, say N.
2209
2210 endif # APM
2211
2212 source "drivers/cpufreq/Kconfig"
2213
2214 source "drivers/cpuidle/Kconfig"
2215
2216 source "drivers/idle/Kconfig"
2217
2218 endmenu
2219
2220
2221 menu "Bus options (PCI etc.)"
2222
2223 config PCI
2224 bool "PCI support"
2225 default y
2226 ---help---
2227 Find out whether you have a PCI motherboard. PCI is the name of a
2228 bus system, i.e. the way the CPU talks to the other stuff inside
2229 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
2230 VESA. If you have PCI, say Y, otherwise N.
2231
2232 choice
2233 prompt "PCI access mode"
2234 depends on X86_32 && PCI
2235 default PCI_GOANY
2236 ---help---
2237 On PCI systems, the BIOS can be used to detect the PCI devices and
2238 determine their configuration. However, some old PCI motherboards
2239 have BIOS bugs and may crash if this is done. Also, some embedded
2240 PCI-based systems don't have any BIOS at all. Linux can also try to
2241 detect the PCI hardware directly without using the BIOS.
2242
2243 With this option, you can specify how Linux should detect the
2244 PCI devices. If you choose "BIOS", the BIOS will be used,
2245 if you choose "Direct", the BIOS won't be used, and if you
2246 choose "MMConfig", then PCI Express MMCONFIG will be used.
2247 If you choose "Any", the kernel will try MMCONFIG, then the
2248 direct access method and falls back to the BIOS if that doesn't
2249 work. If unsure, go with the default, which is "Any".
2250
2251 config PCI_GOBIOS
2252 bool "BIOS"
2253
2254 config PCI_GOMMCONFIG
2255 bool "MMConfig"
2256
2257 config PCI_GODIRECT
2258 bool "Direct"
2259
2260 config PCI_GOOLPC
2261 bool "OLPC XO-1"
2262 depends on OLPC
2263
2264 config PCI_GOANY
2265 bool "Any"
2266
2267 endchoice
2268
2269 config PCI_BIOS
2270 def_bool y
2271 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
2272
2273 # x86-64 doesn't support PCI BIOS access from long mode so always go direct.
2274 config PCI_DIRECT
2275 def_bool y
2276 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG))
2277
2278 config PCI_MMCONFIG
2279 def_bool y
2280 depends on X86_32 && PCI && (ACPI || SFI) && (PCI_GOMMCONFIG || PCI_GOANY)
2281
2282 config PCI_OLPC
2283 def_bool y
2284 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
2285
2286 config PCI_XEN
2287 def_bool y
2288 depends on PCI && XEN
2289 select SWIOTLB_XEN
2290
2291 config PCI_DOMAINS
2292 def_bool y
2293 depends on PCI
2294
2295 config PCI_MMCONFIG
2296 bool "Support mmconfig PCI config space access"
2297 depends on X86_64 && PCI && ACPI
2298
2299 config PCI_CNB20LE_QUIRK
2300 bool "Read CNB20LE Host Bridge Windows" if EXPERT
2301 depends on PCI
2302 help
2303 Read the PCI windows out of the CNB20LE host bridge. This allows
2304 PCI hotplug to work on systems with the CNB20LE chipset which do
2305 not have ACPI.
2306
2307 There's no public spec for this chipset, and this functionality
2308 is known to be incomplete.
2309
2310 You should say N unless you know you need this.
2311
2312 source "drivers/pci/pcie/Kconfig"
2313
2314 source "drivers/pci/Kconfig"
2315
2316 # x86_64 have no ISA slots, but can have ISA-style DMA.
2317 config ISA_DMA_API
2318 bool "ISA-style DMA support" if (X86_64 && EXPERT)
2319 default y
2320 help
2321 Enables ISA-style DMA support for devices requiring such controllers.
2322 If unsure, say Y.
2323
2324 if X86_32
2325
2326 config ISA
2327 bool "ISA support"
2328 ---help---
2329 Find out whether you have ISA slots on your motherboard. ISA is the
2330 name of a bus system, i.e. the way the CPU talks to the other stuff
2331 inside your box. Other bus systems are PCI, EISA, MicroChannel
2332 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
2333 newer boards don't support it. If you have ISA, say Y, otherwise N.
2334
2335 config EISA
2336 bool "EISA support"
2337 depends on ISA
2338 ---help---
2339 The Extended Industry Standard Architecture (EISA) bus was
2340 developed as an open alternative to the IBM MicroChannel bus.
