]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/Kconfig
Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / Kconfig
1 # Select 32 or 64 bit
2 config 64BIT
3 bool "64-bit kernel" if ARCH = "x86"
4 default ARCH != "i386"
5 ---help---
6 Say yes to build a 64-bit kernel - formerly known as x86_64
7 Say no to build a 32-bit kernel - formerly known as i386
8
9 config X86_32
10 def_bool y
11 depends on !64BIT
12 select CLKSRC_I8253
13 select HAVE_UID16
14
15 config X86_64
16 def_bool y
17 depends on 64BIT
18 select X86_DEV_DMA_OPS
19
20 ### Arch settings
21 config X86
22 def_bool y
23 select HAVE_AOUT if X86_32
24 select HAVE_UNSTABLE_SCHED_CLOCK
25 select ARCH_SUPPORTS_NUMA_BALANCING
26 select ARCH_WANTS_PROT_NUMA_PROT_NONE
27 select HAVE_IDE
28 select HAVE_OPROFILE
29 select HAVE_PCSPKR_PLATFORM
30 select HAVE_PERF_EVENTS
31 select HAVE_IOREMAP_PROT
32 select HAVE_KPROBES
33 select HAVE_MEMBLOCK
34 select HAVE_MEMBLOCK_NODE_MAP
35 select ARCH_DISCARD_MEMBLOCK
36 select ARCH_WANT_OPTIONAL_GPIOLIB
37 select ARCH_WANT_FRAME_POINTERS
38 select HAVE_DMA_ATTRS
39 select HAVE_DMA_CONTIGUOUS if !SWIOTLB
40 select HAVE_KRETPROBES
41 select HAVE_OPTPROBES
42 select HAVE_KPROBES_ON_FTRACE
43 select HAVE_FTRACE_MCOUNT_RECORD
44 select HAVE_FENTRY if X86_64
45 select HAVE_C_RECORDMCOUNT
46 select HAVE_DYNAMIC_FTRACE
47 select HAVE_DYNAMIC_FTRACE_WITH_REGS
48 select HAVE_FUNCTION_TRACER
49 select HAVE_FUNCTION_GRAPH_TRACER
50 select HAVE_FUNCTION_GRAPH_FP_TEST
51 select HAVE_FUNCTION_TRACE_MCOUNT_TEST
52 select HAVE_SYSCALL_TRACEPOINTS
53 select SYSCTL_EXCEPTION_TRACE
54 select HAVE_KVM
55 select HAVE_ARCH_KGDB
56 select HAVE_ARCH_TRACEHOOK
57 select HAVE_GENERIC_DMA_COHERENT if X86_32
58 select HAVE_EFFICIENT_UNALIGNED_ACCESS
59 select USER_STACKTRACE_SUPPORT
60 select HAVE_REGS_AND_STACK_ACCESS_API
61 select HAVE_DMA_API_DEBUG
62 select HAVE_KERNEL_GZIP
63 select HAVE_KERNEL_BZIP2
64 select HAVE_KERNEL_LZMA
65 select HAVE_KERNEL_XZ
66 select HAVE_KERNEL_LZO
67 select HAVE_HW_BREAKPOINT
68 select HAVE_MIXED_BREAKPOINTS_REGS
69 select PERF_EVENTS
70 select HAVE_PERF_EVENTS_NMI
71 select HAVE_PERF_REGS
72 select HAVE_PERF_USER_STACK_DUMP
73 select HAVE_DEBUG_KMEMLEAK
74 select ANON_INODES
75 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
76 select HAVE_CMPXCHG_LOCAL
77 select HAVE_CMPXCHG_DOUBLE
78 select HAVE_ARCH_KMEMCHECK
79 select HAVE_USER_RETURN_NOTIFIER
80 select ARCH_BINFMT_ELF_RANDOMIZE_PIE
81 select HAVE_ARCH_JUMP_LABEL
82 select HAVE_TEXT_POKE_SMP
83 select HAVE_GENERIC_HARDIRQS
84 select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
85 select SPARSE_IRQ
86 select GENERIC_FIND_FIRST_BIT
87 select GENERIC_IRQ_PROBE
88 select GENERIC_PENDING_IRQ if SMP
89 select GENERIC_IRQ_SHOW
90 select GENERIC_CLOCKEVENTS_MIN_ADJUST
91 select IRQ_FORCED_THREADING
92 select USE_GENERIC_SMP_HELPERS if SMP
93 select HAVE_BPF_JIT if X86_64
94 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
95 select CLKEVT_I8253
96 select ARCH_HAVE_NMI_SAFE_CMPXCHG
97 select GENERIC_IOMAP
98 select DCACHE_WORD_ACCESS
99 select GENERIC_SMP_IDLE_THREAD
100 select ARCH_WANT_IPC_PARSE_VERSION if X86_32
101 select HAVE_ARCH_SECCOMP_FILTER
102 select BUILDTIME_EXTABLE_SORT
103 select GENERIC_CMOS_UPDATE
104 select CLOCKSOURCE_WATCHDOG
105 select GENERIC_CLOCKEVENTS
106 select ARCH_CLOCKSOURCE_DATA if X86_64
107 select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC)
108 select GENERIC_TIME_VSYSCALL if X86_64
109 select KTIME_SCALAR if X86_32
110 select ALWAYS_USE_PERSISTENT_CLOCK
111 select GENERIC_STRNCPY_FROM_USER
112 select GENERIC_STRNLEN_USER
113 select HAVE_CONTEXT_TRACKING if X86_64
114 select HAVE_IRQ_TIME_ACCOUNTING
115 select VIRT_TO_BUS
116 select MODULES_USE_ELF_REL if X86_32
117 select MODULES_USE_ELF_RELA if X86_64
118 select CLONE_BACKWARDS if X86_32
119 select ARCH_USE_BUILTIN_BSWAP
120 select OLD_SIGSUSPEND3 if X86_32 || IA32_EMULATION
121 select OLD_SIGACTION if X86_32
122 select COMPAT_OLD_SIGACTION if IA32_EMULATION
123 select RTC_LIB
124
125 config INSTRUCTION_DECODER
126 def_bool y
127 depends on KPROBES || PERF_EVENTS || UPROBES
128
129 config OUTPUT_FORMAT
130 string
131 default "elf32-i386" if X86_32
132 default "elf64-x86-64" if X86_64
133
134 config ARCH_DEFCONFIG
135 string
136 default "arch/x86/configs/i386_defconfig" if X86_32
137 default "arch/x86/configs/x86_64_defconfig" if X86_64
138
139 config LOCKDEP_SUPPORT
140 def_bool y
141
142 config STACKTRACE_SUPPORT
143 def_bool y
144
145 config HAVE_LATENCYTOP_SUPPORT
146 def_bool y
147
148 config MMU
149 def_bool y
150
151 config SBUS
152 bool
153
154 config NEED_DMA_MAP_STATE
155 def_bool y
156 depends on X86_64 || INTEL_IOMMU || DMA_API_DEBUG
157
158 config NEED_SG_DMA_LENGTH
159 def_bool y
160
161 config GENERIC_ISA_DMA
162 def_bool y
163 depends on ISA_DMA_API
164
165 config GENERIC_BUG
166 def_bool y
167 depends on BUG
168 select GENERIC_BUG_RELATIVE_POINTERS if X86_64
169
170 config GENERIC_BUG_RELATIVE_POINTERS
171 bool
172
173 config GENERIC_HWEIGHT
174 def_bool y
175
176 config GENERIC_GPIO
177 bool
178
179 config ARCH_MAY_HAVE_PC_FDC
180 def_bool y
181 depends on ISA_DMA_API
182
183 config RWSEM_XCHGADD_ALGORITHM
184 def_bool y
185
186 config GENERIC_CALIBRATE_DELAY
187 def_bool y
188
189 config ARCH_HAS_CPU_RELAX
190 def_bool y
191
192 config ARCH_HAS_CACHE_LINE_SIZE
193 def_bool y
194
195 config ARCH_HAS_CPU_AUTOPROBE
196 def_bool y
197
198 config HAVE_SETUP_PER_CPU_AREA
199 def_bool y
200
201 config NEED_PER_CPU_EMBED_FIRST_CHUNK
202 def_bool y
203
204 config NEED_PER_CPU_PAGE_FIRST_CHUNK
205 def_bool y
206
207 config ARCH_HIBERNATION_POSSIBLE
208 def_bool y
209
210 config ARCH_SUSPEND_POSSIBLE
211 def_bool y
212
213 config ZONE_DMA32
214 bool
215 default X86_64
216
217 config AUDIT_ARCH
218 bool
219 default X86_64
220
221 config ARCH_SUPPORTS_OPTIMIZED_INLINING
222 def_bool y
223
224 config ARCH_SUPPORTS_DEBUG_PAGEALLOC
225 def_bool y
226
227 config HAVE_INTEL_TXT
228 def_bool y
229 depends on INTEL_IOMMU && ACPI
230
231 config X86_32_SMP
232 def_bool y
233 depends on X86_32 && SMP
234
235 config X86_64_SMP
236 def_bool y
237 depends on X86_64 && SMP
238
239 config X86_HT
240 def_bool y
241 depends on SMP
242
243 config X86_32_LAZY_GS
244 def_bool y
245 depends on X86_32 && !CC_STACKPROTECTOR
246
247 config ARCH_HWEIGHT_CFLAGS
248 string
249 default "-fcall-saved-ecx -fcall-saved-edx" if X86_32
250 default "-fcall-saved-rdi -fcall-saved-rsi -fcall-saved-rdx -fcall-saved-rcx -fcall-saved-r8 -fcall-saved-r9 -fcall-saved-r10 -fcall-saved-r11" if X86_64
251
252 config ARCH_CPU_PROBE_RELEASE
253 def_bool y
254 depends on HOTPLUG_CPU
255
256 config ARCH_SUPPORTS_UPROBES
257 def_bool y
258
259 source "init/Kconfig"
260 source "kernel/Kconfig.freezer"
261
262 menu "Processor type and features"
263
264 config ZONE_DMA
265 bool "DMA memory allocation support" if EXPERT
266 default y
267 help
268 DMA memory allocation support allows devices with less than 32-bit
269 addressing to allocate within the first 16MB of address space.
270 Disable if no such devices will be used.
271
272 If unsure, say Y.
273
274 config SMP
275 bool "Symmetric multi-processing support"
276 ---help---
277 This enables support for systems with more than one CPU. If you have
278 a system with only one CPU, like most personal computers, say N. If
279 you have a system with more than one CPU, say Y.
280
281 If you say N here, the kernel will run on single and multiprocessor
282 machines, but will use only one CPU of a multiprocessor machine. If
283 you say Y here, the kernel will run on many, but not all,
284 singleprocessor machines. On a singleprocessor machine, the kernel
285 will run faster if you say N here.
286
287 Note that if you say Y here and choose architecture "586" or
288 "Pentium" under "Processor family", the kernel will not work on 486
289 architectures. Similarly, multiprocessor kernels for the "PPro"
290 architecture may not work on all Pentium based boards.
