]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/crypto/aesni-intel_asm.S
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / crypto / aesni-intel_asm.S
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Implement AES algorithm in Intel AES-NI instructions.
4 *
5 * The white paper of AES-NI instructions can be downloaded from:
6 * http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
7 *
8 * Copyright (C) 2008, Intel Corp.
9 * Author: Huang Ying <ying.huang@intel.com>
10 * Vinodh Gopal <vinodh.gopal@intel.com>
11 * Kahraman Akdemir
12 *
13 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
14 * interface for 64-bit kernels.
15 * Authors: Erdinc Ozturk (erdinc.ozturk@intel.com)
16 * Aidan O'Mahony (aidan.o.mahony@intel.com)
17 * Adrian Hoban <adrian.hoban@intel.com>
18 * James Guilford (james.guilford@intel.com)
19 * Gabriele Paoloni <gabriele.paoloni@intel.com>
20 * Tadeusz Struk (tadeusz.struk@intel.com)
21 * Wajdi Feghali (wajdi.k.feghali@intel.com)
22 * Copyright (c) 2010, Intel Corporation.
23 *
24 * Ported x86_64 version to x86:
25 * Author: Mathias Krause <minipli@googlemail.com>
26 */
27
28 #include <linux/linkage.h>
29 #include <asm/inst.h>
30 #include <asm/frame.h>
31 #include <asm/nospec-branch.h>
32
33 /*
34 * The following macros are used to move an (un)aligned 16 byte value to/from
35 * an XMM register. This can done for either FP or integer values, for FP use
36 * movaps (move aligned packed single) or integer use movdqa (move double quad
37 * aligned). It doesn't make a performance difference which instruction is used
38 * since Nehalem (original Core i7) was released. However, the movaps is a byte
39 * shorter, so that is the one we'll use for now. (same for unaligned).
40 */
41 #define MOVADQ movaps
42 #define MOVUDQ movups
43
44 #ifdef __x86_64__
45
46 # constants in mergeable sections, linker can reorder and merge
47 .section .rodata.cst16.gf128mul_x_ble_mask, "aM", @progbits, 16
48 .align 16
49 .Lgf128mul_x_ble_mask:
50 .octa 0x00000000000000010000000000000087
51 .section .rodata.cst16.POLY, "aM", @progbits, 16
52 .align 16
53 POLY: .octa 0xC2000000000000000000000000000001
54 .section .rodata.cst16.TWOONE, "aM", @progbits, 16
55 .align 16
56 TWOONE: .octa 0x00000001000000000000000000000001
57
58 .section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
59 .align 16
60 SHUF_MASK: .octa 0x000102030405060708090A0B0C0D0E0F
61 .section .rodata.cst16.MASK1, "aM", @progbits, 16
62 .align 16
63 MASK1: .octa 0x0000000000000000ffffffffffffffff
64 .section .rodata.cst16.MASK2, "aM", @progbits, 16
65 .align 16
66 MASK2: .octa 0xffffffffffffffff0000000000000000
67 .section .rodata.cst16.ONE, "aM", @progbits, 16
68 .align 16
69 ONE: .octa 0x00000000000000000000000000000001
70 .section .rodata.cst16.F_MIN_MASK, "aM", @progbits, 16
71 .align 16
72 F_MIN_MASK: .octa 0xf1f2f3f4f5f6f7f8f9fafbfcfdfeff0
73 .section .rodata.cst16.dec, "aM", @progbits, 16
74 .align 16
75 dec: .octa 0x1
76 .section .rodata.cst16.enc, "aM", @progbits, 16
77 .align 16
78 enc: .octa 0x2
79
80 # order of these constants should not change.
81 # more specifically, ALL_F should follow SHIFT_MASK,
82 # and zero should follow ALL_F
83 .section .rodata, "a", @progbits
84 .align 16
85 SHIFT_MASK: .octa 0x0f0e0d0c0b0a09080706050403020100
86 ALL_F: .octa 0xffffffffffffffffffffffffffffffff
87 .octa 0x00000000000000000000000000000000
88
89 .text
90
91
92 #define STACK_OFFSET 8*3
93
94 #define AadHash 16*0
95 #define AadLen 16*1
96 #define InLen (16*1)+8
97 #define PBlockEncKey 16*2
98 #define OrigIV 16*3
99 #define CurCount 16*4
100 #define PBlockLen 16*5
101 #define HashKey 16*6 // store HashKey <<1 mod poly here
102 #define HashKey_2 16*7 // store HashKey^2 <<1 mod poly here
103 #define HashKey_3 16*8 // store HashKey^3 <<1 mod poly here
104 #define HashKey_4 16*9 // store HashKey^4 <<1 mod poly here
105 #define HashKey_k 16*10 // store XOR of High 64 bits and Low 64
106 // bits of HashKey <<1 mod poly here
107 //(for Karatsuba purposes)
108 #define HashKey_2_k 16*11 // store XOR of High 64 bits and Low 64
109 // bits of HashKey^2 <<1 mod poly here
110 // (for Karatsuba purposes)
111 #define HashKey_3_k 16*12 // store XOR of High 64 bits and Low 64
112 // bits of HashKey^3 <<1 mod poly here
113 // (for Karatsuba purposes)
114 #define HashKey_4_k 16*13 // store XOR of High 64 bits and Low 64
115 // bits of HashKey^4 <<1 mod poly here
116 // (for Karatsuba purposes)
117
118 #define arg1 rdi
119 #define arg2 rsi
120 #define arg3 rdx
121 #define arg4 rcx
122 #define arg5 r8
123 #define arg6 r9
124 #define arg7 STACK_OFFSET+8(%rsp)
125 #define arg8 STACK_OFFSET+16(%rsp)
126 #define arg9 STACK_OFFSET+24(%rsp)
127 #define arg10 STACK_OFFSET+32(%rsp)
128 #define arg11 STACK_OFFSET+40(%rsp)
129 #define keysize 2*15*16(%arg1)
130 #endif
131
132
133 #define STATE1 %xmm0
134 #define STATE2 %xmm4
135 #define STATE3 %xmm5
136 #define STATE4 %xmm6
137 #define STATE STATE1
138 #define IN1 %xmm1
139 #define IN2 %xmm7
140 #define IN3 %xmm8
141 #define IN4 %xmm9
142 #define IN IN1
143 #define KEY %xmm2
144 #define IV %xmm3
145
146 #define BSWAP_MASK %xmm10
147 #define CTR %xmm11
148 #define INC %xmm12
149
150 #define GF128MUL_MASK %xmm10
151
152 #ifdef __x86_64__
153 #define AREG %rax
154 #define KEYP %rdi
155 #define OUTP %rsi
156 #define UKEYP OUTP
157 #define INP %rdx
158 #define LEN %rcx
159 #define IVP %r8
160 #define KLEN %r9d
161 #define T1 %r10
162 #define TKEYP T1
163 #define T2 %r11
164 #define TCTR_LOW T2
165 #else
166 #define AREG %eax
167 #define KEYP %edi
168 #define OUTP AREG
169 #define UKEYP OUTP
170 #define INP %edx
171 #define LEN %esi
172 #define IVP %ebp
173 #define KLEN %ebx
174 #define T1 %ecx
175 #define TKEYP T1
176 #endif
177
178 .macro FUNC_SAVE
179 push %r12
180 push %r13
181 push %r14
182 #
183 # states of %xmm registers %xmm6:%xmm15 not saved
184 # all %xmm registers are clobbered
185 #
186 .endm
187
188
189 .macro FUNC_RESTORE
190 pop %r14
191 pop %r13
192 pop %r12
193 .endm
194
195 # Precompute hashkeys.
196 # Input: Hash subkey.
197 # Output: HashKeys stored in gcm_context_data. Only needs to be called
198 # once per key.
199 # clobbers r12, and tmp xmm registers.
200 .macro PRECOMPUTE SUBKEY TMP1 TMP2 TMP3 TMP4 TMP5 TMP6 TMP7
201 mov \SUBKEY, %r12
202 movdqu (%r12), \TMP3
203 movdqa SHUF_MASK(%rip), \TMP2
204 PSHUFB_XMM \TMP2, \TMP3
205
206 # precompute HashKey<<1 mod poly from the HashKey (required for GHASH)
207
208 movdqa \TMP3, \TMP2
209 psllq $1, \TMP3
210 psrlq $63, \TMP2
211 movdqa \TMP2, \TMP1
212 pslldq $8, \TMP2
213 psrldq $8, \TMP1
214 por \TMP2, \TMP3
215
216 # reduce HashKey<<1
217
218 pshufd $0x24, \TMP1, \TMP2
219 pcmpeqd TWOONE(%rip), \TMP2
220 pand POLY(%rip), \TMP2
221 pxor \TMP2, \TMP3
222 movdqu \TMP3, HashKey(%arg2)
223
224 movdqa \TMP3, \TMP5
225 pshufd $78, \TMP3, \TMP1
226 pxor \TMP3, \TMP1
227 movdqu \TMP1, HashKey_k(%arg2)
228
229 GHASH_MUL \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
230 # TMP5 = HashKey^2<<1 (mod poly)
231 movdqu \TMP5, HashKey_2(%arg2)
232 # HashKey_2 = HashKey^2<<1 (mod poly)
233 pshufd $78, \TMP5, \TMP1
234 pxor \TMP5, \TMP1
235 movdqu \TMP1, HashKey_2_k(%arg2)
236
237 GHASH_MUL \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
238 # TMP5 = HashKey^3<<1 (mod poly)
239 movdqu \TMP5, HashKey_3(%arg2)
240 pshufd $78, \TMP5, \TMP1
241 pxor \TMP5, \TMP1
242 movdqu \TMP1, HashKey_3_k(%arg2)
243
244 GHASH_MUL \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
245 # TMP5 = HashKey^3<<1 (mod poly)
246 movdqu \TMP5, HashKey_4(%arg2)
247 pshufd $78, \TMP5, \TMP1
248 pxor \TMP5, \TMP1
249 movdqu \TMP1, HashKey_4_k(%arg2)
250 .endm
251
252 # GCM_INIT initializes a gcm_context struct to prepare for encoding/decoding.
253 # Clobbers rax, r10-r13 and xmm0-xmm6, %xmm13
254 .macro GCM_INIT Iv SUBKEY AAD AADLEN
255 mov \AADLEN, %r11
256 mov %r11, AadLen(%arg2) # ctx_data.aad_length = aad_length
257 xor %r11d, %r11d
258 mov %r11, InLen(%arg2) # ctx_data.in_length = 0
259 mov %r11, PBlockLen(%arg2) # ctx_data.partial_block_length = 0
260 mov %r11, PBlockEncKey(%arg2) # ctx_data.partial_block_enc_key = 0
261 mov \Iv, %rax
262 movdqu (%rax), %xmm0
263 movdqu %xmm0, OrigIV(%arg2) # ctx_data.orig_IV = iv
264
265 movdqa SHUF_MASK(%rip), %xmm2
266 PSHUFB_XMM %xmm2, %xmm0
267 movdqu %xmm0, CurCount(%arg2) # ctx_data.current_counter = iv
268
269 PRECOMPUTE \SUBKEY, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
270 movdqu HashKey(%arg2), %xmm13
271
272 CALC_AAD_HASH %xmm13, \AAD, \AADLEN, %xmm0, %xmm1, %xmm2, %xmm3, \
273 %xmm4, %xmm5, %xmm6
274 .endm
275
276 # GCM_ENC_DEC Encodes/Decodes given data. Assumes that the passed gcm_context
277 # struct has been initialized by GCM_INIT.