2341
2342 The EISA bus provided some of the features of the IBM MicroChannel
2343 bus while maintaining backward compatibility with cards made for
2344 the older ISA bus. The EISA bus saw limited use between 1988 and
2345 1995 when it was made obsolete by the PCI bus.
2346
2347 Say Y here if you are building a kernel for an EISA-based machine.
2348
2349 Otherwise, say N.
2350
2351 source "drivers/eisa/Kconfig"
2352
2353 config SCx200
2354 tristate "NatSemi SCx200 support"
2355 ---help---
2356 This provides basic support for National Semiconductor's
2357 (now AMD's) Geode processors. The driver probes for the
2358 PCI-IDs of several on-chip devices, so its a good dependency
2359 for other scx200_* drivers.
2360
2361 If compiled as a module, the driver is named scx200.
2362
2363 config SCx200HR_TIMER
2364 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
2365 depends on SCx200
2366 default y
2367 ---help---
2368 This driver provides a clocksource built upon the on-chip
2369 27MHz high-resolution timer. Its also a workaround for
2370 NSC Geode SC-1100's buggy TSC, which loses time when the
2371 processor goes idle (as is done by the scheduler). The
2372 other workaround is idle=poll boot option.
2373
2374 config OLPC
2375 bool "One Laptop Per Child support"
2376 depends on !X86_PAE
2377 select GPIOLIB
2378 select OF
2379 select OF_PROMTREE
2380 select IRQ_DOMAIN
2381 ---help---
2382 Add support for detecting the unique features of the OLPC
2383 XO hardware.
2384
2385 config OLPC_XO1_PM
2386 bool "OLPC XO-1 Power Management"
2387 depends on OLPC && MFD_CS5535 && PM_SLEEP
2388 select MFD_CORE
2389 ---help---
2390 Add support for poweroff and suspend of the OLPC XO-1 laptop.
2391
2392 config OLPC_XO1_RTC
2393 bool "OLPC XO-1 Real Time Clock"
2394 depends on OLPC_XO1_PM && RTC_DRV_CMOS
2395 ---help---
2396 Add support for the XO-1 real time clock, which can be used as a
2397 programmable wakeup source.
2398
2399 config OLPC_XO1_SCI
2400 bool "OLPC XO-1 SCI extras"
2401 depends on OLPC && OLPC_XO1_PM
2402 depends on INPUT=y
2403 select POWER_SUPPLY
2404 select GPIO_CS5535
2405 select MFD_CORE
2406 ---help---
2407 Add support for SCI-based features of the OLPC XO-1 laptop:
2408 - EC-driven system wakeups
2409 - Power button
2410 - Ebook switch
2411 - Lid switch
2412 - AC adapter status updates
2413 - Battery status updates
2414
2415 config OLPC_XO15_SCI
2416 bool "OLPC XO-1.5 SCI extras"
2417 depends on OLPC && ACPI
2418 select POWER_SUPPLY
2419 ---help---
2420 Add support for SCI-based features of the OLPC XO-1.5 laptop:
2421 - EC-driven system wakeups
2422 - AC adapter status updates
2423 - Battery status updates
2424
2425 config ALIX
2426 bool "PCEngines ALIX System Support (LED setup)"
2427 select GPIOLIB
2428 ---help---
2429 This option enables system support for the PCEngines ALIX.
2430 At present this just sets up LEDs for GPIO control on
2431 ALIX2/3/6 boards. However, other system specific setup should
2432 get added here.
2433
2434 Note: You must still enable the drivers for GPIO and LED support
2435 (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs
2436
2437 Note: You have to set alix.force=1 for boards with Award BIOS.
2438
2439 config NET5501
2440 bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)"
2441 select GPIOLIB
2442 ---help---
2443 This option enables system support for the Soekris Engineering net5501.
2444
2445 config GEOS
2446 bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
2447 select GPIOLIB
2448 depends on DMI
2449 ---help---
2450 This option enables system support for the Traverse Technologies GEOS.
2451
2452 config TS5500
2453 bool "Technologic Systems TS-5500 platform support"
2454 depends on MELAN
2455 select CHECK_SIGNATURE
2456 select NEW_LEDS
2457 select LEDS_CLASS
2458 ---help---
2459 This option enables system support for the Technologic Systems TS-5500.
2460
2461 endif # X86_32
2462
2463 config AMD_NB
2464 def_bool y
2465 depends on CPU_SUP_AMD && PCI
2466
2467 source "drivers/pcmcia/Kconfig"
2468
2469 source "drivers/pci/hotplug/Kconfig"
2470
2471 config RAPIDIO
2472 tristate "RapidIO support"
2473 depends on PCI
2474 default n
2475 help
2476 If enabled this option will include drivers and the core
2477 infrastructure code to support RapidIO interconnect devices.