291
292 People using multiprocessor machines who say Y here should also say
293 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
294 Management" code will be disabled if you say Y here.
295
296 See also <file:Documentation/x86/i386/IO-APIC.txt>,
297 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
298 <http://www.tldp.org/docs.html#howto>.
299
300 If you don't know what to do here, say N.
301
302 config X86_X2APIC
303 bool "Support x2apic"
304 depends on X86_LOCAL_APIC && X86_64 && IRQ_REMAP
305 ---help---
306 This enables x2apic support on CPUs that have this feature.
307
308 This allows 32-bit apic IDs (so it can support very large systems),
309 and accesses the local apic via MSRs not via mmio.
310
311 If you don't know what to do here, say N.
312
313 config X86_MPPARSE
314 bool "Enable MPS table" if ACPI || SFI
315 default y
316 depends on X86_LOCAL_APIC
317 ---help---
318 For old smp systems that do not have proper acpi support. Newer systems
319 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
320
321 config X86_BIGSMP
322 bool "Support for big SMP systems with more than 8 CPUs"
323 depends on X86_32 && SMP
324 ---help---
325 This option is needed for the systems that have more than 8 CPUs
326
327 config GOLDFISH
328 def_bool y
329 depends on X86_GOLDFISH
330
331 if X86_32
332 config X86_EXTENDED_PLATFORM
333 bool "Support for extended (non-PC) x86 platforms"
334 default y
335 ---help---
336 If you disable this option then the kernel will only support
337 standard PC platforms. (which covers the vast majority of
338 systems out there.)
339
340 If you enable this option then you'll be able to select support
341 for the following (non-PC) 32 bit x86 platforms:
342 AMD Elan
343 NUMAQ (IBM/Sequent)
344 RDC R-321x SoC
345 SGI 320/540 (Visual Workstation)
346 STA2X11-based (e.g. Northville)
347 Summit/EXA (IBM x440)
348 Unisys ES7000 IA32 series
349 Moorestown MID devices
350
351 If you have one of these systems, or if you want to build a
352 generic distribution kernel, say Y here - otherwise say N.
353 endif
354
355 if X86_64
356 config X86_EXTENDED_PLATFORM
357 bool "Support for extended (non-PC) x86 platforms"
358 default y
359 ---help---
360 If you disable this option then the kernel will only support
361 standard PC platforms. (which covers the vast majority of
362 systems out there.)
363
364 If you enable this option then you'll be able to select support
365 for the following (non-PC) 64 bit x86 platforms:
366 Numascale NumaChip
367 ScaleMP vSMP
368 SGI Ultraviolet
369
370 If you have one of these systems, or if you want to build a
371 generic distribution kernel, say Y here - otherwise say N.
372 endif
373 # This is an alphabetically sorted list of 64 bit extended platforms
374 # Please maintain the alphabetic order if and when there are additions
375 config X86_NUMACHIP
376 bool "Numascale NumaChip"
377 depends on X86_64
378 depends on X86_EXTENDED_PLATFORM
379 depends on NUMA
380 depends on SMP
381 depends on X86_X2APIC
382 depends on PCI_MMCONFIG
383 ---help---
384 Adds support for Numascale NumaChip large-SMP systems. Needed to
385 enable more than ~168 cores.
386 If you don't have one of these, you should say N here.
387
388 config X86_VSMP
389 bool "ScaleMP vSMP"
390 select PARAVIRT_GUEST
391 select PARAVIRT
392 depends on X86_64 && PCI
393 depends on X86_EXTENDED_PLATFORM
394 depends on SMP
395 ---help---
396 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
397 supposed to run on these EM64T-based machines. Only choose this option
398 if you have one of these machines.
399
400 config X86_UV
401 bool "SGI Ultraviolet"
402 depends on X86_64
403 depends on X86_EXTENDED_PLATFORM
404 depends on NUMA
405 depends on X86_X2APIC
406 ---help---
407 This option is needed in order to support SGI Ultraviolet systems.
408 If you don't have one of these, you should say N here.
409
410 # Following is an alphabetically sorted list of 32 bit extended platforms
411 # Please maintain the alphabetic order if and when there are additions
412
413 config X86_GOLDFISH
414 bool "Goldfish (Virtual Platform)"
415 depends on X86_32
416 ---help---
417 Enable support for the Goldfish virtual platform used primarily
418 for Android development. Unless you are building for the Android
419 Goldfish emulator say N here.
420
421 config X86_INTEL_CE
422 bool "CE4100 TV platform"
423 depends on PCI
424 depends on PCI_GODIRECT
425 depends on X86_32
426 depends on X86_EXTENDED_PLATFORM
427 select X86_REBOOTFIXUPS
428 select OF
429 select OF_EARLY_FLATTREE
430 select IRQ_DOMAIN
431 ---help---
432 Select for the Intel CE media processor (CE4100) SOC.
433 This option compiles in support for the CE4100 SOC for settop
434 boxes and media devices.
435
436 config X86_WANT_INTEL_MID
437 bool "Intel MID platform support"
438 depends on X86_32
439 depends on X86_EXTENDED_PLATFORM
440 ---help---
441 Select to build a kernel capable of supporting Intel MID platform
442 systems which do not have the PCI legacy interfaces (Moorestown,
443 Medfield). If you are building for a PC class system say N here.
444
445 if X86_WANT_INTEL_MID
446
447 config X86_INTEL_MID
448 bool
449
450 config X86_MDFLD
451 bool "Medfield MID platform"
452 depends on PCI
453 depends on PCI_GOANY
454 depends on X86_IO_APIC
455 select X86_INTEL_MID
456 select SFI
457 select DW_APB_TIMER
458 select APB_TIMER
459 select I2C
460 select SPI
461 select INTEL_SCU_IPC
462 select X86_PLATFORM_DEVICES
463 select MFD_INTEL_MSIC
464 ---help---
465 Medfield is Intel's Low Power Intel Architecture (LPIA) based Moblin
466 Internet Device(MID) platform.
467 Unlike standard x86 PCs, Medfield does not have many legacy devices
468 nor standard legacy replacement devices/features. e.g. Medfield does
469 not contain i8259, i8254, HPET, legacy BIOS, most of the io ports.
470
471 endif
472
473 config X86_INTEL_LPSS
474 bool "Intel Low Power Subsystem Support"
475 depends on ACPI
476 select COMMON_CLK
477 ---help---
478 Select to build support for Intel Low Power Subsystem such as
479 found on Intel Lynxpoint PCH. Selecting this option enables
480 things like clock tree (common clock framework) which are needed
481 by the LPSS peripheral drivers.
482
483 config X86_RDC321X
484 bool "RDC R-321x SoC"
485 depends on X86_32
486 depends on X86_EXTENDED_PLATFORM
487 select M486
488 select X86_REBOOTFIXUPS
489 ---help---
490 This option is needed for RDC R-321x system-on-chip, also known
491 as R-8610-(G).
492 If you don't have one of these chips, you should say N here.
493
494 config X86_32_NON_STANDARD
495 bool "Support non-standard 32-bit SMP architectures"
496 depends on X86_32 && SMP
497 depends on X86_EXTENDED_PLATFORM
498 ---help---
499 This option compiles in the NUMAQ, Summit, bigsmp, ES7000,
500 STA2X11, default subarchitectures. It is intended for a generic
501 binary kernel. If you select them all, kernel will probe it
502 one by one and will fallback to default.
503
504 # Alphabetically sorted list of Non standard 32 bit platforms
505
506 config X86_NUMAQ
507 bool "NUMAQ (IBM/Sequent)"
508 depends on X86_32_NON_STANDARD
509 depends on PCI
510 select NUMA
511 select X86_MPPARSE
512 ---help---
513 This option is used for getting Linux to run on a NUMAQ (IBM/Sequent)
514 NUMA multiquad box. This changes the way that processors are
515 bootstrapped, and uses Clustered Logical APIC addressing mode instead
516 of Flat Logical. You will need a new lynxer.elf file to flash your
517 firmware with - send email to <Martin.Bligh@us.ibm.com>.
518
519 config X86_SUPPORTS_MEMORY_FAILURE
520 def_bool y
521 # MCE code calls memory_failure():
522 depends on X86_MCE
523 # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
524 depends on !X86_NUMAQ
525 # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
526 depends on X86_64 || !SPARSEMEM
527 select ARCH_SUPPORTS_MEMORY_FAILURE
528
529 config X86_VISWS
530 bool "SGI 320/540 (Visual Workstation)"
531 depends on X86_32 && PCI && X86_MPPARSE && PCI_GODIRECT
532 depends on X86_32_NON_STANDARD
533 ---help---
534 The SGI Visual Workstation series is an IA32-based workstation
535 based on SGI systems chips with some legacy PC hardware attached.
536
537 Say Y here to create a kernel to run on the SGI 320 or 540.
538
539 A kernel compiled for the Visual Workstation will run on general
540 PCs as well. See <file:Documentation/sgi-visws.txt> for details.
541
542 config STA2X11
543 bool "STA2X11 Companion Chip Support"
544 depends on X86_32_NON_STANDARD && PCI
545 select X86_DEV_DMA_OPS
546 select X86_DMA_REMAP
547 select SWIOTLB
548 select MFD_STA2X11
549 select ARCH_REQUIRE_GPIOLIB
550 default n
551 ---help---
552 This adds support for boards based on the STA2X11 IO-Hub,
553 a.k.a. "ConneXt". The chip is used in place of the standard
554 PC chipset, so all "standard" peripherals are missing. If this
555 option is selected the kernel will still be able to boot on
556 standard PC machines.
557
558 config X86_SUMMIT
559 bool "Summit/EXA (IBM x440)"
560 depends on X86_32_NON_STANDARD
561 ---help---
562 This option is needed for IBM systems that use the Summit/EXA chipset.
563 In particular, it is needed for the x440.
564
565 config X86_ES7000
566 bool "Unisys ES7000 IA32 series"
567 depends on X86_32_NON_STANDARD && X86_BIGSMP
568 ---help---
569 Support for Unisys ES7000 systems. Say 'Y' here if this kernel is
570 supposed to run on an IA32-based Unisys ES7000 system.
571
572 config X86_32_IRIS
573 tristate "Eurobraille/Iris poweroff module"
574 depends on X86_32
575 ---help---
576 The Iris machines from EuroBraille do not have APM or ACPI support
577 to shut themselves down properly. A special I/O sequence is
578 needed to do so, which is what this module does at
579 kernel shutdown.
580
581 This is only for Iris machines from EuroBraille.
582
583 If unused, say N.
584
585 config SCHED_OMIT_FRAME_POINTER
586 def_bool y
587 prompt "Single-depth WCHAN output"
588 depends on X86
589 ---help---
590 Calculate simpler /proc/<PID>/wchan values. If this option
591 is disabled then wchan values will recurse back to the
592 caller function. This provides more accurate wchan values,
593 at the expense of slightly more scheduling overhead.