278 # Requires the input data be at least 1 byte long because of READ_PARTIAL_BLOCK
279 # Clobbers rax, r10-r13, and xmm0-xmm15
280 .macro GCM_ENC_DEC operation
281 movdqu AadHash(%arg2), %xmm8
282 movdqu HashKey(%arg2), %xmm13
283 add %arg5, InLen(%arg2)
284
285 xor %r11d, %r11d # initialise the data pointer offset as zero
286 PARTIAL_BLOCK %arg3 %arg4 %arg5 %r11 %xmm8 \operation
287
288 sub %r11, %arg5 # sub partial block data used
289 mov %arg5, %r13 # save the number of bytes
290
291 and $-16, %r13 # %r13 = %r13 - (%r13 mod 16)
292 mov %r13, %r12
293 # Encrypt/Decrypt first few blocks
294
295 and $(3<<4), %r12
296 jz _initial_num_blocks_is_0_\@
297 cmp $(2<<4), %r12
298 jb _initial_num_blocks_is_1_\@
299 je _initial_num_blocks_is_2_\@
300 _initial_num_blocks_is_3_\@:
301 INITIAL_BLOCKS_ENC_DEC %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
302 %xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 5, 678, \operation
303 sub $48, %r13
304 jmp _initial_blocks_\@
305 _initial_num_blocks_is_2_\@:
306 INITIAL_BLOCKS_ENC_DEC %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
307 %xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 6, 78, \operation
308 sub $32, %r13
309 jmp _initial_blocks_\@
310 _initial_num_blocks_is_1_\@:
311 INITIAL_BLOCKS_ENC_DEC %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
312 %xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 7, 8, \operation
313 sub $16, %r13
314 jmp _initial_blocks_\@
315 _initial_num_blocks_is_0_\@:
316 INITIAL_BLOCKS_ENC_DEC %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
317 %xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 8, 0, \operation
318 _initial_blocks_\@:
319
320 # Main loop - Encrypt/Decrypt remaining blocks
321
322 cmp $0, %r13
323 je _zero_cipher_left_\@
324 sub $64, %r13
325 je _four_cipher_left_\@
326 _crypt_by_4_\@:
327 GHASH_4_ENCRYPT_4_PARALLEL_\operation %xmm9, %xmm10, %xmm11, %xmm12, \
328 %xmm13, %xmm14, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, \
329 %xmm7, %xmm8, enc
330 add $64, %r11
331 sub $64, %r13
332 jne _crypt_by_4_\@
333 _four_cipher_left_\@:
334 GHASH_LAST_4 %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, \
335 %xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm8
336 _zero_cipher_left_\@:
337 movdqu %xmm8, AadHash(%arg2)
338 movdqu %xmm0, CurCount(%arg2)
339
340 mov %arg5, %r13
341 and $15, %r13 # %r13 = arg5 (mod 16)
342 je _multiple_of_16_bytes_\@
343
344 mov %r13, PBlockLen(%arg2)
345
346 # Handle the last <16 Byte block separately
347 paddd ONE(%rip), %xmm0 # INCR CNT to get Yn
348 movdqu %xmm0, CurCount(%arg2)
349 movdqa SHUF_MASK(%rip), %xmm10
350 PSHUFB_XMM %xmm10, %xmm0
351
352 ENCRYPT_SINGLE_BLOCK %xmm0, %xmm1 # Encrypt(K, Yn)
353 movdqu %xmm0, PBlockEncKey(%arg2)
354
355 cmp $16, %arg5
356 jge _large_enough_update_\@
357
358 lea (%arg4,%r11,1), %r10
359 mov %r13, %r12
360 READ_PARTIAL_BLOCK %r10 %r12 %xmm2 %xmm1
361 jmp _data_read_\@
362
363 _large_enough_update_\@:
364 sub $16, %r11
365 add %r13, %r11
366
367 # receive the last <16 Byte block
368 movdqu (%arg4, %r11, 1), %xmm1
369
370 sub %r13, %r11
371 add $16, %r11
372
373 lea SHIFT_MASK+16(%rip), %r12
374 # adjust the shuffle mask pointer to be able to shift 16-r13 bytes
375 # (r13 is the number of bytes in plaintext mod 16)
376 sub %r13, %r12
377 # get the appropriate shuffle mask
378 movdqu (%r12), %xmm2
379 # shift right 16-r13 bytes
380 PSHUFB_XMM %xmm2, %xmm1
381
382 _data_read_\@:
383 lea ALL_F+16(%rip), %r12
384 sub %r13, %r12
385
386 .ifc \operation, dec
387 movdqa %xmm1, %xmm2
388 .endif
389 pxor %xmm1, %xmm0 # XOR Encrypt(K, Yn)
390 movdqu (%r12), %xmm1
391 # get the appropriate mask to mask out top 16-r13 bytes of xmm0
392 pand %xmm1, %xmm0 # mask out top 16-r13 bytes of xmm0
393 .ifc \operation, dec
394 pand %xmm1, %xmm2
395 movdqa SHUF_MASK(%rip), %xmm10
396 PSHUFB_XMM %xmm10 ,%xmm2
397
398 pxor %xmm2, %xmm8
399 .else
400 movdqa SHUF_MASK(%rip), %xmm10
401 PSHUFB_XMM %xmm10,%xmm0
402
403 pxor %xmm0, %xmm8
404 .endif
405
406 movdqu %xmm8, AadHash(%arg2)
407 .ifc \operation, enc
408 # GHASH computation for the last <16 byte block
409 movdqa SHUF_MASK(%rip), %xmm10
410 # shuffle xmm0 back to output as ciphertext
411 PSHUFB_XMM %xmm10, %xmm0
412 .endif
413
414 # Output %r13 bytes
415 MOVQ_R64_XMM %xmm0, %rax
416 cmp $8, %r13
417 jle _less_than_8_bytes_left_\@
418 mov %rax, (%arg3 , %r11, 1)
419 add $8, %r11
420 psrldq $8, %xmm0
421 MOVQ_R64_XMM %xmm0, %rax
422 sub $8, %r13
423 _less_than_8_bytes_left_\@:
424 mov %al, (%arg3, %r11, 1)
425 add $1, %r11
426 shr $8, %rax
427 sub $1, %r13
428 jne _less_than_8_bytes_left_\@
429 _multiple_of_16_bytes_\@:
430 .endm
431
432 # GCM_COMPLETE Finishes update of tag of last partial block
433 # Output: Authorization Tag (AUTH_TAG)
434 # Clobbers rax, r10-r12, and xmm0, xmm1, xmm5-xmm15
435 .macro GCM_COMPLETE AUTHTAG AUTHTAGLEN
436 movdqu AadHash(%arg2), %xmm8
437 movdqu HashKey(%arg2), %xmm13
438
439 mov PBlockLen(%arg2), %r12
440
441 cmp $0, %r12
442 je _partial_done\@
443
444 GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
445
446 _partial_done\@:
447 mov AadLen(%arg2), %r12 # %r13 = aadLen (number of bytes)
448 shl $3, %r12 # convert into number of bits
449 movd %r12d, %xmm15 # len(A) in %xmm15
450 mov InLen(%arg2), %r12
451 shl $3, %r12 # len(C) in bits (*128)
452 MOVQ_R64_XMM %r12, %xmm1
453
454 pslldq $8, %xmm15 # %xmm15 = len(A)||0x0000000000000000
455 pxor %xmm1, %xmm15 # %xmm15 = len(A)||len(C)
456 pxor %xmm15, %xmm8
457 GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
458 # final GHASH computation
459 movdqa SHUF_MASK(%rip), %xmm10
460 PSHUFB_XMM %xmm10, %xmm8
461
462 movdqu OrigIV(%arg2), %xmm0 # %xmm0 = Y0
463 ENCRYPT_SINGLE_BLOCK %xmm0, %xmm1 # E(K, Y0)
464 pxor %xmm8, %xmm0
465 _return_T_\@:
466 mov \AUTHTAG, %r10 # %r10 = authTag
467 mov \AUTHTAGLEN, %r11 # %r11 = auth_tag_len
468 cmp $16, %r11
469 je _T_16_\@
470 cmp $8, %r11
471 jl _T_4_\@
472 _T_8_\@:
473 MOVQ_R64_XMM %xmm0, %rax
474 mov %rax, (%r10)
475 add $8, %r10
476 sub $8, %r11
477 psrldq $8, %xmm0
478 cmp $0, %r11
479 je _return_T_done_\@
480 _T_4_\@:
481 movd %xmm0, %eax
482 mov %eax, (%r10)
483 add $4, %r10
484 sub $4, %r11
485 psrldq $4, %xmm0
486 cmp $0, %r11
487 je _return_T_done_\@
488 _T_123_\@:
489 movd %xmm0, %eax
490 cmp $2, %r11
491 jl _T_1_\@
492 mov %ax, (%r10)
493 cmp $2, %r11
494 je _return_T_done_\@
495 add $2, %r10
496 sar $16, %eax
497 _T_1_\@:
498 mov %al, (%r10)
499 jmp _return_T_done_\@
500 _T_16_\@:
501 movdqu %xmm0, (%r10)
502 _return_T_done_\@:
503 .endm
504
505 #ifdef __x86_64__
506 /* GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0)
507 *
508 *
509 * Input: A and B (128-bits each, bit-reflected)
510 * Output: C = A*B*x mod poly, (i.e. >>1 )
511 * To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
512 * GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
513 *
514 */
515 .macro GHASH_MUL GH HK TMP1 TMP2 TMP3 TMP4 TMP5
516 movdqa \GH, \TMP1
517 pshufd $78, \GH, \TMP2
518 pshufd $78, \HK, \TMP3
519 pxor \GH, \TMP2 # TMP2 = a1+a0
520 pxor \HK, \TMP3 # TMP3 = b1+b0
521 PCLMULQDQ 0x11, \HK, \TMP1 # TMP1 = a1*b1
522 PCLMULQDQ 0x00, \HK, \GH # GH = a0*b0
523 PCLMULQDQ 0x00, \TMP3, \TMP2 # TMP2 = (a0+a1)*(b1+b0)
524 pxor \GH, \TMP2
525 pxor \TMP1, \TMP2 # TMP2 = (a0*b0)+(a1*b0)
526 movdqa \TMP2, \TMP3
527 pslldq $8, \TMP3 # left shift TMP3 2 DWs
528 psrldq $8, \TMP2 # right shift TMP2 2 DWs
529 pxor \TMP3, \GH
530 pxor \TMP2, \TMP1 # TMP2:GH holds the result of GH*HK
531
532 # first phase of the reduction
533
534 movdqa \GH, \TMP2
535 movdqa \GH, \TMP3
536 movdqa \GH, \TMP4 # copy GH into TMP2,TMP3 and TMP4
537 # in in order to perform
538 # independent shifts
539 pslld $31, \TMP2 # packed right shift <<31
540 pslld $30, \TMP3 # packed right shift <<30
541 pslld $25, \TMP4 # packed right shift <<25
542 pxor \TMP3, \TMP2 # xor the shifted versions
543 pxor \TMP4, \TMP2
544 movdqa \TMP2, \TMP5
545 psrldq $4, \TMP5 # right shift TMP5 1 DW
546 pslldq $12, \TMP2 # left shift TMP2 3 DWs
547 pxor \TMP2, \GH
548
549 # second phase of the reduction
550
551 movdqa \GH,\TMP2 # copy GH into TMP2,TMP3 and TMP4
552 # in in order to perform
553 # independent shifts
554 movdqa \GH,\TMP3
555 movdqa \GH,\TMP4
556 psrld $1,\TMP2 # packed left shift >>1
557 psrld $2,\TMP3 # packed left shift >>2
558 psrld $7,\TMP4 # packed left shift >>7
559 pxor \TMP3,\TMP2 # xor the shifted versions
560 pxor \TMP4,\TMP2
561 pxor \TMP5, \TMP2
562 pxor \TMP2, \GH
563 pxor \TMP1, \GH # result is in TMP1
564 .endm
565
566 # Reads DLEN bytes starting at DPTR and stores in XMMDst
567 # where 0 < DLEN < 16
568 # Clobbers %rax, DLEN and XMM1
569 .macro READ_PARTIAL_BLOCK DPTR DLEN XMM1 XMMDst
570 cmp $8, \DLEN
571 jl _read_lt8_\@
572 mov (\DPTR), %rax
573 MOVQ_R64_XMM %rax, \XMMDst
574 sub $8, \DLEN
575 jz _done_read_partial_block_\@
576 xor %eax, %eax
577 _read_next_byte_\@:
578 shl $8, %rax
579 mov 7(\DPTR, \DLEN, 1), %al
580 dec \DLEN
581 jnz _read_next_byte_\@
582 MOVQ_R64_XMM %rax, \XMM1
583 pslldq $8, \XMM1
584 por \XMM1, \XMMDst
585 jmp _done_read_partial_block_\@
586 _read_lt8_\@:
587 xor %eax, %eax
588 _read_next_byte_lt8_\@:
589 shl $8, %rax
590 mov -1(\DPTR, \DLEN, 1), %al
591 dec \DLEN
592 jnz _read_next_byte_lt8_\@
593 MOVQ_R64_XMM %rax, \XMMDst
594 _done_read_partial_block_\@:
595 .endm
596
597 # CALC_AAD_HASH: Calculates the hash of the data which will not be encrypted.