2478
2479 source "drivers/rapidio/Kconfig"
2480
2481 config X86_SYSFB
2482 bool "Mark VGA/VBE/EFI FB as generic system framebuffer"
2483 help
2484 Firmwares often provide initial graphics framebuffers so the BIOS,
2485 bootloader or kernel can show basic video-output during boot for
2486 user-guidance and debugging. Historically, x86 used the VESA BIOS
2487 Extensions and EFI-framebuffers for this, which are mostly limited
2488 to x86.
2489 This option, if enabled, marks VGA/VBE/EFI framebuffers as generic
2490 framebuffers so the new generic system-framebuffer drivers can be
2491 used on x86. If the framebuffer is not compatible with the generic
2492 modes, it is adverticed as fallback platform framebuffer so legacy
2493 drivers like efifb, vesafb and uvesafb can pick it up.
2494 If this option is not selected, all system framebuffers are always
2495 marked as fallback platform framebuffers as usual.
2496
2497 Note: Legacy fbdev drivers, including vesafb, efifb, uvesafb, will
2498 not be able to pick up generic system framebuffers if this option
2499 is selected. You are highly encouraged to enable simplefb as
2500 replacement if you select this option. simplefb can correctly deal
2501 with generic system framebuffers. But you should still keep vesafb
2502 and others enabled as fallback if a system framebuffer is
2503 incompatible with simplefb.
2504
2505 If unsure, say Y.
2506
2507 endmenu
2508
2509
2510 menu "Executable file formats / Emulations"
2511
2512 source "fs/Kconfig.binfmt"
2513
2514 config IA32_EMULATION
2515 bool "IA32 Emulation"
2516 depends on X86_64
2517 select BINFMT_ELF
2518 select COMPAT_BINFMT_ELF
2519 select HAVE_UID16
2520 ---help---
2521 Include code to run legacy 32-bit programs under a
2522 64-bit kernel. You should likely turn this on, unless you're
2523 100% sure that you don't have any 32-bit programs left.
2524
2525 config IA32_AOUT
2526 tristate "IA32 a.out support"
2527 depends on IA32_EMULATION
2528 ---help---
2529 Support old a.out binaries in the 32bit emulation.
2530
2531 config X86_X32
2532 bool "x32 ABI for 64-bit mode"
2533 depends on X86_64 && IA32_EMULATION
2534 ---help---
2535 Include code to run binaries for the x32 native 32-bit ABI
2536 for 64-bit processors. An x32 process gets access to the
2537 full 64-bit register file and wide data path while leaving
2538 pointers at 32 bits for smaller memory footprint.
2539
2540 You will need a recent binutils (2.22 or later) with
2541 elf32_x86_64 support enabled to compile a kernel with this
2542 option set.
2543
2544 config COMPAT
2545 def_bool y
2546 depends on IA32_EMULATION || X86_X32
2547 select ARCH_WANT_OLD_COMPAT_IPC
2548
2549 if COMPAT
2550 config COMPAT_FOR_U64_ALIGNMENT
2551 def_bool y
2552
2553 config SYSVIPC_COMPAT
2554 def_bool y
2555 depends on SYSVIPC
2556
2557 config KEYS_COMPAT
2558 def_bool y
2559 depends on KEYS
2560 endif
2561
2562 endmenu
2563
2564
2565 config HAVE_ATOMIC_IOMAP
2566 def_bool y
2567 depends on X86_32
2568
2569 config X86_DEV_DMA_OPS
2570 bool
2571 depends on X86_64 || STA2X11
2572
2573 config X86_DMA_REMAP
2574 bool
2575 depends on STA2X11
2576
2577 config PMC_ATOM
2578 def_bool y
2579 depends on PCI
2580
2581 source "net/Kconfig"
2582
2583 source "drivers/Kconfig"
2584
2585 source "drivers/firmware/Kconfig"
2586
2587 source "fs/Kconfig"
2588
2589 source "arch/x86/Kconfig.debug"
2590
2591 source "security/Kconfig"
2592
2593 source "crypto/Kconfig"
2594
2595 source "arch/x86/kvm/Kconfig"
2596
2597 source "lib/Kconfig"