594
595 If in doubt, say "Y".
596
597 menuconfig PARAVIRT_GUEST
598 bool "Paravirtualized guest support"
599 ---help---
600 Say Y here to get to see options related to running Linux under
601 various hypervisors. This option alone does not add any kernel code.
602
603 If you say N, all options in this submenu will be skipped and disabled.
604
605 if PARAVIRT_GUEST
606
607 config PARAVIRT_TIME_ACCOUNTING
608 bool "Paravirtual steal time accounting"
609 select PARAVIRT
610 default n
611 ---help---
612 Select this option to enable fine granularity task steal time
613 accounting. Time spent executing other tasks in parallel with
614 the current vCPU is discounted from the vCPU power. To account for
615 that, there can be a small performance impact.
616
617 If in doubt, say N here.
618
619 source "arch/x86/xen/Kconfig"
620
621 config KVM_GUEST
622 bool "KVM Guest support (including kvmclock)"
623 select PARAVIRT
624 select PARAVIRT
625 select PARAVIRT_CLOCK
626 default y if PARAVIRT_GUEST
627 ---help---
628 This option enables various optimizations for running under the KVM
629 hypervisor. It includes a paravirtualized clock, so that instead
630 of relying on a PIT (or probably other) emulation by the
631 underlying device model, the host provides the guest with
632 timing infrastructure such as time of day, and system time
633
634 source "arch/x86/lguest/Kconfig"
635
636 config PARAVIRT
637 bool "Enable paravirtualization code"
638 ---help---
639 This changes the kernel so it can modify itself when it is run
640 under a hypervisor, potentially improving performance significantly
641 over full virtualization. However, when run without a hypervisor
642 the kernel is theoretically slower and slightly larger.
643
644 config PARAVIRT_SPINLOCKS
645 bool "Paravirtualization layer for spinlocks"
646 depends on PARAVIRT && SMP
647 ---help---
648 Paravirtualized spinlocks allow a pvops backend to replace the
649 spinlock implementation with something virtualization-friendly
650 (for example, block the virtual CPU rather than spinning).
651
652 Unfortunately the downside is an up to 5% performance hit on
653 native kernels, with various workloads.
654
655 If you are unsure how to answer this question, answer N.
656
657 config PARAVIRT_CLOCK
658 bool
659
660 endif
661
662 config PARAVIRT_DEBUG
663 bool "paravirt-ops debugging"
664 depends on PARAVIRT && DEBUG_KERNEL
665 ---help---
666 Enable to debug paravirt_ops internals. Specifically, BUG if
667 a paravirt_op is missing when it is called.
668
669 config NO_BOOTMEM
670 def_bool y
671
672 config MEMTEST
673 bool "Memtest"
674 ---help---
675 This option adds a kernel parameter 'memtest', which allows memtest
676 to be set.
677 memtest=0, mean disabled; -- default
678 memtest=1, mean do 1 test pattern;
679 ...
680 memtest=4, mean do 4 test patterns.
681 If you are unsure how to answer this question, answer N.
682
683 config X86_SUMMIT_NUMA
684 def_bool y
685 depends on X86_32 && NUMA && X86_32_NON_STANDARD
686
687 config X86_CYCLONE_TIMER
688 def_bool y
689 depends on X86_SUMMIT
690
691 source "arch/x86/Kconfig.cpu"
692
693 config HPET_TIMER
694 def_bool X86_64
695 prompt "HPET Timer Support" if X86_32
696 ---help---
697 Use the IA-PC HPET (High Precision Event Timer) to manage
698 time in preference to the PIT and RTC, if a HPET is
699 present.
700 HPET is the next generation timer replacing legacy 8254s.
701 The HPET provides a stable time base on SMP
702 systems, unlike the TSC, but it is more expensive to access,
703 as it is off-chip. You can find the HPET spec at
704 <http://www.intel.com/hardwaredesign/hpetspec_1.pdf>.
705
706 You can safely choose Y here. However, HPET will only be
707 activated if the platform and the BIOS support this feature.
708 Otherwise the 8254 will be used for timing services.
709
710 Choose N to continue using the legacy 8254 timer.
711
712 config HPET_EMULATE_RTC
713 def_bool y
714 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
715
716 config APB_TIMER
717 def_bool y if X86_INTEL_MID
718 prompt "Intel MID APB Timer Support" if X86_INTEL_MID
719 select DW_APB_TIMER
720 depends on X86_INTEL_MID && SFI
721 help
722 APB timer is the replacement for 8254, HPET on X86 MID platforms.
723 The APBT provides a stable time base on SMP
724 systems, unlike the TSC, but it is more expensive to access,
725 as it is off-chip. APB timers are always running regardless of CPU
726 C states, they are used as per CPU clockevent device when possible.
727
728 # Mark as expert because too many people got it wrong.
729 # The code disables itself when not needed.
730 config DMI
731 default y
732 bool "Enable DMI scanning" if EXPERT
733 ---help---
734 Enabled scanning of DMI to identify machine quirks. Say Y
735 here unless you have verified that your setup is not
736 affected by entries in the DMI blacklist. Required by PNP
737 BIOS code.
738
739 config GART_IOMMU
740 bool "GART IOMMU support" if EXPERT
741 default y
742 select SWIOTLB
743 depends on X86_64 && PCI && AMD_NB
744 ---help---
745 Support for full DMA access of devices with 32bit memory access only
746 on systems with more than 3GB. This is usually needed for USB,
747 sound, many IDE/SATA chipsets and some other devices.
748 Provides a driver for the AMD Athlon64/Opteron/Turion/Sempron GART
749 based hardware IOMMU and a software bounce buffer based IOMMU used
750 on Intel systems and as fallback.
751 The code is only active when needed (enough memory and limited
752 device) unless CONFIG_IOMMU_DEBUG or iommu=force is specified
753 too.
754
755 config CALGARY_IOMMU
756 bool "IBM Calgary IOMMU support"
757 select SWIOTLB
758 depends on X86_64 && PCI
759 ---help---
760 Support for hardware IOMMUs in IBM's xSeries x366 and x460
761 systems. Needed to run systems with more than 3GB of memory
762 properly with 32-bit PCI devices that do not support DAC
763 (Double Address Cycle). Calgary also supports bus level
764 isolation, where all DMAs pass through the IOMMU. This
765 prevents them from going anywhere except their intended
766 destination. This catches hard-to-find kernel bugs and
767 mis-behaving drivers and devices that do not use the DMA-API
768 properly to set up their DMA buffers. The IOMMU can be
769 turned off at boot time with the iommu=off parameter.
770 Normally the kernel will make the right choice by itself.
771 If unsure, say Y.
772
773 config CALGARY_IOMMU_ENABLED_BY_DEFAULT
774 def_bool y
775 prompt "Should Calgary be enabled by default?"
776 depends on CALGARY_IOMMU
777 ---help---
778 Should Calgary be enabled by default? if you choose 'y', Calgary
779 will be used (if it exists). If you choose 'n', Calgary will not be
780 used even if it exists. If you choose 'n' and would like to use
781 Calgary anyway, pass 'iommu=calgary' on the kernel command line.
782 If unsure, say Y.
783
784 # need this always selected by IOMMU for the VIA workaround
785 config SWIOTLB
786 def_bool y if X86_64
787 ---help---
788 Support for software bounce buffers used on x86-64 systems
789 which don't have a hardware IOMMU. Using this PCI devices
790 which can only access 32-bits of memory can be used on systems
791 with more than 3 GB of memory.
792 If unsure, say Y.
793
794 config IOMMU_HELPER
795 def_bool y
796 depends on CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU
797
798 config MAXSMP
799 bool "Enable Maximum number of SMP Processors and NUMA Nodes"
800 depends on X86_64 && SMP && DEBUG_KERNEL
801 select CPUMASK_OFFSTACK
802 ---help---
803 Enable maximum number of CPUS and NUMA Nodes for this architecture.
804 If unsure, say N.
805
806 config NR_CPUS
807 int "Maximum number of CPUs" if SMP && !MAXSMP
808 range 2 8 if SMP && X86_32 && !X86_BIGSMP
809 range 2 512 if SMP && !MAXSMP
810 default "1" if !SMP
811 default "4096" if MAXSMP
812 default "32" if SMP && (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000)
813 default "8" if SMP
814 ---help---
815 This allows you to specify the maximum number of CPUs which this
816 kernel will support. The maximum supported value is 512 and the
817 minimum value which makes sense is 2.
818
819 This is purely to save memory - each supported CPU adds
820 approximately eight kilobytes to the kernel image.
821
822 config SCHED_SMT
823 bool "SMT (Hyperthreading) scheduler support"
824 depends on X86_HT
825 ---help---
826 SMT scheduler support improves the CPU scheduler's decision making
827 when dealing with Intel Pentium 4 chips with HyperThreading at a
828 cost of slightly increased overhead in some places. If unsure say
829 N here.
830
831 config SCHED_MC
832 def_bool y
833 prompt "Multi-core scheduler support"
834 depends on X86_HT
835 ---help---
836 Multi-core scheduler support improves the CPU scheduler's decision
837 making when dealing with multi-core CPU chips at a cost of slightly
838 increased overhead in some places. If unsure say N here.
839
840 source "kernel/Kconfig.preempt"
841
842 config X86_UP_APIC
843 bool "Local APIC support on uniprocessors"
844 depends on X86_32 && !SMP && !X86_32_NON_STANDARD
845 ---help---
846 A local APIC (Advanced Programmable Interrupt Controller) is an
847 integrated interrupt controller in the CPU. If you have a single-CPU
848 system which has a processor with a local APIC, you can say Y here to
849 enable and use it. If you say Y here even though your machine doesn't
850 have a local APIC, then the kernel will still run with no slowdown at
851 all. The local APIC supports CPU-generated self-interrupts (timer,
852 performance counters), and the NMI watchdog which detects hard
853 lockups.
854
855 config X86_UP_IOAPIC
856 bool "IO-APIC support on uniprocessors"
857 depends on X86_UP_APIC
858 ---help---
859 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
860 SMP-capable replacement for PC-style interrupt controllers. Most
861 SMP systems and many recent uniprocessor systems have one.
862
863 If you have a single-CPU system with an IO-APIC, you can say Y here
864 to use it. If you say Y here even though your machine doesn't have
865 an IO-APIC, then the kernel will still run with no slowdown at all.
866
867 config X86_LOCAL_APIC
868 def_bool y
869 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC
870
871 config X86_IO_APIC
872 def_bool y
873 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_IOAPIC
874
875 config X86_VISWS_APIC
876 def_bool y
877 depends on X86_32 && X86_VISWS
878
879 config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
880 bool "Reroute for broken boot IRQs"
881 depends on X86_IO_APIC
882 ---help---
883 This option enables a workaround that fixes a source of
884 spurious interrupts. This is recommended when threaded
885 interrupt handling is used on systems where the generation of
886 superfluous "boot interrupts" cannot be disabled.