598 # clobbers r10-11, xmm14
599 .macro CALC_AAD_HASH HASHKEY AAD AADLEN TMP1 TMP2 TMP3 TMP4 TMP5 \
600 TMP6 TMP7
601 MOVADQ SHUF_MASK(%rip), %xmm14
602 mov \AAD, %r10 # %r10 = AAD
603 mov \AADLEN, %r11 # %r11 = aadLen
604 pxor \TMP7, \TMP7
605 pxor \TMP6, \TMP6
606
607 cmp $16, %r11
608 jl _get_AAD_rest\@
609 _get_AAD_blocks\@:
610 movdqu (%r10), \TMP7
611 PSHUFB_XMM %xmm14, \TMP7 # byte-reflect the AAD data
612 pxor \TMP7, \TMP6
613 GHASH_MUL \TMP6, \HASHKEY, \TMP1, \TMP2, \TMP3, \TMP4, \TMP5
614 add $16, %r10
615 sub $16, %r11
616 cmp $16, %r11
617 jge _get_AAD_blocks\@
618
619 movdqu \TMP6, \TMP7
620
621 /* read the last <16B of AAD */
622 _get_AAD_rest\@:
623 cmp $0, %r11
624 je _get_AAD_done\@
625
626 READ_PARTIAL_BLOCK %r10, %r11, \TMP1, \TMP7
627 PSHUFB_XMM %xmm14, \TMP7 # byte-reflect the AAD data
628 pxor \TMP6, \TMP7
629 GHASH_MUL \TMP7, \HASHKEY, \TMP1, \TMP2, \TMP3, \TMP4, \TMP5
630 movdqu \TMP7, \TMP6
631
632 _get_AAD_done\@:
633 movdqu \TMP6, AadHash(%arg2)
634 .endm
635
636 # PARTIAL_BLOCK: Handles encryption/decryption and the tag partial blocks
637 # between update calls.
638 # Requires the input data be at least 1 byte long due to READ_PARTIAL_BLOCK
639 # Outputs encrypted bytes, and updates hash and partial info in gcm_data_context
640 # Clobbers rax, r10, r12, r13, xmm0-6, xmm9-13
641 .macro PARTIAL_BLOCK CYPH_PLAIN_OUT PLAIN_CYPH_IN PLAIN_CYPH_LEN DATA_OFFSET \
642 AAD_HASH operation
643 mov PBlockLen(%arg2), %r13
644 cmp $0, %r13
645 je _partial_block_done_\@ # Leave Macro if no partial blocks
646 # Read in input data without over reading
647 cmp $16, \PLAIN_CYPH_LEN
648 jl _fewer_than_16_bytes_\@
649 movups (\PLAIN_CYPH_IN), %xmm1 # If more than 16 bytes, just fill xmm
650 jmp _data_read_\@
651
652 _fewer_than_16_bytes_\@:
653 lea (\PLAIN_CYPH_IN, \DATA_OFFSET, 1), %r10
654 mov \PLAIN_CYPH_LEN, %r12
655 READ_PARTIAL_BLOCK %r10 %r12 %xmm0 %xmm1
656
657 mov PBlockLen(%arg2), %r13
658
659 _data_read_\@: # Finished reading in data
660
661 movdqu PBlockEncKey(%arg2), %xmm9
662 movdqu HashKey(%arg2), %xmm13
663
664 lea SHIFT_MASK(%rip), %r12
665
666 # adjust the shuffle mask pointer to be able to shift r13 bytes
667 # r16-r13 is the number of bytes in plaintext mod 16)
668 add %r13, %r12
669 movdqu (%r12), %xmm2 # get the appropriate shuffle mask
670 PSHUFB_XMM %xmm2, %xmm9 # shift right r13 bytes
671
672 .ifc \operation, dec
673 movdqa %xmm1, %xmm3
674 pxor %xmm1, %xmm9 # Cyphertext XOR E(K, Yn)
675
676 mov \PLAIN_CYPH_LEN, %r10
677 add %r13, %r10
678 # Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling
679 sub $16, %r10
680 # Determine if if partial block is not being filled and
681 # shift mask accordingly
682 jge _no_extra_mask_1_\@
683 sub %r10, %r12
684 _no_extra_mask_1_\@:
685
686 movdqu ALL_F-SHIFT_MASK(%r12), %xmm1
687 # get the appropriate mask to mask out bottom r13 bytes of xmm9
688 pand %xmm1, %xmm9 # mask out bottom r13 bytes of xmm9
689
690 pand %xmm1, %xmm3
691 movdqa SHUF_MASK(%rip), %xmm10
692 PSHUFB_XMM %xmm10, %xmm3
693 PSHUFB_XMM %xmm2, %xmm3
694 pxor %xmm3, \AAD_HASH
695
696 cmp $0, %r10
697 jl _partial_incomplete_1_\@
698
699 # GHASH computation for the last <16 Byte block
700 GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
701 xor %eax, %eax
702
703 mov %rax, PBlockLen(%arg2)
704 jmp _dec_done_\@
705 _partial_incomplete_1_\@:
706 add \PLAIN_CYPH_LEN, PBlockLen(%arg2)
707 _dec_done_\@:
708 movdqu \AAD_HASH, AadHash(%arg2)
709 .else
710 pxor %xmm1, %xmm9 # Plaintext XOR E(K, Yn)
711
712 mov \PLAIN_CYPH_LEN, %r10
713 add %r13, %r10
714 # Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling
715 sub $16, %r10
716 # Determine if if partial block is not being filled and
717 # shift mask accordingly
718 jge _no_extra_mask_2_\@
719 sub %r10, %r12
720 _no_extra_mask_2_\@:
721
722 movdqu ALL_F-SHIFT_MASK(%r12), %xmm1
723 # get the appropriate mask to mask out bottom r13 bytes of xmm9
724 pand %xmm1, %xmm9
725
726 movdqa SHUF_MASK(%rip), %xmm1
727 PSHUFB_XMM %xmm1, %xmm9
728 PSHUFB_XMM %xmm2, %xmm9
729 pxor %xmm9, \AAD_HASH
730
731 cmp $0, %r10
732 jl _partial_incomplete_2_\@
733
734 # GHASH computation for the last <16 Byte block
735 GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
736 xor %eax, %eax
737
738 mov %rax, PBlockLen(%arg2)
739 jmp _encode_done_\@
740 _partial_incomplete_2_\@:
741 add \PLAIN_CYPH_LEN, PBlockLen(%arg2)
742 _encode_done_\@:
743 movdqu \AAD_HASH, AadHash(%arg2)
744
745 movdqa SHUF_MASK(%rip), %xmm10
746 # shuffle xmm9 back to output as ciphertext
747 PSHUFB_XMM %xmm10, %xmm9
748 PSHUFB_XMM %xmm2, %xmm9
749 .endif
750 # output encrypted Bytes
751 cmp $0, %r10
752 jl _partial_fill_\@
753 mov %r13, %r12
754 mov $16, %r13
755 # Set r13 to be the number of bytes to write out
756 sub %r12, %r13
757 jmp _count_set_\@
758 _partial_fill_\@:
759 mov \PLAIN_CYPH_LEN, %r13
760 _count_set_\@:
761 movdqa %xmm9, %xmm0
762 MOVQ_R64_XMM %xmm0, %rax
763 cmp $8, %r13
764 jle _less_than_8_bytes_left_\@
765
766 mov %rax, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1)
767 add $8, \DATA_OFFSET
768 psrldq $8, %xmm0
769 MOVQ_R64_XMM %xmm0, %rax
770 sub $8, %r13
771 _less_than_8_bytes_left_\@:
772 movb %al, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1)
773 add $1, \DATA_OFFSET
774 shr $8, %rax
775 sub $1, %r13
776 jne _less_than_8_bytes_left_\@
777 _partial_block_done_\@:
778 .endm # PARTIAL_BLOCK
779
780 /*
781 * if a = number of total plaintext bytes
782 * b = floor(a/16)
783 * num_initial_blocks = b mod 4
784 * encrypt the initial num_initial_blocks blocks and apply ghash on
785 * the ciphertext
786 * %r10, %r11, %r12, %rax, %xmm5, %xmm6, %xmm7, %xmm8, %xmm9 registers
787 * are clobbered
788 * arg1, %arg2, %arg3 are used as a pointer only, not modified
789 */
790
791
792 .macro INITIAL_BLOCKS_ENC_DEC TMP1 TMP2 TMP3 TMP4 TMP5 XMM0 XMM1 \
793 XMM2 XMM3 XMM4 XMMDst TMP6 TMP7 i i_seq operation
794 MOVADQ SHUF_MASK(%rip), %xmm14
795
796 movdqu AadHash(%arg2), %xmm\i # XMM0 = Y0
797
798 # start AES for num_initial_blocks blocks
799
800 movdqu CurCount(%arg2), \XMM0 # XMM0 = Y0
801
802 .if (\i == 5) || (\i == 6) || (\i == 7)
803
804 MOVADQ ONE(%RIP),\TMP1
805 MOVADQ 0(%arg1),\TMP2
806 .irpc index, \i_seq
807 paddd \TMP1, \XMM0 # INCR Y0
808 .ifc \operation, dec
809 movdqa \XMM0, %xmm\index
810 .else
811 MOVADQ \XMM0, %xmm\index
812 .endif
813 PSHUFB_XMM %xmm14, %xmm\index # perform a 16 byte swap
814 pxor \TMP2, %xmm\index
815 .endr
816 lea 0x10(%arg1),%r10
817 mov keysize,%eax
818 shr $2,%eax # 128->4, 192->6, 256->8
819 add $5,%eax # 128->9, 192->11, 256->13
820
821 aes_loop_initial_\@:
822 MOVADQ (%r10),\TMP1
823 .irpc index, \i_seq
824 AESENC \TMP1, %xmm\index
825 .endr
826 add $16,%r10
827 sub $1,%eax
828 jnz aes_loop_initial_\@
829
830 MOVADQ (%r10), \TMP1
831 .irpc index, \i_seq
832 AESENCLAST \TMP1, %xmm\index # Last Round
833 .endr
834 .irpc index, \i_seq
835 movdqu (%arg4 , %r11, 1), \TMP1
836 pxor \TMP1, %xmm\index
837 movdqu %xmm\index, (%arg3 , %r11, 1)
838 # write back plaintext/ciphertext for num_initial_blocks
839 add $16, %r11
840
841 .ifc \operation, dec
842 movdqa \TMP1, %xmm\index
843 .endif
844 PSHUFB_XMM %xmm14, %xmm\index
845
846 # prepare plaintext/ciphertext for GHASH computation
847 .endr
848 .endif
849
850 # apply GHASH on num_initial_blocks blocks
851
852 .if \i == 5
853 pxor %xmm5, %xmm6
854 GHASH_MUL %xmm6, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
855 pxor %xmm6, %xmm7
856 GHASH_MUL %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
857 pxor %xmm7, %xmm8
858 GHASH_MUL %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
859 .elseif \i == 6
860 pxor %xmm6, %xmm7
861 GHASH_MUL %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
862 pxor %xmm7, %xmm8
863 GHASH_MUL %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
864 .elseif \i == 7
865 pxor %xmm7, %xmm8
866 GHASH_MUL %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
867 .endif
868 cmp $64, %r13
869 jl _initial_blocks_done\@
870 # no need for precomputed values
871 /*
872 *
873 * Precomputations for HashKey parallel with encryption of first 4 blocks.