887
888 Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
889 entry in the chipset's IO-APIC is masked (as, e.g. the RT
890 kernel does during interrupt handling). On chipsets where this
891 boot IRQ generation cannot be disabled, this workaround keeps
892 the original IRQ line masked so that only the equivalent "boot
893 IRQ" is delivered to the CPUs. The workaround also tells the
894 kernel to set up the IRQ handler on the boot IRQ line. In this
895 way only one interrupt is delivered to the kernel. Otherwise
896 the spurious second interrupt may cause the kernel to bring
897 down (vital) interrupt lines.
898
899 Only affects "broken" chipsets. Interrupt sharing may be
900 increased on these systems.
901
902 config X86_MCE
903 bool "Machine Check / overheating reporting"
904 default y
905 ---help---
906 Machine Check support allows the processor to notify the
907 kernel if it detects a problem (e.g. overheating, data corruption).
908 The action the kernel takes depends on the severity of the problem,
909 ranging from warning messages to halting the machine.
910
911 config X86_MCE_INTEL
912 def_bool y
913 prompt "Intel MCE features"
914 depends on X86_MCE && X86_LOCAL_APIC
915 ---help---
916 Additional support for intel specific MCE features such as
917 the thermal monitor.
918
919 config X86_MCE_AMD
920 def_bool y
921 prompt "AMD MCE features"
922 depends on X86_MCE && X86_LOCAL_APIC
923 ---help---
924 Additional support for AMD specific MCE features such as
925 the DRAM Error Threshold.
926
927 config X86_ANCIENT_MCE
928 bool "Support for old Pentium 5 / WinChip machine checks"
929 depends on X86_32 && X86_MCE
930 ---help---
931 Include support for machine check handling on old Pentium 5 or WinChip
932 systems. These typically need to be enabled explicitely on the command
933 line.
934
935 config X86_MCE_THRESHOLD
936 depends on X86_MCE_AMD || X86_MCE_INTEL
937 def_bool y
938
939 config X86_MCE_INJECT
940 depends on X86_MCE
941 tristate "Machine check injector support"
942 ---help---
943 Provide support for injecting machine checks for testing purposes.
944 If you don't know what a machine check is and you don't do kernel
945 QA it is safe to say n.
946
947 config X86_THERMAL_VECTOR
948 def_bool y
949 depends on X86_MCE_INTEL
950
951 config VM86
952 bool "Enable VM86 support" if EXPERT
953 default y
954 depends on X86_32
955 ---help---
956 This option is required by programs like DOSEMU to run 16-bit legacy
957 code on X86 processors. It also may be needed by software like
958 XFree86 to initialize some video cards via BIOS. Disabling this
959 option saves about 6k.
960
961 config TOSHIBA
962 tristate "Toshiba Laptop support"
963 depends on X86_32
964 ---help---
965 This adds a driver to safely access the System Management Mode of
966 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
967 not work on models with a Phoenix BIOS. The System Management Mode
968 is used to set the BIOS and power saving options on Toshiba portables.
969
970 For information on utilities to make use of this driver see the
971 Toshiba Linux utilities web site at:
972 <http://www.buzzard.org.uk/toshiba/>.
973
974 Say Y if you intend to run this kernel on a Toshiba portable.
975 Say N otherwise.
976
977 config I8K
978 tristate "Dell laptop support"
979 select HWMON
980 ---help---
981 This adds a driver to safely access the System Management Mode
982 of the CPU on the Dell Inspiron 8000. The System Management Mode
983 is used to read cpu temperature and cooling fan status and to
984 control the fans on the I8K portables.
985
986 This driver has been tested only on the Inspiron 8000 but it may
987 also work with other Dell laptops. You can force loading on other
988 models by passing the parameter `force=1' to the module. Use at
989 your own risk.
990
991 For information on utilities to make use of this driver see the
992 I8K Linux utilities web site at:
993 <http://people.debian.org/~dz/i8k/>
994
995 Say Y if you intend to run this kernel on a Dell Inspiron 8000.
996 Say N otherwise.
997
998 config X86_REBOOTFIXUPS
999 bool "Enable X86 board specific fixups for reboot"
1000 depends on X86_32
1001 ---help---
1002 This enables chipset and/or board specific fixups to be done
1003 in order to get reboot to work correctly. This is only needed on
1004 some combinations of hardware and BIOS. The symptom, for which
1005 this config is intended, is when reboot ends with a stalled/hung
1006 system.
1007
1008 Currently, the only fixup is for the Geode machines using
1009 CS5530A and CS5536 chipsets and the RDC R-321x SoC.
1010
1011 Say Y if you want to enable the fixup. Currently, it's safe to
1012 enable this option even if you don't need it.
1013 Say N otherwise.
1014
1015 config MICROCODE
1016 tristate "CPU microcode loading support"
1017 select FW_LOADER
1018 ---help---
1019
1020 If you say Y here, you will be able to update the microcode on
1021 certain Intel and AMD processors. The Intel support is for the
1022 IA32 family, e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4,
1023 Xeon etc. The AMD support is for families 0x10 and later. You will
1024 obviously need the actual microcode binary data itself which is not
1025 shipped with the Linux kernel.
1026
1027 This option selects the general module only, you need to select
1028 at least one vendor specific module as well.
1029
1030 To compile this driver as a module, choose M here: the module
1031 will be called microcode.
1032
1033 config MICROCODE_INTEL
1034 bool "Intel microcode loading support"
1035 depends on MICROCODE
1036 default MICROCODE
1037 select FW_LOADER
1038 ---help---
1039 This options enables microcode patch loading support for Intel
1040 processors.
1041
1042 For latest news and information on obtaining all the required
1043 Intel ingredients for this driver, check:
1044 <http://www.urbanmyth.org/microcode/>.
1045
1046 config MICROCODE_AMD
1047 bool "AMD microcode loading support"
1048 depends on MICROCODE
1049 select FW_LOADER
1050 ---help---
1051 If you select this option, microcode patch loading support for AMD
1052 processors will be enabled.
1053
1054 config MICROCODE_OLD_INTERFACE
1055 def_bool y
1056 depends on MICROCODE
1057
1058 config MICROCODE_INTEL_LIB
1059 def_bool y
1060 depends on MICROCODE_INTEL
1061
1062 config MICROCODE_INTEL_EARLY
1063 bool "Early load microcode"
1064 depends on MICROCODE_INTEL && BLK_DEV_INITRD
1065 default y
1066 help
1067 This option provides functionality to read additional microcode data
1068 at the beginning of initrd image. The data tells kernel to load
1069 microcode to CPU's as early as possible. No functional change if no
1070 microcode data is glued to the initrd, therefore it's safe to say Y.
1071
1072 config MICROCODE_EARLY
1073 def_bool y
1074 depends on MICROCODE_INTEL_EARLY
1075
1076 config X86_MSR
1077 tristate "/dev/cpu/*/msr - Model-specific register support"
1078 ---help---
1079 This device gives privileged processes access to the x86
1080 Model-Specific Registers (MSRs). It is a character device with
1081 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
1082 MSR accesses are directed to a specific CPU on multi-processor
1083 systems.
1084
1085 config X86_CPUID
1086 tristate "/dev/cpu/*/cpuid - CPU information support"
1087 ---help---
1088 This device gives processes access to the x86 CPUID instruction to
1089 be executed on a specific processor. It is a character device
1090 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
1091 /dev/cpu/31/cpuid.
1092
1093 choice
1094 prompt "High Memory Support"
1095 default HIGHMEM64G if X86_NUMAQ
1096 default HIGHMEM4G
1097 depends on X86_32
1098
1099 config NOHIGHMEM
1100 bool "off"
1101 depends on !X86_NUMAQ
1102 ---help---
1103 Linux can use up to 64 Gigabytes of physical memory on x86 systems.
1104 However, the address space of 32-bit x86 processors is only 4
1105 Gigabytes large. That means that, if you have a large amount of
1106 physical memory, not all of it can be "permanently mapped" by the
1107 kernel. The physical memory that's not permanently mapped is called
1108 "high memory".
1109
1110 If you are compiling a kernel which will never run on a machine with
1111 more than 1 Gigabyte total physical RAM, answer "off" here (default
1112 choice and suitable for most users). This will result in a "3GB/1GB"
1113 split: 3GB are mapped so that each process sees a 3GB virtual memory
1114 space and the remaining part of the 4GB virtual memory space is used
1115 by the kernel to permanently map as much physical memory as
1116 possible.
1117
1118 If the machine has between 1 and 4 Gigabytes physical RAM, then
1119 answer "4GB" here.
1120
1121 If more than 4 Gigabytes is used then answer "64GB" here. This
1122 selection turns Intel PAE (Physical Address Extension) mode on.
1123 PAE implements 3-level paging on IA32 processors. PAE is fully
1124 supported by Linux, PAE mode is implemented on all recent Intel
1125 processors (Pentium Pro and better). NOTE: If you say "64GB" here,
1126 then the kernel will not boot on CPUs that don't support PAE!
1127
1128 The actual amount of total physical memory will either be
1129 auto detected or can be forced by using a kernel command line option
1130 such as "mem=256M". (Try "man bootparam" or see the documentation of
1131 your boot loader (lilo or loadlin) about how to pass options to the
1132 kernel at boot time.)
1133
1134 If unsure, say "off".
1135
1136 config HIGHMEM4G
1137 bool "4GB"
1138 depends on !X86_NUMAQ
1139 ---help---
1140 Select this if you have a 32-bit processor and between 1 and 4
1141 gigabytes of physical RAM.
1142
1143 config HIGHMEM64G
1144 bool "64GB"
1145 depends on !M486
1146 select X86_PAE
1147 ---help---
1148 Select this if you have a 32-bit processor and more than 4
1149 gigabytes of physical RAM.
1150
1151 endchoice
1152
1153 choice
1154 prompt "Memory split" if EXPERT
1155 default VMSPLIT_3G
1156 depends on X86_32
1157 ---help---
1158 Select the desired split between kernel and user memory.
1159
1160 If the address range available to the kernel is less than the
1161 physical memory installed, the remaining memory will be available
1162 as "high memory". Accessing high memory is a little more costly
1163 than low memory, as it needs to be mapped into the kernel first.
1164 Note that increasing the kernel address space limits the range
1165 available to user programs, making the address space there
1166 tighter. Selecting anything other than the default 3G/1G split
1167 will also likely make your kernel incompatible with binary-only
1168 kernel modules.
1169
1170 If you are not absolutely sure what you are doing, leave this
1171 option alone!
1172
1173 config VMSPLIT_3G
1174 bool "3G/1G user/kernel split"
1175 config VMSPLIT_3G_OPT
1176 depends on !X86_PAE
1177 bool "3G/1G user/kernel split (for full 1G low memory)"
1178 config VMSPLIT_2G
1179 bool "2G/2G user/kernel split"
1180 config VMSPLIT_2G_OPT
1181 depends on !X86_PAE
1182 bool "2G/2G user/kernel split (for full 2G low memory)"
1183 config VMSPLIT_1G
1184 bool "1G/3G user/kernel split"
1185 endchoice
1186
1187 config PAGE_OFFSET
1188 hex
1189 default 0xB0000000 if VMSPLIT_3G_OPT
1190 default 0x80000000 if VMSPLIT_2G
1191 default 0x78000000 if VMSPLIT_2G_OPT
1192 default 0x40000000 if VMSPLIT_1G
1193 default 0xC0000000
1194 depends on X86_32
1195
1196 config HIGHMEM
1197 def_bool y
1198 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
1199
1200 config X86_PAE
1201 bool "PAE (Physical Address Extension) Support"
1202 depends on X86_32 && !HIGHMEM4G
1203 ---help---
1204 PAE is required for NX support, and furthermore enables
1205 larger swapspace support for non-overcommit purposes. It
1206 has the cost of more pagetable lookup overhead, and also
1207 consumes more pagetable space per process.
1208
1209 config ARCH_PHYS_ADDR_T_64BIT
1210 def_bool y
1211 depends on X86_64 || X86_PAE
1212
1213 config ARCH_DMA_ADDR_T_64BIT
1214 def_bool y
1215 depends on X86_64 || HIGHMEM64G
1216
1217 config DIRECT_GBPAGES
1218 bool "Enable 1GB pages for kernel pagetables" if EXPERT
1219 default y
1220 depends on X86_64
1221 ---help---
1222 Allow the kernel linear mapping to use 1GB pages on CPUs that
1223 support it. This can improve the kernel's performance a tiny bit by
1224 reducing TLB pressure. If in doubt, say "Y".
1225
1226 # Common NUMA Features
1227 config NUMA
1228 bool "Numa Memory Allocation and Scheduler Support"
1229 depends on SMP
1230 depends on X86_64 || (X86_32 && HIGHMEM64G && (X86_NUMAQ || X86_BIGSMP || X86_SUMMIT && ACPI))
1231 default y if (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP)
1232 ---help---
1233 Enable NUMA (Non Uniform Memory Access) support.
1234
1235 The kernel will try to allocate memory used by a CPU on the
1236 local memory controller of the CPU and add some more
1237 NUMA awareness to the kernel.
1238
1239 For 64-bit this is recommended if the system is Intel Core i7
1240 (or later), AMD Opteron, or EM64T NUMA.
1241
1242 For 32-bit this is only needed on (rare) 32-bit-only platforms
1243 that support NUMA topologies, such as NUMAQ / Summit, or if you
1244 boot a 32-bit kernel on a 64-bit NUMA platform.
1245
1246 Otherwise, you should say N.
1247
1248 comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI"
1249 depends on X86_32 && X86_SUMMIT && (!HIGHMEM64G || !ACPI)
1250
1251 config AMD_NUMA
1252 def_bool y
1253 prompt "Old style AMD Opteron NUMA detection"
1254 depends on X86_64 && NUMA && PCI
1255 ---help---
1256 Enable AMD NUMA node topology detection. You should say Y here if
1257 you have a multi processor AMD system. This uses an old method to
1258 read the NUMA configuration directly from the builtin Northbridge
1259 of Opteron. It is recommended to use X86_64_ACPI_NUMA instead,
1260 which also takes priority if both are compiled in.
1261
1262 config X86_64_ACPI_NUMA
1263 def_bool y
1264 prompt "ACPI NUMA detection"
1265 depends on X86_64 && NUMA && ACPI && PCI
1266 select ACPI_NUMA
1267 ---help---
1268 Enable ACPI SRAT based node topology detection.
1269
1270 # Some NUMA nodes have memory ranges that span
1271 # other nodes. Even though a pfn is valid and
1272 # between a node's start and end pfns, it may not
1273 # reside on that node. See memmap_init_zone()
1274 # for details.
1275 config NODES_SPAN_OTHER_NODES
1276 def_bool y
1277 depends on X86_64_ACPI_NUMA
1278
1279 config NUMA_EMU
1280 bool "NUMA emulation"
1281 depends on NUMA
1282 ---help---
1283 Enable NUMA emulation. A flat machine will be split
1284 into virtual nodes when booted with "numa=fake=N", where N is the
1285 number of nodes. This is only useful for debugging.
1286
1287 config NODES_SHIFT
1288 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1289 range 1 10
1290 default "10" if MAXSMP
1291 default "6" if X86_64
1292 default "4" if X86_NUMAQ
1293 default "3"
1294 depends on NEED_MULTIPLE_NODES
1295 ---help---
1296 Specify the maximum number of NUMA Nodes available on the target
1297 system. Increases memory reserved to accommodate various tables.
1298
1299 config ARCH_HAVE_MEMORY_PRESENT
1300 def_bool y
1301 depends on X86_32 && DISCONTIGMEM
1302
1303 config NEED_NODE_MEMMAP_SIZE
1304 def_bool y
1305 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
1306
1307 config ARCH_FLATMEM_ENABLE
1308 def_bool y
1309 depends on X86_32 && !NUMA
1310
1311 config ARCH_DISCONTIGMEM_ENABLE
1312 def_bool y
1313 depends on NUMA && X86_32
1314
1315 config ARCH_DISCONTIGMEM_DEFAULT
1316 def_bool y
1317 depends on NUMA && X86_32
1318
1319 config ARCH_SPARSEMEM_ENABLE
1320 def_bool y
1321 depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD
1322 select SPARSEMEM_STATIC if X86_32
1323 select SPARSEMEM_VMEMMAP_ENABLE if X86_64
1324
1325 config ARCH_SPARSEMEM_DEFAULT
1326 def_bool y
1327 depends on X86_64
1328
1329 config ARCH_SELECT_MEMORY_MODEL
1330 def_bool y
1331 depends on ARCH_SPARSEMEM_ENABLE
1332
1333 config ARCH_MEMORY_PROBE
1334 def_bool y
1335 depends on X86_64 && MEMORY_HOTPLUG
1336
1337 config ARCH_PROC_KCORE_TEXT
1338 def_bool y
1339 depends on X86_64 && PROC_KCORE
1340
1341 config ILLEGAL_POINTER_VALUE
1342 hex
1343 default 0 if X86_32
1344 default 0xdead000000000000 if X86_64
1345
1346 source "mm/Kconfig"
1347
1348 config HIGHPTE
1349 bool "Allocate 3rd-level pagetables from highmem"
1350 depends on HIGHMEM
1351 ---help---
1352 The VM uses one page table entry for each page of physical memory.
1353 For systems with a lot of RAM, this can be wasteful of precious
1354 low memory. Setting this option will put user-space page table
1355 entries in high memory.
1356
1357 config X86_CHECK_BIOS_CORRUPTION
1358 bool "Check for low memory corruption"
1359 ---help---
1360 Periodically check for memory corruption in low memory, which
1361 is suspected to be caused by BIOS. Even when enabled in the
1362 configuration, it is disabled at runtime. Enable it by
1363 setting "memory_corruption_check=1" on the kernel command
1364 line. By default it scans the low 64k of memory every 60
1365 seconds; see the memory_corruption_check_size and
1366 memory_corruption_check_period parameters in
1367 Documentation/kernel-parameters.txt to adjust this.
1368
1369 When enabled with the default parameters, this option has
1370 almost no overhead, as it reserves a relatively small amount
1371 of memory and scans it infrequently. It both detects corruption
1372 and prevents it from affecting the running system.
1373
1374 It is, however, intended as a diagnostic tool; if repeatable
1375 BIOS-originated corruption always affects the same memory,
1376 you can use memmap= to prevent the kernel from using that
1377 memory.
1378
1379 config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1380 bool "Set the default setting of memory_corruption_check"
1381 depends on X86_CHECK_BIOS_CORRUPTION
1382 default y
1383 ---help---
1384 Set whether the default state of memory_corruption_check is
1385 on or off.
1386
1387 config X86_RESERVE_LOW
1388 int "Amount of low memory, in kilobytes, to reserve for the BIOS"
1389 default 64
1390 range 4 640
1391 ---help---
1392 Specify the amount of low memory to reserve for the BIOS.
1393
1394 The first page contains BIOS data structures that the kernel
1395 must not use, so that page must always be reserved.
1396
1397 By default we reserve the first 64K of physical RAM, as a
1398 number of BIOSes are known to corrupt that memory range
1399 during events such as suspend/resume or monitor cable
1400 insertion, so it must not be used by the kernel.
1401
1402 You can set this to 4 if you are absolutely sure that you
1403 trust the BIOS to get all its memory reservations and usages
1404 right. If you know your BIOS have problems beyond the
1405 default 64K area, you can set this to 640 to avoid using the
1406 entire low memory range.
1407
1408 If you have doubts about the BIOS (e.g. suspend/resume does
1409 not work or there's kernel crashes after certain hardware
1410 hotplug events) then you might want to enable
1411 X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check
1412 typical corruption patterns.
1413
1414 Leave this to the default value of 64 if you are unsure.
1415
1416 config MATH_EMULATION
1417 bool
1418 prompt "Math emulation" if X86_32
1419 ---help---
1420 Linux can emulate a math coprocessor (used for floating point
1421 operations) if you don't have one. 486DX and Pentium processors have
1422 a math coprocessor built in, 486SX and 386 do not, unless you added
1423 a 487DX or 387, respectively. (The messages during boot time can
1424 give you some hints here ["man dmesg"].) Everyone needs either a
1425 coprocessor or this emulation.
1426
1427 If you don't have a math coprocessor, you need to say Y here; if you
1428 say Y here even though you have a coprocessor, the coprocessor will
1429 be used nevertheless. (This behavior can be changed with the kernel
1430 command line option "no387", which comes handy if your coprocessor
1431 is broken. Try "man bootparam" or see the documentation of your boot
1432 loader (lilo or loadlin) about how to pass options to the kernel at
1433 boot time.) This means that it is a good idea to say Y here if you
1434 intend to use this kernel on different machines.
1435
1436 More information about the internals of the Linux math coprocessor
1437 emulation can be found in <file:arch/x86/math-emu/README>.
1438
1439 If you are not sure, say Y; apart from resulting in a 66 KB bigger
1440 kernel, it won't hurt.
1441
1442 config MTRR
1443 def_bool y
1444 prompt "MTRR (Memory Type Range Register) support" if EXPERT
1445 ---help---
1446 On Intel P6 family processors (Pentium Pro, Pentium II and later)
1447 the Memory Type Range Registers (MTRRs) may be used to control
1448 processor access to memory ranges. This is most useful if you have
1449 a video (VGA) card on a PCI or AGP bus. Enabling write-combining
1450 allows bus write transfers to be combined into a larger transfer
1451 before bursting over the PCI/AGP bus. This can increase performance
1452 of image write operations 2.5 times or more. Saying Y here creates a
1453 /proc/mtrr file which may be used to manipulate your processor's
1454 MTRRs. Typically the X server should use this.
1455
1456 This code has a reasonably generic interface so that similar
1457 control registers on other processors can be easily supported
1458 as well:
1459
1460 The Cyrix 6x86, 6x86MX and M II processors have Address Range
1461 Registers (ARRs) which provide a similar functionality to MTRRs. For
1462 these, the ARRs are used to emulate the MTRRs.