874 * Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
875 */
876 MOVADQ ONE(%RIP),\TMP1
877 paddd \TMP1, \XMM0 # INCR Y0
878 MOVADQ \XMM0, \XMM1
879 PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap
880
881 paddd \TMP1, \XMM0 # INCR Y0
882 MOVADQ \XMM0, \XMM2
883 PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap
884
885 paddd \TMP1, \XMM0 # INCR Y0
886 MOVADQ \XMM0, \XMM3
887 PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap
888
889 paddd \TMP1, \XMM0 # INCR Y0
890 MOVADQ \XMM0, \XMM4
891 PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap
892
893 MOVADQ 0(%arg1),\TMP1
894 pxor \TMP1, \XMM1
895 pxor \TMP1, \XMM2
896 pxor \TMP1, \XMM3
897 pxor \TMP1, \XMM4
898 .irpc index, 1234 # do 4 rounds
899 movaps 0x10*\index(%arg1), \TMP1
900 AESENC \TMP1, \XMM1
901 AESENC \TMP1, \XMM2
902 AESENC \TMP1, \XMM3
903 AESENC \TMP1, \XMM4
904 .endr
905 .irpc index, 56789 # do next 5 rounds
906 movaps 0x10*\index(%arg1), \TMP1
907 AESENC \TMP1, \XMM1
908 AESENC \TMP1, \XMM2
909 AESENC \TMP1, \XMM3
910 AESENC \TMP1, \XMM4
911 .endr
912 lea 0xa0(%arg1),%r10
913 mov keysize,%eax
914 shr $2,%eax # 128->4, 192->6, 256->8
915 sub $4,%eax # 128->0, 192->2, 256->4
916 jz aes_loop_pre_done\@
917
918 aes_loop_pre_\@:
919 MOVADQ (%r10),\TMP2
920 .irpc index, 1234
921 AESENC \TMP2, %xmm\index
922 .endr
923 add $16,%r10
924 sub $1,%eax
925 jnz aes_loop_pre_\@
926
927 aes_loop_pre_done\@:
928 MOVADQ (%r10), \TMP2
929 AESENCLAST \TMP2, \XMM1
930 AESENCLAST \TMP2, \XMM2
931 AESENCLAST \TMP2, \XMM3
932 AESENCLAST \TMP2, \XMM4
933 movdqu 16*0(%arg4 , %r11 , 1), \TMP1
934 pxor \TMP1, \XMM1
935 .ifc \operation, dec
936 movdqu \XMM1, 16*0(%arg3 , %r11 , 1)
937 movdqa \TMP1, \XMM1
938 .endif
939 movdqu 16*1(%arg4 , %r11 , 1), \TMP1
940 pxor \TMP1, \XMM2
941 .ifc \operation, dec
942 movdqu \XMM2, 16*1(%arg3 , %r11 , 1)
943 movdqa \TMP1, \XMM2
944 .endif
945 movdqu 16*2(%arg4 , %r11 , 1), \TMP1
946 pxor \TMP1, \XMM3
947 .ifc \operation, dec
948 movdqu \XMM3, 16*2(%arg3 , %r11 , 1)
949 movdqa \TMP1, \XMM3
950 .endif
951 movdqu 16*3(%arg4 , %r11 , 1), \TMP1
952 pxor \TMP1, \XMM4
953 .ifc \operation, dec
954 movdqu \XMM4, 16*3(%arg3 , %r11 , 1)
955 movdqa \TMP1, \XMM4
956 .else
957 movdqu \XMM1, 16*0(%arg3 , %r11 , 1)
958 movdqu \XMM2, 16*1(%arg3 , %r11 , 1)
959 movdqu \XMM3, 16*2(%arg3 , %r11 , 1)
960 movdqu \XMM4, 16*3(%arg3 , %r11 , 1)
961 .endif
962
963 add $64, %r11
964 PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap
965 pxor \XMMDst, \XMM1
966 # combine GHASHed value with the corresponding ciphertext
967 PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap
968 PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap
969 PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap
970
971 _initial_blocks_done\@:
972
973 .endm
974
975 /*
976 * encrypt 4 blocks at a time
977 * ghash the 4 previously encrypted ciphertext blocks
978 * arg1, %arg3, %arg4 are used as pointers only, not modified
979 * %r11 is the data offset value
980 */
981 .macro GHASH_4_ENCRYPT_4_PARALLEL_ENC TMP1 TMP2 TMP3 TMP4 TMP5 \
982 TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation
983
984 movdqa \XMM1, \XMM5
985 movdqa \XMM2, \XMM6
986 movdqa \XMM3, \XMM7
987 movdqa \XMM4, \XMM8
988
989 movdqa SHUF_MASK(%rip), %xmm15
990 # multiply TMP5 * HashKey using karatsuba
991
992 movdqa \XMM5, \TMP4
993 pshufd $78, \XMM5, \TMP6
994 pxor \XMM5, \TMP6
995 paddd ONE(%rip), \XMM0 # INCR CNT
996 movdqu HashKey_4(%arg2), \TMP5
997 PCLMULQDQ 0x11, \TMP5, \TMP4 # TMP4 = a1*b1
998 movdqa \XMM0, \XMM1
999 paddd ONE(%rip), \XMM0 # INCR CNT
1000 movdqa \XMM0, \XMM2
1001 paddd ONE(%rip), \XMM0 # INCR CNT
1002 movdqa \XMM0, \XMM3
1003 paddd ONE(%rip), \XMM0 # INCR CNT
1004 movdqa \XMM0, \XMM4
1005 PSHUFB_XMM %xmm15, \XMM1 # perform a 16 byte swap
1006 PCLMULQDQ 0x00, \TMP5, \XMM5 # XMM5 = a0*b0
1007 PSHUFB_XMM %xmm15, \XMM2 # perform a 16 byte swap
1008 PSHUFB_XMM %xmm15, \XMM3 # perform a 16 byte swap
1009 PSHUFB_XMM %xmm15, \XMM4 # perform a 16 byte swap
1010
1011 pxor (%arg1), \XMM1
1012 pxor (%arg1), \XMM2
1013 pxor (%arg1), \XMM3
1014 pxor (%arg1), \XMM4
1015 movdqu HashKey_4_k(%arg2), \TMP5
1016 PCLMULQDQ 0x00, \TMP5, \TMP6 # TMP6 = (a1+a0)*(b1+b0)
1017 movaps 0x10(%arg1), \TMP1
1018 AESENC \TMP1, \XMM1 # Round 1
1019 AESENC \TMP1, \XMM2
1020 AESENC \TMP1, \XMM3
1021 AESENC \TMP1, \XMM4
1022 movaps 0x20(%arg1), \TMP1
1023 AESENC \TMP1, \XMM1 # Round 2
1024 AESENC \TMP1, \XMM2
1025 AESENC \TMP1, \XMM3
1026 AESENC \TMP1, \XMM4
1027 movdqa \XMM6, \TMP1
1028 pshufd $78, \XMM6, \TMP2
1029 pxor \XMM6, \TMP2
1030 movdqu HashKey_3(%arg2), \TMP5
1031 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1 * b1
1032 movaps 0x30(%arg1), \TMP3
1033 AESENC \TMP3, \XMM1 # Round 3
1034 AESENC \TMP3, \XMM2
1035 AESENC \TMP3, \XMM3
1036 AESENC \TMP3, \XMM4
1037 PCLMULQDQ 0x00, \TMP5, \XMM6 # XMM6 = a0*b0
1038 movaps 0x40(%arg1), \TMP3
1039 AESENC \TMP3, \XMM1 # Round 4
1040 AESENC \TMP3, \XMM2
1041 AESENC \TMP3, \XMM3
1042 AESENC \TMP3, \XMM4
1043 movdqu HashKey_3_k(%arg2), \TMP5
1044 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1045 movaps 0x50(%arg1), \TMP3
1046 AESENC \TMP3, \XMM1 # Round 5
1047 AESENC \TMP3, \XMM2
1048 AESENC \TMP3, \XMM3
1049 AESENC \TMP3, \XMM4
1050 pxor \TMP1, \TMP4
1051 # accumulate the results in TMP4:XMM5, TMP6 holds the middle part
1052 pxor \XMM6, \XMM5
1053 pxor \TMP2, \TMP6
1054 movdqa \XMM7, \TMP1
1055 pshufd $78, \XMM7, \TMP2
1056 pxor \XMM7, \TMP2
1057 movdqu HashKey_2(%arg2), \TMP5
1058
1059 # Multiply TMP5 * HashKey using karatsuba
1060
1061 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1062 movaps 0x60(%arg1), \TMP3
1063 AESENC \TMP3, \XMM1 # Round 6
1064 AESENC \TMP3, \XMM2
1065 AESENC \TMP3, \XMM3
1066 AESENC \TMP3, \XMM4
1067 PCLMULQDQ 0x00, \TMP5, \XMM7 # XMM7 = a0*b0
1068 movaps 0x70(%arg1), \TMP3
1069 AESENC \TMP3, \XMM1 # Round 7
1070 AESENC \TMP3, \XMM2
1071 AESENC \TMP3, \XMM3
1072 AESENC \TMP3, \XMM4
1073 movdqu HashKey_2_k(%arg2), \TMP5
1074 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1075 movaps 0x80(%arg1), \TMP3
1076 AESENC \TMP3, \XMM1 # Round 8
1077 AESENC \TMP3, \XMM2
1078 AESENC \TMP3, \XMM3
1079 AESENC \TMP3, \XMM4
1080 pxor \TMP1, \TMP4
1081 # accumulate the results in TMP4:XMM5, TMP6 holds the middle part
1082 pxor \XMM7, \XMM5
1083 pxor \TMP2, \TMP6
1084
1085 # Multiply XMM8 * HashKey
1086 # XMM8 and TMP5 hold the values for the two operands
1087
1088 movdqa \XMM8, \TMP1
1089 pshufd $78, \XMM8, \TMP2
1090 pxor \XMM8, \TMP2
1091 movdqu HashKey(%arg2), \TMP5
1092 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1093 movaps 0x90(%arg1), \TMP3
1094 AESENC \TMP3, \XMM1 # Round 9
1095 AESENC \TMP3, \XMM2
1096 AESENC \TMP3, \XMM3
1097 AESENC \TMP3, \XMM4
1098 PCLMULQDQ 0x00, \TMP5, \XMM8 # XMM8 = a0*b0
1099 lea 0xa0(%arg1),%r10
1100 mov keysize,%eax
1101 shr $2,%eax # 128->4, 192->6, 256->8
1102 sub $4,%eax # 128->0, 192->2, 256->4
1103 jz aes_loop_par_enc_done\@
1104
1105 aes_loop_par_enc\@:
1106 MOVADQ (%r10),\TMP3
1107 .irpc index, 1234
1108 AESENC \TMP3, %xmm\index
1109 .endr
1110 add $16,%r10
1111 sub $1,%eax
1112 jnz aes_loop_par_enc\@
1113
1114 aes_loop_par_enc_done\@:
1115 MOVADQ (%r10), \TMP3
1116 AESENCLAST \TMP3, \XMM1 # Round 10
1117 AESENCLAST \TMP3, \XMM2
1118 AESENCLAST \TMP3, \XMM3
1119 AESENCLAST \TMP3, \XMM4
1120 movdqu HashKey_k(%arg2), \TMP5
1121 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1122 movdqu (%arg4,%r11,1), \TMP3
1123 pxor \TMP3, \XMM1 # Ciphertext/Plaintext XOR EK
1124 movdqu 16(%arg4,%r11,1), \TMP3
1125 pxor \TMP3, \XMM2 # Ciphertext/Plaintext XOR EK
1126 movdqu 32(%arg4,%r11,1), \TMP3
1127 pxor \TMP3, \XMM3 # Ciphertext/Plaintext XOR EK
1128 movdqu 48(%arg4,%r11,1), \TMP3
1129 pxor \TMP3, \XMM4 # Ciphertext/Plaintext XOR EK
1130 movdqu \XMM1, (%arg3,%r11,1) # Write to the ciphertext buffer
1131 movdqu \XMM2, 16(%arg3,%r11,1) # Write to the ciphertext buffer
1132 movdqu \XMM3, 32(%arg3,%r11,1) # Write to the ciphertext buffer
1133 movdqu \XMM4, 48(%arg3,%r11,1) # Write to the ciphertext buffer
1134 PSHUFB_XMM %xmm15, \XMM1 # perform a 16 byte swap
1135 PSHUFB_XMM %xmm15, \XMM2 # perform a 16 byte swap
1136 PSHUFB_XMM %xmm15, \XMM3 # perform a 16 byte swap
1137 PSHUFB_XMM %xmm15, \XMM4 # perform a 16 byte swap
1138
1139 pxor \TMP4, \TMP1
1140 pxor \XMM8, \XMM5
1141 pxor \TMP6, \TMP2
1142 pxor \TMP1, \TMP2
1143 pxor \XMM5, \TMP2
1144 movdqa \TMP2, \TMP3
1145 pslldq $8, \TMP3 # left shift TMP3 2 DWs
1146 psrldq $8, \TMP2 # right shift TMP2 2 DWs
1147 pxor \TMP3, \XMM5
1148 pxor \TMP2, \TMP1 # accumulate the results in TMP1:XMM5
1149
1150 # first phase of reduction
1151
1152 movdqa \XMM5, \TMP2
1153 movdqa \XMM5, \TMP3
1154 movdqa \XMM5, \TMP4
1155 # move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently
1156 pslld $31, \TMP2 # packed right shift << 31
1157 pslld $30, \TMP3 # packed right shift << 30
1158 pslld $25, \TMP4 # packed right shift << 25
1159 pxor \TMP3, \TMP2 # xor the shifted versions
1160 pxor \TMP4, \TMP2
1161 movdqa \TMP2, \TMP5
1162 psrldq $4, \TMP5 # right shift T5 1 DW
1163 pslldq $12, \TMP2 # left shift T2 3 DWs
1164 pxor \TMP2, \XMM5
1165
1166 # second phase of reduction
1167
1168 movdqa \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4
1169 movdqa \XMM5,\TMP3
1170 movdqa \XMM5,\TMP4
1171 psrld $1, \TMP2 # packed left shift >>1
1172 psrld $2, \TMP3 # packed left shift >>2
1173 psrld $7, \TMP4 # packed left shift >>7
1174 pxor \TMP3,\TMP2 # xor the shifted versions
1175 pxor \TMP4,\TMP2
1176 pxor \TMP5, \TMP2
1177 pxor \TMP2, \XMM5
1178 pxor \TMP1, \XMM5 # result is in TMP1
1179
1180 pxor \XMM5, \XMM1
1181 .endm
1182
1183 /*
1184 * decrypt 4 blocks at a time
1185 * ghash the 4 previously decrypted ciphertext blocks
1186 * arg1, %arg3, %arg4 are used as pointers only, not modified
1187 * %r11 is the data offset value
1188 */
1189 .macro GHASH_4_ENCRYPT_4_PARALLEL_DEC TMP1 TMP2 TMP3 TMP4 TMP5 \