1463 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
1464 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
1465 write-combining. All of these processors are supported by this code
1466 and it makes sense to say Y here if you have one of them.
1467
1468 Saying Y here also fixes a problem with buggy SMP BIOSes which only
1469 set the MTRRs for the boot CPU and not for the secondary CPUs. This
1470 can lead to all sorts of problems, so it's good to say Y here.
1471
1472 You can safely say Y even if your machine doesn't have MTRRs, you'll
1473 just add about 9 KB to your kernel.
1474
1475 See <file:Documentation/x86/mtrr.txt> for more information.
1476
1477 config MTRR_SANITIZER
1478 def_bool y
1479 prompt "MTRR cleanup support"
1480 depends on MTRR
1481 ---help---
1482 Convert MTRR layout from continuous to discrete, so X drivers can
1483 add writeback entries.
1484
1485 Can be disabled with disable_mtrr_cleanup on the kernel command line.
1486 The largest mtrr entry size for a continuous block can be set with
1487 mtrr_chunk_size.
1488
1489 If unsure, say Y.
1490
1491 config MTRR_SANITIZER_ENABLE_DEFAULT
1492 int "MTRR cleanup enable value (0-1)"
1493 range 0 1
1494 default "0"
1495 depends on MTRR_SANITIZER
1496 ---help---
1497 Enable mtrr cleanup default value
1498
1499 config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
1500 int "MTRR cleanup spare reg num (0-7)"
1501 range 0 7
1502 default "1"
1503 depends on MTRR_SANITIZER
1504 ---help---
1505 mtrr cleanup spare entries default, it can be changed via
1506 mtrr_spare_reg_nr=N on the kernel command line.
1507
1508 config X86_PAT
1509 def_bool y
1510 prompt "x86 PAT support" if EXPERT
1511 depends on MTRR
1512 ---help---
1513 Use PAT attributes to setup page level cache control.
1514
1515 PATs are the modern equivalents of MTRRs and are much more
1516 flexible than MTRRs.
1517
1518 Say N here if you see bootup problems (boot crash, boot hang,
1519 spontaneous reboots) or a non-working video driver.
1520
1521 If unsure, say Y.
1522
1523 config ARCH_USES_PG_UNCACHED
1524 def_bool y
1525 depends on X86_PAT
1526
1527 config ARCH_RANDOM
1528 def_bool y
1529 prompt "x86 architectural random number generator" if EXPERT
1530 ---help---
1531 Enable the x86 architectural RDRAND instruction
1532 (Intel Bull Mountain technology) to generate random numbers.
1533 If supported, this is a high bandwidth, cryptographically
1534 secure hardware random number generator.
1535
1536 config X86_SMAP
1537 def_bool y
1538 prompt "Supervisor Mode Access Prevention" if EXPERT
1539 ---help---
1540 Supervisor Mode Access Prevention (SMAP) is a security
1541 feature in newer Intel processors. There is a small
1542 performance cost if this enabled and turned on; there is
1543 also a small increase in the kernel size if this is enabled.
1544
1545 If unsure, say Y.
1546
1547 config EFI
1548 bool "EFI runtime service support"
1549 depends on ACPI
1550 select UCS2_STRING
1551 ---help---
1552 This enables the kernel to use EFI runtime services that are
1553 available (such as the EFI variable services).
1554
1555 This option is only useful on systems that have EFI firmware.
1556 In addition, you should use the latest ELILO loader available
1557 at <http://elilo.sourceforge.net> in order to take advantage
1558 of EFI runtime services. However, even with this option, the
1559 resultant kernel should continue to boot on existing non-EFI
1560 platforms.
1561
1562 config EFI_STUB
1563 bool "EFI stub support"
1564 depends on EFI
1565 ---help---
1566 This kernel feature allows a bzImage to be loaded directly
1567 by EFI firmware without the use of a bootloader.
1568
1569 See Documentation/x86/efi-stub.txt for more information.
1570
1571 config SECCOMP
1572 def_bool y
1573 prompt "Enable seccomp to safely compute untrusted bytecode"
1574 ---help---
1575 This kernel feature is useful for number crunching applications
1576 that may need to compute untrusted bytecode during their
1577 execution. By using pipes or other transports made available to
1578 the process as file descriptors supporting the read/write
1579 syscalls, it's possible to isolate those applications in
1580 their own address space using seccomp. Once seccomp is
1581 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1582 and the task is only allowed to execute a few safe syscalls
1583 defined by each seccomp mode.
1584
1585 If unsure, say Y. Only embedded should say N here.
1586
1587 config CC_STACKPROTECTOR
1588 bool "Enable -fstack-protector buffer overflow detection"
1589 ---help---
1590 This option turns on the -fstack-protector GCC feature. This
1591 feature puts, at the beginning of functions, a canary value on
1592 the stack just before the return address, and validates
1593 the value just before actually returning. Stack based buffer
1594 overflows (that need to overwrite this return address) now also
1595 overwrite the canary, which gets detected and the attack is then
1596 neutralized via a kernel panic.
1597
1598 This feature requires gcc version 4.2 or above, or a distribution
1599 gcc with the feature backported. Older versions are automatically
1600 detected and for those versions, this configuration option is
1601 ignored. (and a warning is printed during bootup)
1602
1603 source kernel/Kconfig.hz
1604
1605 config KEXEC
1606 bool "kexec system call"
1607 ---help---
1608 kexec is a system call that implements the ability to shutdown your
1609 current kernel, and to start another kernel. It is like a reboot
1610 but it is independent of the system firmware. And like a reboot
1611 you can start any kernel with it, not just Linux.
1612
1613 The name comes from the similarity to the exec system call.
1614
1615 It is an ongoing process to be certain the hardware in a machine
1616 is properly shutdown, so do not be surprised if this code does not
1617 initially work for you. It may help to enable device hotplugging
1618 support. As of this writing the exact hardware interface is
1619 strongly in flux, so no good recommendation can be made.
1620
1621 config CRASH_DUMP
1622 bool "kernel crash dumps"
1623 depends on X86_64 || (X86_32 && HIGHMEM)
1624 ---help---
1625 Generate crash dump after being started by kexec.
1626 This should be normally only set in special crash dump kernels
1627 which are loaded in the main kernel with kexec-tools into
1628 a specially reserved region and then later executed after
1629 a crash by kdump/kexec. The crash dump kernel must be compiled
1630 to a memory address not used by the main kernel or BIOS using
1631 PHYSICAL_START, or it must be built as a relocatable image
1632 (CONFIG_RELOCATABLE=y).
1633 For more details see Documentation/kdump/kdump.txt
1634
1635 config KEXEC_JUMP
1636 bool "kexec jump"
1637 depends on KEXEC && HIBERNATION
1638 ---help---
1639 Jump between original kernel and kexeced kernel and invoke
1640 code in physical address mode via KEXEC
1641
1642 config PHYSICAL_START
1643 hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
1644 default "0x1000000"
1645 ---help---
1646 This gives the physical address where the kernel is loaded.
1647
1648 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
1649 bzImage will decompress itself to above physical address and
1650 run from there. Otherwise, bzImage will run from the address where
1651 it has been loaded by the boot loader and will ignore above physical
1652 address.
1653
1654 In normal kdump cases one does not have to set/change this option
1655 as now bzImage can be compiled as a completely relocatable image
1656 (CONFIG_RELOCATABLE=y) and be used to load and run from a different
1657 address. This option is mainly useful for the folks who don't want
1658 to use a bzImage for capturing the crash dump and want to use a
1659 vmlinux instead. vmlinux is not relocatable hence a kernel needs
1660 to be specifically compiled to run from a specific memory area
1661 (normally a reserved region) and this option comes handy.
1662
1663 So if you are using bzImage for capturing the crash dump,
1664 leave the value here unchanged to 0x1000000 and set
1665 CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux
1666 for capturing the crash dump change this value to start of
1667 the reserved region. In other words, it can be set based on
1668 the "X" value as specified in the "crashkernel=YM@XM"
1669 command line boot parameter passed to the panic-ed
1670 kernel. Please take a look at Documentation/kdump/kdump.txt
1671 for more details about crash dumps.
1672
1673 Usage of bzImage for capturing the crash dump is recommended as
1674 one does not have to build two kernels. Same kernel can be used
1675 as production kernel and capture kernel. Above option should have
1676 gone away after relocatable bzImage support is introduced. But it
1677 is present because there are users out there who continue to use
1678 vmlinux for dump capture. This option should go away down the
1679 line.
1680
1681 Don't change this unless you know what you are doing.
1682
1683 config RELOCATABLE
1684 bool "Build a relocatable kernel"
1685 default y
1686 ---help---
1687 This builds a kernel image that retains relocation information
1688 so it can be loaded someplace besides the default 1MB.
1689 The relocations tend to make the kernel binary about 10% larger,
1690 but are discarded at runtime.
1691
1692 One use is for the kexec on panic case where the recovery kernel
1693 must live at a different physical address than the primary
1694 kernel.
1695
1696 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
1697 it has been loaded at and the compile time physical address
1698 (CONFIG_PHYSICAL_START) is ignored.
1699
1700 # Relocation on x86-32 needs some additional build support
1701 config X86_NEED_RELOCS
1702 def_bool y
1703 depends on X86_32 && RELOCATABLE
1704
1705 config PHYSICAL_ALIGN
1706 hex "Alignment value to which kernel should be aligned" if X86_32
1707 default "0x1000000"
1708 range 0x2000 0x1000000
1709 ---help---
1710 This value puts the alignment restrictions on physical address
1711 where kernel is loaded and run from. Kernel is compiled for an
1712 address which meets above alignment restriction.
1713
1714 If bootloader loads the kernel at a non-aligned address and
1715 CONFIG_RELOCATABLE is set, kernel will move itself to nearest
1716 address aligned to above value and run from there.
1717
1718 If bootloader loads the kernel at a non-aligned address and
1719 CONFIG_RELOCATABLE is not set, kernel will ignore the run time
1720 load address and decompress itself to the address it has been
1721 compiled for and run from there. The address for which kernel is
1722 compiled already meets above alignment restrictions. Hence the
1723 end result is that kernel runs from a physical address meeting
1724 above alignment restrictions.
1725
1726 Don't change this unless you know what you are doing.
1727
1728 config HOTPLUG_CPU
1729 bool "Support for hot-pluggable CPUs"
1730 depends on SMP && HOTPLUG
1731 ---help---
1732 Say Y here to allow turning CPUs off and on. CPUs can be
1733 controlled through /sys/devices/system/cpu.
1734 ( Note: power management support will enable this option
1735 automatically on SMP systems. )
1736 Say N if you want to disable CPU hotplug.
1737
1738 config BOOTPARAM_HOTPLUG_CPU0
1739 bool "Set default setting of cpu0_hotpluggable"
1740 default n
1741 depends on HOTPLUG_CPU
1742 ---help---
1743 Set whether default state of cpu0_hotpluggable is on or off.
1744
1745 Say Y here to enable CPU0 hotplug by default. If this switch
1746 is turned on, there is no need to give cpu0_hotplug kernel
1747 parameter and the CPU0 hotplug feature is enabled by default.