1190 TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation
1191
1192 movdqa \XMM1, \XMM5
1193 movdqa \XMM2, \XMM6
1194 movdqa \XMM3, \XMM7
1195 movdqa \XMM4, \XMM8
1196
1197 movdqa SHUF_MASK(%rip), %xmm15
1198 # multiply TMP5 * HashKey using karatsuba
1199
1200 movdqa \XMM5, \TMP4
1201 pshufd $78, \XMM5, \TMP6
1202 pxor \XMM5, \TMP6
1203 paddd ONE(%rip), \XMM0 # INCR CNT
1204 movdqu HashKey_4(%arg2), \TMP5
1205 PCLMULQDQ 0x11, \TMP5, \TMP4 # TMP4 = a1*b1
1206 movdqa \XMM0, \XMM1
1207 paddd ONE(%rip), \XMM0 # INCR CNT
1208 movdqa \XMM0, \XMM2
1209 paddd ONE(%rip), \XMM0 # INCR CNT
1210 movdqa \XMM0, \XMM3
1211 paddd ONE(%rip), \XMM0 # INCR CNT
1212 movdqa \XMM0, \XMM4
1213 PSHUFB_XMM %xmm15, \XMM1 # perform a 16 byte swap
1214 PCLMULQDQ 0x00, \TMP5, \XMM5 # XMM5 = a0*b0
1215 PSHUFB_XMM %xmm15, \XMM2 # perform a 16 byte swap
1216 PSHUFB_XMM %xmm15, \XMM3 # perform a 16 byte swap
1217 PSHUFB_XMM %xmm15, \XMM4 # perform a 16 byte swap
1218
1219 pxor (%arg1), \XMM1
1220 pxor (%arg1), \XMM2
1221 pxor (%arg1), \XMM3
1222 pxor (%arg1), \XMM4
1223 movdqu HashKey_4_k(%arg2), \TMP5
1224 PCLMULQDQ 0x00, \TMP5, \TMP6 # TMP6 = (a1+a0)*(b1+b0)
1225 movaps 0x10(%arg1), \TMP1
1226 AESENC \TMP1, \XMM1 # Round 1
1227 AESENC \TMP1, \XMM2
1228 AESENC \TMP1, \XMM3
1229 AESENC \TMP1, \XMM4
1230 movaps 0x20(%arg1), \TMP1
1231 AESENC \TMP1, \XMM1 # Round 2
1232 AESENC \TMP1, \XMM2
1233 AESENC \TMP1, \XMM3
1234 AESENC \TMP1, \XMM4
1235 movdqa \XMM6, \TMP1
1236 pshufd $78, \XMM6, \TMP2
1237 pxor \XMM6, \TMP2
1238 movdqu HashKey_3(%arg2), \TMP5
1239 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1 * b1
1240 movaps 0x30(%arg1), \TMP3
1241 AESENC \TMP3, \XMM1 # Round 3
1242 AESENC \TMP3, \XMM2
1243 AESENC \TMP3, \XMM3
1244 AESENC \TMP3, \XMM4
1245 PCLMULQDQ 0x00, \TMP5, \XMM6 # XMM6 = a0*b0
1246 movaps 0x40(%arg1), \TMP3
1247 AESENC \TMP3, \XMM1 # Round 4
1248 AESENC \TMP3, \XMM2
1249 AESENC \TMP3, \XMM3
1250 AESENC \TMP3, \XMM4
1251 movdqu HashKey_3_k(%arg2), \TMP5
1252 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1253 movaps 0x50(%arg1), \TMP3
1254 AESENC \TMP3, \XMM1 # Round 5
1255 AESENC \TMP3, \XMM2
1256 AESENC \TMP3, \XMM3
1257 AESENC \TMP3, \XMM4
1258 pxor \TMP1, \TMP4
1259 # accumulate the results in TMP4:XMM5, TMP6 holds the middle part
1260 pxor \XMM6, \XMM5
1261 pxor \TMP2, \TMP6
1262 movdqa \XMM7, \TMP1
1263 pshufd $78, \XMM7, \TMP2
1264 pxor \XMM7, \TMP2
1265 movdqu HashKey_2(%arg2), \TMP5
1266
1267 # Multiply TMP5 * HashKey using karatsuba
1268
1269 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1270 movaps 0x60(%arg1), \TMP3
1271 AESENC \TMP3, \XMM1 # Round 6
1272 AESENC \TMP3, \XMM2
1273 AESENC \TMP3, \XMM3
1274 AESENC \TMP3, \XMM4
1275 PCLMULQDQ 0x00, \TMP5, \XMM7 # XMM7 = a0*b0
1276 movaps 0x70(%arg1), \TMP3
1277 AESENC \TMP3, \XMM1 # Round 7
1278 AESENC \TMP3, \XMM2
1279 AESENC \TMP3, \XMM3
1280 AESENC \TMP3, \XMM4
1281 movdqu HashKey_2_k(%arg2), \TMP5
1282 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1283 movaps 0x80(%arg1), \TMP3
1284 AESENC \TMP3, \XMM1 # Round 8
1285 AESENC \TMP3, \XMM2
1286 AESENC \TMP3, \XMM3
1287 AESENC \TMP3, \XMM4
1288 pxor \TMP1, \TMP4
1289 # accumulate the results in TMP4:XMM5, TMP6 holds the middle part
1290 pxor \XMM7, \XMM5
1291 pxor \TMP2, \TMP6
1292
1293 # Multiply XMM8 * HashKey
1294 # XMM8 and TMP5 hold the values for the two operands
1295
1296 movdqa \XMM8, \TMP1
1297 pshufd $78, \XMM8, \TMP2
1298 pxor \XMM8, \TMP2
1299 movdqu HashKey(%arg2), \TMP5
1300 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1301 movaps 0x90(%arg1), \TMP3
1302 AESENC \TMP3, \XMM1 # Round 9
1303 AESENC \TMP3, \XMM2
1304 AESENC \TMP3, \XMM3
1305 AESENC \TMP3, \XMM4
1306 PCLMULQDQ 0x00, \TMP5, \XMM8 # XMM8 = a0*b0
1307 lea 0xa0(%arg1),%r10
1308 mov keysize,%eax
1309 shr $2,%eax # 128->4, 192->6, 256->8
1310 sub $4,%eax # 128->0, 192->2, 256->4
1311 jz aes_loop_par_dec_done\@
1312
1313 aes_loop_par_dec\@:
1314 MOVADQ (%r10),\TMP3
1315 .irpc index, 1234
1316 AESENC \TMP3, %xmm\index
1317 .endr
1318 add $16,%r10
1319 sub $1,%eax
1320 jnz aes_loop_par_dec\@
1321
1322 aes_loop_par_dec_done\@:
1323 MOVADQ (%r10), \TMP3
1324 AESENCLAST \TMP3, \XMM1 # last round
1325 AESENCLAST \TMP3, \XMM2
1326 AESENCLAST \TMP3, \XMM3
1327 AESENCLAST \TMP3, \XMM4
1328 movdqu HashKey_k(%arg2), \TMP5
1329 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1330 movdqu (%arg4,%r11,1), \TMP3
1331 pxor \TMP3, \XMM1 # Ciphertext/Plaintext XOR EK
1332 movdqu \XMM1, (%arg3,%r11,1) # Write to plaintext buffer
1333 movdqa \TMP3, \XMM1
1334 movdqu 16(%arg4,%r11,1), \TMP3
1335 pxor \TMP3, \XMM2 # Ciphertext/Plaintext XOR EK
1336 movdqu \XMM2, 16(%arg3,%r11,1) # Write to plaintext buffer
1337 movdqa \TMP3, \XMM2
1338 movdqu 32(%arg4,%r11,1), \TMP3
1339 pxor \TMP3, \XMM3 # Ciphertext/Plaintext XOR EK
1340 movdqu \XMM3, 32(%arg3,%r11,1) # Write to plaintext buffer
1341 movdqa \TMP3, \XMM3
1342 movdqu 48(%arg4,%r11,1), \TMP3
1343 pxor \TMP3, \XMM4 # Ciphertext/Plaintext XOR EK
1344 movdqu \XMM4, 48(%arg3,%r11,1) # Write to plaintext buffer
1345 movdqa \TMP3, \XMM4
1346 PSHUFB_XMM %xmm15, \XMM1 # perform a 16 byte swap
1347 PSHUFB_XMM %xmm15, \XMM2 # perform a 16 byte swap
1348 PSHUFB_XMM %xmm15, \XMM3 # perform a 16 byte swap
1349 PSHUFB_XMM %xmm15, \XMM4 # perform a 16 byte swap
1350
1351 pxor \TMP4, \TMP1
1352 pxor \XMM8, \XMM5
1353 pxor \TMP6, \TMP2
1354 pxor \TMP1, \TMP2
1355 pxor \XMM5, \TMP2
1356 movdqa \TMP2, \TMP3
1357 pslldq $8, \TMP3 # left shift TMP3 2 DWs
1358 psrldq $8, \TMP2 # right shift TMP2 2 DWs
1359 pxor \TMP3, \XMM5
1360 pxor \TMP2, \TMP1 # accumulate the results in TMP1:XMM5
1361
1362 # first phase of reduction
1363
1364 movdqa \XMM5, \TMP2
1365 movdqa \XMM5, \TMP3
1366 movdqa \XMM5, \TMP4
1367 # move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently
1368 pslld $31, \TMP2 # packed right shift << 31
1369 pslld $30, \TMP3 # packed right shift << 30
1370 pslld $25, \TMP4 # packed right shift << 25
1371 pxor \TMP3, \TMP2 # xor the shifted versions
1372 pxor \TMP4, \TMP2
1373 movdqa \TMP2, \TMP5
1374 psrldq $4, \TMP5 # right shift T5 1 DW
1375 pslldq $12, \TMP2 # left shift T2 3 DWs
1376 pxor \TMP2, \XMM5
1377
1378 # second phase of reduction
1379
1380 movdqa \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4
1381 movdqa \XMM5,\TMP3
1382 movdqa \XMM5,\TMP4
1383 psrld $1, \TMP2 # packed left shift >>1
1384 psrld $2, \TMP3 # packed left shift >>2
1385 psrld $7, \TMP4 # packed left shift >>7
1386 pxor \TMP3,\TMP2 # xor the shifted versions
1387 pxor \TMP4,\TMP2
1388 pxor \TMP5, \TMP2
1389 pxor \TMP2, \XMM5
1390 pxor \TMP1, \XMM5 # result is in TMP1
1391
1392 pxor \XMM5, \XMM1
1393 .endm
1394
1395 /* GHASH the last 4 ciphertext blocks. */
1396 .macro GHASH_LAST_4 TMP1 TMP2 TMP3 TMP4 TMP5 TMP6 \
1397 TMP7 XMM1 XMM2 XMM3 XMM4 XMMDst
1398
1399 # Multiply TMP6 * HashKey (using Karatsuba)
1400
1401 movdqa \XMM1, \TMP6
1402 pshufd $78, \XMM1, \TMP2
1403 pxor \XMM1, \TMP2
1404 movdqu HashKey_4(%arg2), \TMP5
1405 PCLMULQDQ 0x11, \TMP5, \TMP6 # TMP6 = a1*b1
1406 PCLMULQDQ 0x00, \TMP5, \XMM1 # XMM1 = a0*b0
1407 movdqu HashKey_4_k(%arg2), \TMP4
1408 PCLMULQDQ 0x00, \TMP4, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1409 movdqa \XMM1, \XMMDst
1410 movdqa \TMP2, \XMM1 # result in TMP6, XMMDst, XMM1
1411
1412 # Multiply TMP1 * HashKey (using Karatsuba)
1413
1414 movdqa \XMM2, \TMP1
1415 pshufd $78, \XMM2, \TMP2
1416 pxor \XMM2, \TMP2
1417 movdqu HashKey_3(%arg2), \TMP5
1418 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1419 PCLMULQDQ 0x00, \TMP5, \XMM2 # XMM2 = a0*b0
1420 movdqu HashKey_3_k(%arg2), \TMP4
1421 PCLMULQDQ 0x00, \TMP4, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1422 pxor \TMP1, \TMP6
1423 pxor \XMM2, \XMMDst
1424 pxor \TMP2, \XMM1
1425 # results accumulated in TMP6, XMMDst, XMM1
1426
1427 # Multiply TMP1 * HashKey (using Karatsuba)
1428
1429 movdqa \XMM3, \TMP1
1430 pshufd $78, \XMM3, \TMP2
1431 pxor \XMM3, \TMP2
1432 movdqu HashKey_2(%arg2), \TMP5
1433 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1434 PCLMULQDQ 0x00, \TMP5, \XMM3 # XMM3 = a0*b0
1435 movdqu HashKey_2_k(%arg2), \TMP4
1436 PCLMULQDQ 0x00, \TMP4, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1437 pxor \TMP1, \TMP6
1438 pxor \XMM3, \XMMDst
1439 pxor \TMP2, \XMM1 # results accumulated in TMP6, XMMDst, XMM1
1440
1441 # Multiply TMP1 * HashKey (using Karatsuba)
1442 movdqa \XMM4, \TMP1
1443 pshufd $78, \XMM4, \TMP2
1444 pxor \XMM4, \TMP2
1445 movdqu HashKey(%arg2), \TMP5
1446 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1447 PCLMULQDQ 0x00, \TMP5, \XMM4 # XMM4 = a0*b0
1448 movdqu HashKey_k(%arg2), \TMP4
1449 PCLMULQDQ 0x00, \TMP4, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1450 pxor \TMP1, \TMP6
1451 pxor \XMM4, \XMMDst
1452 pxor \XMM1, \TMP2
1453 pxor \TMP6, \TMP2
1454 pxor \XMMDst, \TMP2
1455 # middle section of the temp results combined as in karatsuba algorithm
1456 movdqa \TMP2, \TMP4
1457 pslldq $8, \TMP4 # left shift TMP4 2 DWs
1458 psrldq $8, \TMP2 # right shift TMP2 2 DWs
1459 pxor \TMP4, \XMMDst
1460 pxor \TMP2, \TMP6
1461 # TMP6:XMMDst holds the result of the accumulated carry-less multiplications
1462 # first phase of the reduction
1463 movdqa \XMMDst, \TMP2
1464 movdqa \XMMDst, \TMP3
1465 movdqa \XMMDst, \TMP4
1466 # move XMMDst into TMP2, TMP3, TMP4 in order to perform 3 shifts independently
1467 pslld $31, \TMP2 # packed right shifting << 31
1468 pslld $30, \TMP3 # packed right shifting << 30
1469 pslld $25, \TMP4 # packed right shifting << 25
1470 pxor \TMP3, \TMP2 # xor the shifted versions
1471 pxor \TMP4, \TMP2
1472 movdqa \TMP2, \TMP7
1473 psrldq $4, \TMP7 # right shift TMP7 1 DW
1474 pslldq $12, \TMP2 # left shift TMP2 3 DWs
1475 pxor \TMP2, \XMMDst
1476
1477 # second phase of the reduction
1478 movdqa \XMMDst, \TMP2
1479 # make 3 copies of XMMDst for doing 3 shift operations
1480 movdqa \XMMDst, \TMP3
1481 movdqa \XMMDst, \TMP4
1482 psrld $1, \TMP2 # packed left shift >> 1
1483 psrld $2, \TMP3 # packed left shift >> 2
1484 psrld $7, \TMP4 # packed left shift >> 7
1485 pxor \TMP3, \TMP2 # xor the shifted versions
1486 pxor \TMP4, \TMP2
1487 pxor \TMP7, \TMP2
1488 pxor \TMP2, \XMMDst
1489 pxor \TMP6, \XMMDst # reduced result is in XMMDst
1490 .endm
1491
1492
1493 /* Encryption of a single block
1494 * uses eax & r10
1495 */
1496
1497 .macro ENCRYPT_SINGLE_BLOCK XMM0 TMP1
1498
1499 pxor (%arg1), \XMM0
1500 mov keysize,%eax
1501 shr $2,%eax # 128->4, 192->6, 256->8
1502 add $5,%eax # 128->9, 192->11, 256->13
1503 lea 16(%arg1), %r10 # get first expanded key address
1504
1505 _esb_loop_\@:
1506 MOVADQ (%r10),\TMP1
1507 AESENC \TMP1,\XMM0
1508 add $16,%r10
1509 sub $1,%eax
1510 jnz _esb_loop_\@
1511
1512 MOVADQ (%r10),\TMP1
1513 AESENCLAST \TMP1,\XMM0
1514 .endm
1515 /*****************************************************************************
1516 * void aesni_gcm_dec(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary.
1517 * struct gcm_context_data *data
1518 * // Context data
1519 * u8 *out, // Plaintext output. Encrypt in-place is allowed.
1520 * const u8 *in, // Ciphertext input
1521 * u64 plaintext_len, // Length of data in bytes for decryption.
1522 * u8 *iv, // Pre-counter block j0: 4 byte salt (from Security Association)
1523 * // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
1524 * // concatenated with 0x00000001. 16-byte aligned pointer.
1525 * u8 *hash_subkey, // H, the Hash sub key input. Data starts on a 16-byte boundary.
1526 * const u8 *aad, // Additional Authentication Data (AAD)
1527 * u64 aad_len, // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes
1528 * u8 *auth_tag, // Authenticated Tag output. The driver will compare this to the
1529 * // given authentication tag and only return the plaintext if they match.
1530 * u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16
1531 * // (most likely), 12 or 8.
1532 *
1533 * Assumptions:
1534 *
1535 * keys:
1536 * keys are pre-expanded and aligned to 16 bytes. we are using the first
1537 * set of 11 keys in the data structure void *aes_ctx
1538 *
1539 * iv:
1540 * 0 1 2 3
1541 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1542 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1543 * | Salt (From the SA) |
1544 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1545 * | Initialization Vector |
1546 * | (This is the sequence number from IPSec header) |
1547 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1548 * | 0x1 |
1549 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1550 *
1551 *
1552 *
1553 * AAD:
1554 * AAD padded to 128 bits with 0
1555 * for example, assume AAD is a u32 vector
1556 *
1557 * if AAD is 8 bytes:
1558 * AAD[3] = {A0, A1};
1559 * padded AAD in xmm register = {A1 A0 0 0}
1560 *
1561 * 0 1 2 3
1562 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1563 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1564 * | SPI (A1) |
1565 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1566 * | 32-bit Sequence Number (A0) |
1567 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1568 * | 0x0 |
1569 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1570 *
1571 * AAD Format with 32-bit Sequence Number
1572 *
1573 * if AAD is 12 bytes:
1574 * AAD[3] = {A0, A1, A2};
1575 * padded AAD in xmm register = {A2 A1 A0 0}
1576 *
1577 * 0 1 2 3
1578 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1579 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1580 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1581 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1582 * | SPI (A2) |
1583 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1584 * | 64-bit Extended Sequence Number {A1,A0} |
1585 * | |
1586 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1587 * | 0x0 |
1588 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1589 *
1590 * AAD Format with 64-bit Extended Sequence Number
1591 *
1592 * poly = x^128 + x^127 + x^126 + x^121 + 1
1593 *
1594 *****************************************************************************/
1595 ENTRY(aesni_gcm_dec)
1596 FUNC_SAVE
1597
1598 GCM_INIT %arg6, arg7, arg8, arg9
1599 GCM_ENC_DEC dec
1600 GCM_COMPLETE arg10, arg11
1601 FUNC_RESTORE
1602 ret
1603 ENDPROC(aesni_gcm_dec)
1604
1605
1606 /*****************************************************************************
1607 * void aesni_gcm_enc(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary.
1608 * struct gcm_context_data *data
1609 * // Context data
1610 * u8 *out, // Ciphertext output. Encrypt in-place is allowed.
1611 * const u8 *in, // Plaintext input
1612 * u64 plaintext_len, // Length of data in bytes for encryption.
1613 * u8 *iv, // Pre-counter block j0: 4 byte salt (from Security Association)
1614 * // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
1615 * // concatenated with 0x00000001. 16-byte aligned pointer.
1616 * u8 *hash_subkey, // H, the Hash sub key input. Data starts on a 16-byte boundary.
1617 * const u8 *aad, // Additional Authentication Data (AAD)
1618 * u64 aad_len, // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes
1619 * u8 *auth_tag, // Authenticated Tag output.
1620 * u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16 (most likely),
1621 * // 12 or 8.
1622 *
1623 * Assumptions:
1624 *
1625 * keys:
1626 * keys are pre-expanded and aligned to 16 bytes. we are using the
1627 * first set of 11 keys in the data structure void *aes_ctx
1628 *
1629 *
1630 * iv:
1631 * 0 1 2 3
1632 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1633 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1634 * | Salt (From the SA) |
1635 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1636 * | Initialization Vector |
1637 * | (This is the sequence number from IPSec header) |
1638 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1639 * | 0x1 |
1640 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1641 *
1642 *
1643 *
1644 * AAD:
1645 * AAD padded to 128 bits with 0
1646 * for example, assume AAD is a u32 vector
1647 *
1648 * if AAD is 8 bytes:
1649 * AAD[3] = {A0, A1};
1650 * padded AAD in xmm register = {A1 A0 0 0}
1651 *
1652 * 0 1 2 3
1653 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1654 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1655 * | SPI (A1) |
1656 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1657 * | 32-bit Sequence Number (A0) |
1658 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1659 * | 0x0 |
1660 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1661 *
1662 * AAD Format with 32-bit Sequence Number
1663 *
1664 * if AAD is 12 bytes:
1665 * AAD[3] = {A0, A1, A2};
1666 * padded AAD in xmm register = {A2 A1 A0 0}
1667 *
1668 * 0 1 2 3
1669 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1670 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1671 * | SPI (A2) |
1672 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1673 * | 64-bit Extended Sequence Number {A1,A0} |
1674 * | |
1675 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1676 * | 0x0 |
1677 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1678 *
1679 * AAD Format with 64-bit Extended Sequence Number
1680 *
1681 * poly = x^128 + x^127 + x^126 + x^121 + 1
1682 ***************************************************************************/
1683 ENTRY(aesni_gcm_enc)
1684 FUNC_SAVE
1685
1686 GCM_INIT %arg6, arg7, arg8, arg9
1687 GCM_ENC_DEC enc
1688
1689 GCM_COMPLETE arg10, arg11
1690 FUNC_RESTORE
1691 ret
1692 ENDPROC(aesni_gcm_enc)
1693
1694 /*****************************************************************************
1695 * void aesni_gcm_init(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary.
1696 * struct gcm_context_data *data,
1697 * // context data
1698 * u8 *iv, // Pre-counter block j0: 4 byte salt (from Security Association)
1699 * // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
1700 * // concatenated with 0x00000001. 16-byte aligned pointer.
1701 * u8 *hash_subkey, // H, the Hash sub key input. Data starts on a 16-byte boundary.
1702 * const u8 *aad, // Additional Authentication Data (AAD)
1703 * u64 aad_len) // Length of AAD in bytes.
1704 */
1705 ENTRY(aesni_gcm_init)
1706 FUNC_SAVE
1707 GCM_INIT %arg3, %arg4,%arg5, %arg6
1708 FUNC_RESTORE
1709 ret
1710 ENDPROC(aesni_gcm_init)
1711
1712 /*****************************************************************************
1713 * void aesni_gcm_enc_update(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary.
1714 * struct gcm_context_data *data,
1715 * // context data
1716 * u8 *out, // Ciphertext output. Encrypt in-place is allowed.
1717 * const u8 *in, // Plaintext input
1718 * u64 plaintext_len, // Length of data in bytes for encryption.
1719 */
1720 ENTRY(aesni_gcm_enc_update)
1721 FUNC_SAVE
1722 GCM_ENC_DEC enc
1723 FUNC_RESTORE
1724 ret
1725 ENDPROC(aesni_gcm_enc_update)
1726
1727 /*****************************************************************************
1728 * void aesni_gcm_dec_update(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary.
1729 * struct gcm_context_data *data,
1730 * // context data
1731 * u8 *out, // Ciphertext output. Encrypt in-place is allowed.
1732 * const u8 *in, // Plaintext input
1733 * u64 plaintext_len, // Length of data in bytes for encryption.
1734 */
1735 ENTRY(aesni_gcm_dec_update)
1736 FUNC_SAVE
1737 GCM_ENC_DEC dec
1738 FUNC_RESTORE
1739 ret
1740 ENDPROC(aesni_gcm_dec_update)
1741
1742 /*****************************************************************************
1743 * void aesni_gcm_finalize(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary.
1744 * struct gcm_context_data *data,
1745 * // context data
1746 * u8 *auth_tag, // Authenticated Tag output.
1747 * u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16 (most likely),
1748 * // 12 or 8.