1748
1749 Please note: there are two known CPU0 dependencies if you want
1750 to enable the CPU0 hotplug feature either by this switch or by
1751 cpu0_hotplug kernel parameter.
1752
1753 First, resume from hibernate or suspend always starts from CPU0.
1754 So hibernate and suspend are prevented if CPU0 is offline.
1755
1756 Second dependency is PIC interrupts always go to CPU0. CPU0 can not
1757 offline if any interrupt can not migrate out of CPU0. There may
1758 be other CPU0 dependencies.
1759
1760 Please make sure the dependencies are under your control before
1761 you enable this feature.
1762
1763 Say N if you don't want to enable CPU0 hotplug feature by default.
1764 You still can enable the CPU0 hotplug feature at boot by kernel
1765 parameter cpu0_hotplug.
1766
1767 config DEBUG_HOTPLUG_CPU0
1768 def_bool n
1769 prompt "Debug CPU0 hotplug"
1770 depends on HOTPLUG_CPU
1771 ---help---
1772 Enabling this option offlines CPU0 (if CPU0 can be offlined) as
1773 soon as possible and boots up userspace with CPU0 offlined. User
1774 can online CPU0 back after boot time.
1775
1776 To debug CPU0 hotplug, you need to enable CPU0 offline/online
1777 feature by either turning on CONFIG_BOOTPARAM_HOTPLUG_CPU0 during
1778 compilation or giving cpu0_hotplug kernel parameter at boot.
1779
1780 If unsure, say N.
1781
1782 config COMPAT_VDSO
1783 def_bool y
1784 prompt "Compat VDSO support"
1785 depends on X86_32 || IA32_EMULATION
1786 ---help---
1787 Map the 32-bit VDSO to the predictable old-style address too.
1788
1789 Say N here if you are running a sufficiently recent glibc
1790 version (2.3.3 or later), to remove the high-mapped
1791 VDSO mapping and to exclusively use the randomized VDSO.
1792
1793 If unsure, say Y.
1794
1795 config CMDLINE_BOOL
1796 bool "Built-in kernel command line"
1797 ---help---
1798 Allow for specifying boot arguments to the kernel at
1799 build time. On some systems (e.g. embedded ones), it is
1800 necessary or convenient to provide some or all of the
1801 kernel boot arguments with the kernel itself (that is,
1802 to not rely on the boot loader to provide them.)
1803
1804 To compile command line arguments into the kernel,
1805 set this option to 'Y', then fill in the
1806 the boot arguments in CONFIG_CMDLINE.
1807
1808 Systems with fully functional boot loaders (i.e. non-embedded)
1809 should leave this option set to 'N'.
1810
1811 config CMDLINE
1812 string "Built-in kernel command string"
1813 depends on CMDLINE_BOOL
1814 default ""
1815 ---help---
1816 Enter arguments here that should be compiled into the kernel
1817 image and used at boot time. If the boot loader provides a
1818 command line at boot time, it is appended to this string to
1819 form the full kernel command line, when the system boots.
1820
1821 However, you can use the CONFIG_CMDLINE_OVERRIDE option to
1822 change this behavior.
1823
1824 In most cases, the command line (whether built-in or provided
1825 by the boot loader) should specify the device for the root
1826 file system.
1827
1828 config CMDLINE_OVERRIDE
1829 bool "Built-in command line overrides boot loader arguments"
1830 depends on CMDLINE_BOOL
1831 ---help---
1832 Set this option to 'Y' to have the kernel ignore the boot loader
1833 command line, and use ONLY the built-in command line.
1834
1835 This is used to work around broken boot loaders. This should
1836 be set to 'N' under normal conditions.
1837
1838 endmenu
1839
1840 config ARCH_ENABLE_MEMORY_HOTPLUG
1841 def_bool y
1842 depends on X86_64 || (X86_32 && HIGHMEM)
1843
1844 config ARCH_ENABLE_MEMORY_HOTREMOVE
1845 def_bool y
1846 depends on MEMORY_HOTPLUG
1847
1848 config USE_PERCPU_NUMA_NODE_ID
1849 def_bool y
1850 depends on NUMA
1851
1852 menu "Power management and ACPI options"
1853
1854 config ARCH_HIBERNATION_HEADER
1855 def_bool y
1856 depends on X86_64 && HIBERNATION
1857
1858 source "kernel/power/Kconfig"
1859
1860 source "drivers/acpi/Kconfig"
1861
1862 source "drivers/sfi/Kconfig"
1863
1864 config X86_APM_BOOT
1865 def_bool y
1866 depends on APM
1867
1868 menuconfig APM
1869 tristate "APM (Advanced Power Management) BIOS support"
1870 depends on X86_32 && PM_SLEEP
1871 ---help---
1872 APM is a BIOS specification for saving power using several different
1873 techniques. This is mostly useful for battery powered laptops with
1874 APM compliant BIOSes. If you say Y here, the system time will be
1875 reset after a RESUME operation, the /proc/apm device will provide
1876 battery status information, and user-space programs will receive
1877 notification of APM "events" (e.g. battery status change).
1878
1879 If you select "Y" here, you can disable actual use of the APM
1880 BIOS by passing the "apm=off" option to the kernel at boot time.
1881
1882 Note that the APM support is almost completely disabled for
1883 machines with more than one CPU.
1884
1885 In order to use APM, you will need supporting software. For location
1886 and more information, read <file:Documentation/power/apm-acpi.txt>
1887 and the Battery Powered Linux mini-HOWTO, available from
1888 <http://www.tldp.org/docs.html#howto>.
1889
1890 This driver does not spin down disk drives (see the hdparm(8)
1891 manpage ("man 8 hdparm") for that), and it doesn't turn off
1892 VESA-compliant "green" monitors.
1893
1894 This driver does not support the TI 4000M TravelMate and the ACER
1895 486/DX4/75 because they don't have compliant BIOSes. Many "green"
1896 desktop machines also don't have compliant BIOSes, and this driver
1897 may cause those machines to panic during the boot phase.
1898
1899 Generally, if you don't have a battery in your machine, there isn't
1900 much point in using this driver and you should say N. If you get
1901 random kernel OOPSes or reboots that don't seem to be related to
1902 anything, try disabling/enabling this option (or disabling/enabling
1903 APM in your BIOS).
1904
1905 Some other things you should try when experiencing seemingly random,
1906 "weird" problems:
1907
1908 1) make sure that you have enough swap space and that it is
1909 enabled.
1910 2) pass the "no-hlt" option to the kernel
1911 3) switch on floating point emulation in the kernel and pass
1912 the "no387" option to the kernel
1913 4) pass the "floppy=nodma" option to the kernel
1914 5) pass the "mem=4M" option to the kernel (thereby disabling
1915 all but the first 4 MB of RAM)
1916 6) make sure that the CPU is not over clocked.
1917 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
1918 8) disable the cache from your BIOS settings
1919 9) install a fan for the video card or exchange video RAM
1920 10) install a better fan for the CPU
1921 11) exchange RAM chips
1922 12) exchange the motherboard.
1923
1924 To compile this driver as a module, choose M here: the
1925 module will be called apm.
1926
1927 if APM
1928
1929 config APM_IGNORE_USER_SUSPEND
1930 bool "Ignore USER SUSPEND"
1931 ---help---
1932 This option will ignore USER SUSPEND requests. On machines with a
1933 compliant APM BIOS, you want to say N. However, on the NEC Versa M
1934 series notebooks, it is necessary to say Y because of a BIOS bug.
1935
1936 config APM_DO_ENABLE
1937 bool "Enable PM at boot time"
1938 ---help---
1939 Enable APM features at boot time. From page 36 of the APM BIOS
1940 specification: "When disabled, the APM BIOS does not automatically
1941 power manage devices, enter the Standby State, enter the Suspend
1942 State, or take power saving steps in response to CPU Idle calls."
1943 This driver will make CPU Idle calls when Linux is idle (unless this
1944 feature is turned off -- see "Do CPU IDLE calls", below). This
1945 should always save battery power, but more complicated APM features
1946 will be dependent on your BIOS implementation. You may need to turn
1947 this option off if your computer hangs at boot time when using APM
1948 support, or if it beeps continuously instead of suspending. Turn
1949 this off if you have a NEC UltraLite Versa 33/C or a Toshiba
1950 T400CDT. This is off by default since most machines do fine without
1951 this feature.
1952
1953 config APM_CPU_IDLE
1954 depends on CPU_IDLE
1955 bool "Make CPU Idle calls when idle"
1956 ---help---
1957 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
1958 On some machines, this can activate improved power savings, such as
1959 a slowed CPU clock rate, when the machine is idle. These idle calls
1960 are made after the idle loop has run for some length of time (e.g.,
1961 333 mS). On some machines, this will cause a hang at boot time or
1962 whenever the CPU becomes idle. (On machines with more than one CPU,
1963 this option does nothing.)
1964
1965 config APM_DISPLAY_BLANK
1966 bool "Enable console blanking using APM"
1967 ---help---
1968 Enable console blanking using the APM. Some laptops can use this to
1969 turn off the LCD backlight when the screen blanker of the Linux
1970 virtual console blanks the screen. Note that this is only used by
1971 the virtual console screen blanker, and won't turn off the backlight
1972 when using the X Window system. This also doesn't have anything to
1973 do with your VESA-compliant power-saving monitor. Further, this
1974 option doesn't work for all laptops -- it might not turn off your
1975 backlight at all, or it might print a lot of errors to the console,
1976 especially if you are using gpm.
1977
1978 config APM_ALLOW_INTS
1979 bool "Allow interrupts during APM BIOS calls"
1980 ---help---
1981 Normally we disable external interrupts while we are making calls to
1982 the APM BIOS as a measure to lessen the effects of a badly behaving
1983 BIOS implementation. The BIOS should reenable interrupts if it
1984 needs to. Unfortunately, some BIOSes do not -- especially those in
1985 many of the newer IBM Thinkpads. If you experience hangs when you
1986 suspend, try setting this to Y. Otherwise, say N.
1987
1988 endif # APM
1989
1990 source "drivers/cpufreq/Kconfig"
1991
1992 source "drivers/cpuidle/Kconfig"
1993
1994 source "drivers/idle/Kconfig"
1995
1996 endmenu
1997
1998
1999 menu "Bus options (PCI etc.)"
2000
2001 config PCI
2002 bool "PCI support"
2003 default y
2004 select ARCH_SUPPORTS_MSI if (X86_LOCAL_APIC && X86_IO_APIC)
2005 ---help---
2006 Find out whether you have a PCI motherboard. PCI is the name of a
2007 bus system, i.e. the way the CPU talks to the other stuff inside
2008 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
2009 VESA. If you have PCI, say Y, otherwise N.
2010
2011 choice
2012 prompt "PCI access mode"
2013 depends on X86_32 && PCI
2014 default PCI_GOANY
2015 ---help---
2016 On PCI systems, the BIOS can be used to detect the PCI devices and
2017 determine their configuration. However, some old PCI motherboards
2018 have BIOS bugs and may crash if this is done. Also, some embedded
2019 PCI-based systems don't have any BIOS at all. Linux can also try to
2020 detect the PCI hardware directly without using the BIOS.
2021
2022 With this option, you can specify how Linux should detect the
2023 PCI devices. If you choose "BIOS", the BIOS will be used,
2024 if you choose "Direct", the BIOS won't be used, and if you
2025 choose "MMConfig", then PCI Express MMCONFIG will be used.
2026 If you choose "Any", the kernel will try MMCONFIG, then the
2027 direct access method and falls back to the BIOS if that doesn't
2028 work. If unsure, go with the default, which is "Any".
2029
2030 config PCI_GOBIOS
2031 bool "BIOS"
2032
2033 config PCI_GOMMCONFIG
2034 bool "MMConfig"
2035
2036 config PCI_GODIRECT
2037 bool "Direct"
2038
2039 config PCI_GOOLPC
2040 bool "OLPC XO-1"
2041 depends on OLPC
2042
2043 config PCI_GOANY
2044 bool "Any"
2045
2046 endchoice
2047
2048 config PCI_BIOS
2049 def_bool y
2050 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
2051
2052 # x86-64 doesn't support PCI BIOS access from long mode so always go direct.
2053 config PCI_DIRECT
2054 def_bool y
2055 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG))
2056
2057 config PCI_MMCONFIG
2058 def_bool y
2059 depends on X86_32 && PCI && (ACPI || SFI) && (PCI_GOMMCONFIG || PCI_GOANY)
2060
2061 config PCI_OLPC
2062 def_bool y
2063 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
2064
2065 config PCI_XEN
2066 def_bool y
2067 depends on PCI && XEN
2068 select SWIOTLB_XEN
2069
2070 config PCI_DOMAINS
2071 def_bool y
2072 depends on PCI
2073
2074 config PCI_MMCONFIG
2075 bool "Support mmconfig PCI config space access"
2076 depends on X86_64 && PCI && ACPI
2077
2078 config PCI_CNB20LE_QUIRK
2079 bool "Read CNB20LE Host Bridge Windows" if EXPERT
2080 depends on PCI
2081 help
2082 Read the PCI windows out of the CNB20LE host bridge. This allows
2083 PCI hotplug to work on systems with the CNB20LE chipset which do
2084 not have ACPI.
2085
2086 There's no public spec for this chipset, and this functionality
2087 is known to be incomplete.
2088
2089 You should say N unless you know you need this.
2090
2091 source "drivers/pci/pcie/Kconfig"
2092
2093 source "drivers/pci/Kconfig"
2094
2095 # x86_64 have no ISA slots, but can have ISA-style DMA.
2096 config ISA_DMA_API
2097 bool "ISA-style DMA support" if (X86_64 && EXPERT)
2098 default y
2099 help
2100 Enables ISA-style DMA support for devices requiring such controllers.
2101 If unsure, say Y.
2102
2103 if X86_32
2104
2105 config ISA
2106 bool "ISA support"
2107 ---help---
2108 Find out whether you have ISA slots on your motherboard. ISA is the
2109 name of a bus system, i.e. the way the CPU talks to the other stuff
2110 inside your box. Other bus systems are PCI, EISA, MicroChannel
2111 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
2112 newer boards don't support it. If you have ISA, say Y, otherwise N.
2113
2114 config EISA
2115 bool "EISA support"
2116 depends on ISA
2117 ---help---
2118 The Extended Industry Standard Architecture (EISA) bus was
2119 developed as an open alternative to the IBM MicroChannel bus.
2120
2121 The EISA bus provided some of the features of the IBM MicroChannel
2122 bus while maintaining backward compatibility with cards made for
2123 the older ISA bus. The EISA bus saw limited use between 1988 and
2124 1995 when it was made obsolete by the PCI bus.
2125
2126 Say Y here if you are building a kernel for an EISA-based machine.
2127
2128 Otherwise, say N.
2129
2130 source "drivers/eisa/Kconfig"
2131
2132 config SCx200
2133 tristate "NatSemi SCx200 support"
2134 ---help---
2135 This provides basic support for National Semiconductor's
2136 (now AMD's) Geode processors. The driver probes for the
2137 PCI-IDs of several on-chip devices, so its a good dependency
2138 for other scx200_* drivers.
2139
2140 If compiled as a module, the driver is named scx200.
2141
2142 config SCx200HR_TIMER
2143 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
2144 depends on SCx200
2145 default y
2146 ---help---
2147 This driver provides a clocksource built upon the on-chip
2148 27MHz high-resolution timer. Its also a workaround for
2149 NSC Geode SC-1100's buggy TSC, which loses time when the
2150 processor goes idle (as is done by the scheduler). The
2151 other workaround is idle=poll boot option.
2152
2153 config OLPC
2154 bool "One Laptop Per Child support"
2155 depends on !X86_PAE
2156 select GPIOLIB
2157 select OF
2158 select OF_PROMTREE
2159 select IRQ_DOMAIN
2160 ---help---
2161 Add support for detecting the unique features of the OLPC
2162 XO hardware.
2163
2164 config OLPC_XO1_PM
2165 bool "OLPC XO-1 Power Management"
2166 depends on OLPC && MFD_CS5535 && PM_SLEEP
2167 select MFD_CORE
2168 ---help---
2169 Add support for poweroff and suspend of the OLPC XO-1 laptop.
2170
2171 config OLPC_XO1_RTC
2172 bool "OLPC XO-1 Real Time Clock"
2173 depends on OLPC_XO1_PM && RTC_DRV_CMOS
2174 ---help---
2175 Add support for the XO-1 real time clock, which can be used as a
2176 programmable wakeup source.
2177
2178 config OLPC_XO1_SCI
2179 bool "OLPC XO-1 SCI extras"
2180 depends on OLPC && OLPC_XO1_PM
2181 depends on INPUT=y
2182 select POWER_SUPPLY
2183 select GPIO_CS5535
2184 select MFD_CORE
2185 ---help---
2186 Add support for SCI-based features of the OLPC XO-1 laptop:
2187 - EC-driven system wakeups
2188 - Power button
2189 - Ebook switch
2190 - Lid switch
2191 - AC adapter status updates
2192 - Battery status updates
2193
2194 config OLPC_XO15_SCI
2195 bool "OLPC XO-1.5 SCI extras"
2196 depends on OLPC && ACPI
2197 select POWER_SUPPLY
2198 ---help---
2199 Add support for SCI-based features of the OLPC XO-1.5 laptop:
2200 - EC-driven system wakeups
2201 - AC adapter status updates
2202 - Battery status updates
2203
2204 config ALIX
2205 bool "PCEngines ALIX System Support (LED setup)"
2206 select GPIOLIB
2207 ---help---
2208 This option enables system support for the PCEngines ALIX.
2209 At present this just sets up LEDs for GPIO control on
2210 ALIX2/3/6 boards. However, other system specific setup should
2211 get added here.
2212
2213 Note: You must still enable the drivers for GPIO and LED support
2214 (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs
2215
2216 Note: You have to set alix.force=1 for boards with Award BIOS.
2217
2218 config NET5501
2219 bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)"
2220 select GPIOLIB
2221 ---help---
2222 This option enables system support for the Soekris Engineering net5501.
2223
2224 config GEOS
2225 bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
2226 select GPIOLIB
2227 depends on DMI
2228 ---help---
2229 This option enables system support for the Traverse Technologies GEOS.
2230
2231 config TS5500
2232 bool "Technologic Systems TS-5500 platform support"
2233 depends on MELAN
2234 select CHECK_SIGNATURE
2235 select NEW_LEDS
2236 select LEDS_CLASS
2237 ---help---
2238 This option enables system support for the Technologic Systems TS-5500.
2239
2240 endif # X86_32
2241
2242 config AMD_NB
2243 def_bool y
2244 depends on CPU_SUP_AMD && PCI
2245
2246 source "drivers/pcmcia/Kconfig"
2247
2248 source "drivers/pci/hotplug/Kconfig"
2249
2250 config RAPIDIO
2251 bool "RapidIO support"
2252 depends on PCI
2253 default n
2254 help
2255 If you say Y here, the kernel will include drivers and
2256 infrastructure code to support RapidIO interconnect devices.
2257
2258 source "drivers/rapidio/Kconfig"
2259
2260 endmenu
2261
2262
2263 menu "Executable file formats / Emulations"
2264
2265 source "fs/Kconfig.binfmt"
2266
2267 config IA32_EMULATION
2268 bool "IA32 Emulation"
2269 depends on X86_64
2270 select COMPAT_BINFMT_ELF
2271 select HAVE_UID16
2272 ---help---
2273 Include code to run legacy 32-bit programs under a
2274 64-bit kernel. You should likely turn this on, unless you're
2275 100% sure that you don't have any 32-bit programs left.
2276
2277 config IA32_AOUT
2278 tristate "IA32 a.out support"
2279 depends on IA32_EMULATION
2280 ---help---
2281 Support old a.out binaries in the 32bit emulation.
2282
2283 config X86_X32
2284 bool "x32 ABI for 64-bit mode"
2285 depends on X86_64 && IA32_EMULATION
2286 ---help---
2287 Include code to run binaries for the x32 native 32-bit ABI
2288 for 64-bit processors. An x32 process gets access to the
2289 full 64-bit register file and wide data path while leaving
2290 pointers at 32 bits for smaller memory footprint.
2291
2292 You will need a recent binutils (2.22 or later) with
2293 elf32_x86_64 support enabled to compile a kernel with this
2294 option set.
2295
2296 config COMPAT
2297 def_bool y
2298 depends on IA32_EMULATION || X86_X32
2299 select ARCH_WANT_OLD_COMPAT_IPC
2300
2301 if COMPAT
2302 config COMPAT_FOR_U64_ALIGNMENT
2303 def_bool y
2304
2305 config SYSVIPC_COMPAT
2306 def_bool y
2307 depends on SYSVIPC
2308
2309 config KEYS_COMPAT
2310 def_bool y
2311 depends on KEYS
2312 endif
2313
2314 endmenu
2315
2316
2317 config HAVE_ATOMIC_IOMAP
2318 def_bool y
2319 depends on X86_32
2320
2321 config HAVE_TEXT_POKE_SMP
2322 bool
2323 select STOP_MACHINE if SMP
2324
2325 config X86_DEV_DMA_OPS
2326 bool
2327 depends on X86_64 || STA2X11
2328
2329 config X86_DMA_REMAP
2330 bool
2331 depends on STA2X11
2332
2333 source "net/Kconfig"
2334
2335 source "drivers/Kconfig"
2336
2337 source "drivers/firmware/Kconfig"
2338
2339 source "fs/Kconfig"
2340
2341 source "arch/x86/Kconfig.debug"
2342
2343 source "security/Kconfig"
2344
2345 source "crypto/Kconfig"
2346
2347 source "arch/x86/kvm/Kconfig"
2348
2349 source "lib/Kconfig"