1749 */
1750 ENTRY(aesni_gcm_finalize)
1751 FUNC_SAVE
1752 GCM_COMPLETE %arg3 %arg4
1753 FUNC_RESTORE
1754 ret
1755 ENDPROC(aesni_gcm_finalize)
1756
1757 #endif
1758
1759
1760 .align 4
1761 _key_expansion_128:
1762 _key_expansion_256a:
1763 pshufd $0b11111111, %xmm1, %xmm1
1764 shufps $0b00010000, %xmm0, %xmm4
1765 pxor %xmm4, %xmm0
1766 shufps $0b10001100, %xmm0, %xmm4
1767 pxor %xmm4, %xmm0
1768 pxor %xmm1, %xmm0
1769 movaps %xmm0, (TKEYP)
1770 add $0x10, TKEYP
1771 ret
1772 ENDPROC(_key_expansion_128)
1773 ENDPROC(_key_expansion_256a)
1774
1775 .align 4
1776 _key_expansion_192a:
1777 pshufd $0b01010101, %xmm1, %xmm1
1778 shufps $0b00010000, %xmm0, %xmm4
1779 pxor %xmm4, %xmm0
1780 shufps $0b10001100, %xmm0, %xmm4
1781 pxor %xmm4, %xmm0
1782 pxor %xmm1, %xmm0
1783
1784 movaps %xmm2, %xmm5
1785 movaps %xmm2, %xmm6
1786 pslldq $4, %xmm5
1787 pshufd $0b11111111, %xmm0, %xmm3
1788 pxor %xmm3, %xmm2
1789 pxor %xmm5, %xmm2
1790
1791 movaps %xmm0, %xmm1
1792 shufps $0b01000100, %xmm0, %xmm6
1793 movaps %xmm6, (TKEYP)
1794 shufps $0b01001110, %xmm2, %xmm1
1795 movaps %xmm1, 0x10(TKEYP)
1796 add $0x20, TKEYP
1797 ret
1798 ENDPROC(_key_expansion_192a)
1799
1800 .align 4
1801 _key_expansion_192b:
1802 pshufd $0b01010101, %xmm1, %xmm1
1803 shufps $0b00010000, %xmm0, %xmm4
1804 pxor %xmm4, %xmm0
1805 shufps $0b10001100, %xmm0, %xmm4
1806 pxor %xmm4, %xmm0
1807 pxor %xmm1, %xmm0
1808
1809 movaps %xmm2, %xmm5
1810 pslldq $4, %xmm5
1811 pshufd $0b11111111, %xmm0, %xmm3
1812 pxor %xmm3, %xmm2
1813 pxor %xmm5, %xmm2
1814
1815 movaps %xmm0, (TKEYP)
1816 add $0x10, TKEYP
1817 ret
1818 ENDPROC(_key_expansion_192b)
1819
1820 .align 4
1821 _key_expansion_256b:
1822 pshufd $0b10101010, %xmm1, %xmm1
1823 shufps $0b00010000, %xmm2, %xmm4
1824 pxor %xmm4, %xmm2
1825 shufps $0b10001100, %xmm2, %xmm4
1826 pxor %xmm4, %xmm2
1827 pxor %xmm1, %xmm2
1828 movaps %xmm2, (TKEYP)
1829 add $0x10, TKEYP
1830 ret
1831 ENDPROC(_key_expansion_256b)
1832
1833 /*
1834 * int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
1835 * unsigned int key_len)
1836 */
1837 ENTRY(aesni_set_key)
1838 FRAME_BEGIN
1839 #ifndef __x86_64__
1840 pushl KEYP
1841 movl (FRAME_OFFSET+8)(%esp), KEYP # ctx
1842 movl (FRAME_OFFSET+12)(%esp), UKEYP # in_key
1843 movl (FRAME_OFFSET+16)(%esp), %edx # key_len
1844 #endif
1845 movups (UKEYP), %xmm0 # user key (first 16 bytes)
1846 movaps %xmm0, (KEYP)
1847 lea 0x10(KEYP), TKEYP # key addr
1848 movl %edx, 480(KEYP)
1849 pxor %xmm4, %xmm4 # xmm4 is assumed 0 in _key_expansion_x
1850 cmp $24, %dl
1851 jb .Lenc_key128
1852 je .Lenc_key192
1853 movups 0x10(UKEYP), %xmm2 # other user key
1854 movaps %xmm2, (TKEYP)
1855 add $0x10, TKEYP
1856 AESKEYGENASSIST 0x1 %xmm2 %xmm1 # round 1
1857 call _key_expansion_256a
1858 AESKEYGENASSIST 0x1 %xmm0 %xmm1
1859 call _key_expansion_256b
1860 AESKEYGENASSIST 0x2 %xmm2 %xmm1 # round 2
1861 call _key_expansion_256a
1862 AESKEYGENASSIST 0x2 %xmm0 %xmm1
1863 call _key_expansion_256b
1864 AESKEYGENASSIST 0x4 %xmm2 %xmm1 # round 3
1865 call _key_expansion_256a
1866 AESKEYGENASSIST 0x4 %xmm0 %xmm1
1867 call _key_expansion_256b
1868 AESKEYGENASSIST 0x8 %xmm2 %xmm1 # round 4
1869 call _key_expansion_256a
1870 AESKEYGENASSIST 0x8 %xmm0 %xmm1
1871 call _key_expansion_256b
1872 AESKEYGENASSIST 0x10 %xmm2 %xmm1 # round 5
1873 call _key_expansion_256a
1874 AESKEYGENASSIST 0x10 %xmm0 %xmm1
1875 call _key_expansion_256b
1876 AESKEYGENASSIST 0x20 %xmm2 %xmm1 # round 6
1877 call _key_expansion_256a
1878 AESKEYGENASSIST 0x20 %xmm0 %xmm1
1879 call _key_expansion_256b
1880 AESKEYGENASSIST 0x40 %xmm2 %xmm1 # round 7
1881 call _key_expansion_256a
1882 jmp .Ldec_key
1883 .Lenc_key192:
1884 movq 0x10(UKEYP), %xmm2 # other user key
1885 AESKEYGENASSIST 0x1 %xmm2 %xmm1 # round 1
1886 call _key_expansion_192a
1887 AESKEYGENASSIST 0x2 %xmm2 %xmm1 # round 2
1888 call _key_expansion_192b
1889 AESKEYGENASSIST 0x4 %xmm2 %xmm1 # round 3
1890 call _key_expansion_192a
1891 AESKEYGENASSIST 0x8 %xmm2 %xmm1 # round 4
1892 call _key_expansion_192b
1893 AESKEYGENASSIST 0x10 %xmm2 %xmm1 # round 5
1894 call _key_expansion_192a
1895 AESKEYGENASSIST 0x20 %xmm2 %xmm1 # round 6
1896 call _key_expansion_192b
1897 AESKEYGENASSIST 0x40 %xmm2 %xmm1 # round 7
1898 call _key_expansion_192a
1899 AESKEYGENASSIST 0x80 %xmm2 %xmm1 # round 8
1900 call _key_expansion_192b
1901 jmp .Ldec_key
1902 .Lenc_key128:
1903 AESKEYGENASSIST 0x1 %xmm0 %xmm1 # round 1
1904 call _key_expansion_128
1905 AESKEYGENASSIST 0x2 %xmm0 %xmm1 # round 2
1906 call _key_expansion_128
1907 AESKEYGENASSIST 0x4 %xmm0 %xmm1 # round 3
1908 call _key_expansion_128
1909 AESKEYGENASSIST 0x8 %xmm0 %xmm1 # round 4
1910 call _key_expansion_128
1911 AESKEYGENASSIST 0x10 %xmm0 %xmm1 # round 5
1912 call _key_expansion_128
1913 AESKEYGENASSIST 0x20 %xmm0 %xmm1 # round 6
1914 call _key_expansion_128
1915 AESKEYGENASSIST 0x40 %xmm0 %xmm1 # round 7
1916 call _key_expansion_128
1917 AESKEYGENASSIST 0x80 %xmm0 %xmm1 # round 8
1918 call _key_expansion_128
1919 AESKEYGENASSIST 0x1b %xmm0 %xmm1 # round 9
1920 call _key_expansion_128
1921 AESKEYGENASSIST 0x36 %xmm0 %xmm1 # round 10
1922 call _key_expansion_128
1923 .Ldec_key:
1924 sub $0x10, TKEYP
1925 movaps (KEYP), %xmm0
1926 movaps (TKEYP), %xmm1
1927 movaps %xmm0, 240(TKEYP)
1928 movaps %xmm1, 240(KEYP)
1929 add $0x10, KEYP
1930 lea 240-16(TKEYP), UKEYP
1931 .align 4
1932 .Ldec_key_loop:
1933 movaps (KEYP), %xmm0
1934 AESIMC %xmm0 %xmm1
1935 movaps %xmm1, (UKEYP)
1936 add $0x10, KEYP
1937 sub $0x10, UKEYP
1938 cmp TKEYP, KEYP
1939 jb .Ldec_key_loop
1940 xor AREG, AREG
1941 #ifndef __x86_64__
1942 popl KEYP
1943 #endif
1944 FRAME_END
1945 ret
1946 ENDPROC(aesni_set_key)
1947
1948 /*
1949 * void aesni_enc(struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src)
1950 */
1951 ENTRY(aesni_enc)
1952 FRAME_BEGIN
1953 #ifndef __x86_64__
1954 pushl KEYP
1955 pushl KLEN
1956 movl (FRAME_OFFSET+12)(%esp), KEYP # ctx
1957 movl (FRAME_OFFSET+16)(%esp), OUTP # dst
1958 movl (FRAME_OFFSET+20)(%esp), INP # src
1959 #endif
1960 movl 480(KEYP), KLEN # key length
1961 movups (INP), STATE # input
1962 call _aesni_enc1
1963 movups STATE, (OUTP) # output
1964 #ifndef __x86_64__
1965 popl KLEN
1966 popl KEYP
1967 #endif
1968 FRAME_END
1969 ret
1970 ENDPROC(aesni_enc)
1971
1972 /*
1973 * _aesni_enc1: internal ABI
1974 * input:
1975 * KEYP: key struct pointer
1976 * KLEN: round count
1977 * STATE: initial state (input)
1978 * output:
1979 * STATE: finial state (output)
1980 * changed:
1981 * KEY
1982 * TKEYP (T1)
1983 */
1984 .align 4
1985 _aesni_enc1:
1986 movaps (KEYP), KEY # key
1987 mov KEYP, TKEYP
1988 pxor KEY, STATE # round 0
1989 add $0x30, TKEYP
1990 cmp $24, KLEN
1991 jb .Lenc128
1992 lea 0x20(TKEYP), TKEYP
1993 je .Lenc192
1994 add $0x20, TKEYP
1995 movaps -0x60(TKEYP), KEY
1996 AESENC KEY STATE
1997 movaps -0x50(TKEYP), KEY
1998 AESENC KEY STATE
1999 .align 4
2000 .Lenc192:
2001 movaps -0x40(TKEYP), KEY
2002 AESENC KEY STATE
2003 movaps -0x30(TKEYP), KEY
2004 AESENC KEY STATE
2005 .align 4
2006 .Lenc128:
2007 movaps -0x20(TKEYP), KEY
2008 AESENC KEY STATE
2009 movaps -0x10(TKEYP), KEY
2010 AESENC KEY STATE
2011 movaps (TKEYP), KEY
2012 AESENC KEY STATE
2013 movaps 0x10(TKEYP), KEY
2014 AESENC KEY STATE
2015 movaps 0x20(TKEYP), KEY
2016 AESENC KEY STATE
2017 movaps 0x30(TKEYP), KEY
2018 AESENC KEY STATE
2019 movaps 0x40(TKEYP), KEY
2020 AESENC KEY STATE
2021 movaps 0x50(TKEYP), KEY
2022 AESENC KEY STATE
2023 movaps 0x60(TKEYP), KEY
2024 AESENC KEY STATE
2025 movaps 0x70(TKEYP), KEY
2026 AESENCLAST KEY STATE
2027 ret
2028 ENDPROC(_aesni_enc1)
2029
2030 /*
2031 * _aesni_enc4: internal ABI
2032 * input:
2033 * KEYP: key struct pointer
2034 * KLEN: round count
2035 * STATE1: initial state (input)
2036 * STATE2
2037 * STATE3
2038 * STATE4
2039 * output:
2040 * STATE1: finial state (output)
2041 * STATE2
2042 * STATE3
2043 * STATE4
2044 * changed:
2045 * KEY
2046 * TKEYP (T1)
2047 */
2048 .align 4
2049 _aesni_enc4:
2050 movaps (KEYP), KEY # key
2051 mov KEYP, TKEYP
2052 pxor KEY, STATE1 # round 0
2053 pxor KEY, STATE2
2054 pxor KEY, STATE3
2055 pxor KEY, STATE4
2056 add $0x30, TKEYP
2057 cmp $24, KLEN
2058 jb .L4enc128
2059 lea 0x20(TKEYP), TKEYP
2060 je .L4enc192
2061 add $0x20, TKEYP
2062 movaps -0x60(TKEYP), KEY
2063 AESENC KEY STATE1
2064 AESENC KEY STATE2
2065 AESENC KEY STATE3
2066 AESENC KEY STATE4
2067 movaps -0x50(TKEYP), KEY
2068 AESENC KEY STATE1
2069 AESENC KEY STATE2
2070 AESENC KEY STATE3
2071 AESENC KEY STATE4
2072 #.align 4
2073 .L4enc192:
2074 movaps -0x40(TKEYP), KEY
2075 AESENC KEY STATE1
2076 AESENC KEY STATE2
2077 AESENC KEY STATE3
2078 AESENC KEY STATE4
2079 movaps -0x30(TKEYP), KEY
2080 AESENC KEY STATE1
2081 AESENC KEY STATE2
2082 AESENC KEY STATE3
2083 AESENC KEY STATE4
2084 #.align 4
2085 .L4enc128:
2086 movaps -0x20(TKEYP), KEY
2087 AESENC KEY STATE1
2088 AESENC KEY STATE2
2089 AESENC KEY STATE3
2090 AESENC KEY STATE4
2091 movaps -0x10(TKEYP), KEY
2092 AESENC KEY STATE1
2093 AESENC KEY STATE2
2094 AESENC KEY STATE3
2095 AESENC KEY STATE4
2096 movaps (TKEYP), KEY
2097 AESENC KEY STATE1
2098 AESENC KEY STATE2
2099 AESENC KEY STATE3
2100 AESENC KEY STATE4
2101 movaps 0x10(TKEYP), KEY
2102 AESENC KEY STATE1
2103 AESENC KEY STATE2
2104 AESENC KEY STATE3
2105 AESENC KEY STATE4
2106 movaps 0x20(TKEYP), KEY
2107 AESENC KEY STATE1
2108 AESENC KEY STATE2
2109 AESENC KEY STATE3
2110 AESENC KEY STATE4
2111 movaps 0x30(TKEYP), KEY
2112 AESENC KEY STATE1
2113 AESENC KEY STATE2
2114 AESENC KEY STATE3
2115 AESENC KEY STATE4
2116 movaps 0x40(TKEYP), KEY
2117 AESENC KEY STATE1
2118 AESENC KEY STATE2
2119 AESENC KEY STATE3
2120 AESENC KEY STATE4
2121 movaps 0x50(TKEYP), KEY
2122 AESENC KEY STATE1
2123 AESENC KEY STATE2
2124 AESENC KEY STATE3
2125 AESENC KEY STATE4
2126 movaps 0x60(TKEYP), KEY
2127 AESENC KEY STATE1
2128 AESENC KEY STATE2
2129 AESENC KEY STATE3
2130 AESENC KEY STATE4
2131 movaps 0x70(TKEYP), KEY
2132 AESENCLAST KEY STATE1 # last round
2133 AESENCLAST KEY STATE2
2134 AESENCLAST KEY STATE3
2135 AESENCLAST KEY STATE4
2136 ret
2137 ENDPROC(_aesni_enc4)
2138
2139 /*
2140 * void aesni_dec (struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src)
2141 */
2142 ENTRY(aesni_dec)
2143 FRAME_BEGIN
2144 #ifndef __x86_64__
2145 pushl KEYP
2146 pushl KLEN
2147 movl (FRAME_OFFSET+12)(%esp), KEYP # ctx
2148 movl (FRAME_OFFSET+16)(%esp), OUTP # dst
2149 movl (FRAME_OFFSET+20)(%esp), INP # src
2150 #endif
2151 mov 480(KEYP), KLEN # key length
2152 add $240, KEYP
2153 movups (INP), STATE # input
2154 call _aesni_dec1
2155 movups STATE, (OUTP) #output
2156 #ifndef __x86_64__
2157 popl KLEN
2158 popl KEYP
2159 #endif
2160 FRAME_END
2161 ret
2162 ENDPROC(aesni_dec)
2163
2164 /*
2165 * _aesni_dec1: internal ABI
2166 * input:
2167 * KEYP: key struct pointer
2168 * KLEN: key length
2169 * STATE: initial state (input)
2170 * output:
2171 * STATE: finial state (output)
2172 * changed:
2173 * KEY
2174 * TKEYP (T1)
2175 */
2176 .align 4
2177 _aesni_dec1:
2178 movaps (KEYP), KEY # key
2179 mov KEYP, TKEYP
2180 pxor KEY, STATE # round 0
2181 add $0x30, TKEYP
2182 cmp $24, KLEN
2183 jb .Ldec128
2184 lea 0x20(TKEYP), TKEYP
2185 je .Ldec192
2186 add $0x20, TKEYP
2187 movaps -0x60(TKEYP), KEY
2188 AESDEC KEY STATE
2189 movaps -0x50(TKEYP), KEY
2190 AESDEC KEY STATE
2191 .align 4
2192 .Ldec192:
2193 movaps -0x40(TKEYP), KEY
2194 AESDEC KEY STATE
2195 movaps -0x30(TKEYP), KEY
2196 AESDEC KEY STATE
2197 .align 4
2198 .Ldec128:
2199 movaps -0x20(TKEYP), KEY
2200 AESDEC KEY STATE
2201 movaps -0x10(TKEYP), KEY
2202 AESDEC KEY STATE
2203 movaps (TKEYP), KEY
2204 AESDEC KEY STATE
2205 movaps 0x10(TKEYP), KEY
2206 AESDEC KEY STATE
2207 movaps 0x20(TKEYP), KEY
2208 AESDEC KEY STATE
2209 movaps 0x30(TKEYP), KEY
2210 AESDEC KEY STATE
2211 movaps 0x40(TKEYP), KEY
2212 AESDEC KEY STATE
2213 movaps 0x50(TKEYP), KEY
2214 AESDEC KEY STATE
2215 movaps 0x60(TKEYP), KEY
2216 AESDEC KEY STATE
2217 movaps 0x70(TKEYP), KEY
2218 AESDECLAST KEY STATE
2219 ret
2220 ENDPROC(_aesni_dec1)
2221
2222 /*
2223 * _aesni_dec4: internal ABI
2224 * input:
2225 * KEYP: key struct pointer
2226 * KLEN: key length
2227 * STATE1: initial state (input)
2228 * STATE2
2229 * STATE3
2230 * STATE4
2231 * output:
2232 * STATE1: finial state (output)
2233 * STATE2
2234 * STATE3
2235 * STATE4
2236 * changed:
2237 * KEY
2238 * TKEYP (T1)
2239 */
2240 .align 4
2241 _aesni_dec4:
2242 movaps (KEYP), KEY # key
2243 mov KEYP, TKEYP
2244 pxor KEY, STATE1 # round 0
2245 pxor KEY, STATE2
2246 pxor KEY, STATE3
2247 pxor KEY, STATE4
2248 add $0x30, TKEYP
2249 cmp $24, KLEN
2250 jb .L4dec128
2251 lea 0x20(TKEYP), TKEYP
2252 je .L4dec192
2253 add $0x20, TKEYP
2254 movaps -0x60(TKEYP), KEY
2255 AESDEC KEY STATE1
2256 AESDEC KEY STATE2
2257 AESDEC KEY STATE3
2258 AESDEC KEY STATE4
2259 movaps -0x50(TKEYP), KEY
2260 AESDEC KEY STATE1
2261 AESDEC KEY STATE2
2262 AESDEC KEY STATE3
2263 AESDEC KEY STATE4
2264 .align 4
2265 .L4dec192:
2266 movaps -0x40(TKEYP), KEY
2267 AESDEC KEY STATE1
2268 AESDEC KEY STATE2
2269 AESDEC KEY STATE3
2270 AESDEC KEY STATE4
2271 movaps -0x30(TKEYP), KEY
2272 AESDEC KEY STATE1
2273 AESDEC KEY STATE2
2274 AESDEC KEY STATE3
2275 AESDEC KEY STATE4
2276 .align 4
2277 .L4dec128:
2278 movaps -0x20(TKEYP), KEY
2279 AESDEC KEY STATE1
2280 AESDEC KEY STATE2
2281 AESDEC KEY STATE3
2282 AESDEC KEY STATE4
2283 movaps -0x10(TKEYP), KEY
2284 AESDEC KEY STATE1
2285 AESDEC KEY STATE2
2286 AESDEC KEY STATE3
2287 AESDEC KEY STATE4
2288 movaps (TKEYP), KEY
2289 AESDEC KEY STATE1
2290 AESDEC KEY STATE2
2291 AESDEC KEY STATE3
2292 AESDEC KEY STATE4
2293 movaps 0x10(TKEYP), KEY
2294 AESDEC KEY STATE1
2295 AESDEC KEY STATE2
2296 AESDEC KEY STATE3
2297 AESDEC KEY STATE4
2298 movaps 0x20(TKEYP), KEY
2299 AESDEC KEY STATE1
2300 AESDEC KEY STATE2
2301 AESDEC KEY STATE3
2302 AESDEC KEY STATE4
2303 movaps 0x30(TKEYP), KEY
2304 AESDEC KEY STATE1
2305 AESDEC KEY STATE2
2306 AESDEC KEY STATE3
2307 AESDEC KEY STATE4
2308 movaps 0x40(TKEYP), KEY
2309 AESDEC KEY STATE1
2310 AESDEC KEY STATE2
2311 AESDEC KEY STATE3
2312 AESDEC KEY STATE4
2313 movaps 0x50(TKEYP), KEY
2314 AESDEC KEY STATE1
2315 AESDEC KEY STATE2
2316 AESDEC KEY STATE3
2317 AESDEC KEY STATE4
2318 movaps 0x60(TKEYP), KEY
2319 AESDEC KEY STATE1
2320 AESDEC KEY STATE2
2321 AESDEC KEY STATE3
2322 AESDEC KEY STATE4
2323 movaps 0x70(TKEYP), KEY
2324 AESDECLAST KEY STATE1 # last round
2325 AESDECLAST KEY STATE2
2326 AESDECLAST KEY STATE3
2327 AESDECLAST KEY STATE4
2328 ret
2329 ENDPROC(_aesni_dec4)
2330
2331 /*
2332 * void aesni_ecb_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2333 * size_t len)
2334 */
2335 ENTRY(aesni_ecb_enc)
2336 FRAME_BEGIN
2337 #ifndef __x86_64__
2338 pushl LEN
2339 pushl KEYP
2340 pushl KLEN
2341 movl (FRAME_OFFSET+16)(%esp), KEYP # ctx
2342 movl (FRAME_OFFSET+20)(%esp), OUTP # dst
2343 movl (FRAME_OFFSET+24)(%esp), INP # src
2344 movl (FRAME_OFFSET+28)(%esp), LEN # len
2345 #endif
2346 test LEN, LEN # check length
2347 jz .Lecb_enc_ret
2348 mov 480(KEYP), KLEN
2349 cmp $16, LEN
2350 jb .Lecb_enc_ret
2351 cmp $64, LEN
2352 jb .Lecb_enc_loop1
2353 .align 4
2354 .Lecb_enc_loop4:
2355 movups (INP), STATE1
2356 movups 0x10(INP), STATE2
2357 movups 0x20(INP), STATE3
2358 movups 0x30(INP), STATE4
2359 call _aesni_enc4
2360 movups STATE1, (OUTP)
2361 movups STATE2, 0x10(OUTP)
2362 movups STATE3, 0x20(OUTP)
2363 movups STATE4, 0x30(OUTP)
2364 sub $64, LEN
2365 add $64, INP
2366 add $64, OUTP
2367 cmp $64, LEN
2368 jge .Lecb_enc_loop4
2369 cmp $16, LEN
2370 jb .Lecb_enc_ret
2371 .align 4
2372 .Lecb_enc_loop1:
2373 movups (INP), STATE1
2374 call _aesni_enc1
2375 movups STATE1, (OUTP)
2376 sub $16, LEN
2377 add $16, INP
2378 add $16, OUTP
2379 cmp $16, LEN
2380 jge .Lecb_enc_loop1
2381 .Lecb_enc_ret:
2382 #ifndef __x86_64__
2383 popl KLEN
2384 popl KEYP
2385 popl LEN
2386 #endif
2387 FRAME_END
2388 ret
2389 ENDPROC(aesni_ecb_enc)
2390
2391 /*
2392 * void aesni_ecb_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2393 * size_t len);
2394 */
2395 ENTRY(aesni_ecb_dec)
2396 FRAME_BEGIN
2397 #ifndef __x86_64__
2398 pushl LEN
2399 pushl KEYP
2400 pushl KLEN
2401 movl (FRAME_OFFSET+16)(%esp), KEYP # ctx
2402 movl (FRAME_OFFSET+20)(%esp), OUTP # dst
2403 movl (FRAME_OFFSET+24)(%esp), INP # src
2404 movl (FRAME_OFFSET+28)(%esp), LEN # len
2405 #endif
2406 test LEN, LEN
2407 jz .Lecb_dec_ret
2408 mov 480(KEYP), KLEN
2409 add $240, KEYP
2410 cmp $16, LEN
2411 jb .Lecb_dec_ret
2412 cmp $64, LEN
2413 jb .Lecb_dec_loop1
2414 .align 4
2415 .Lecb_dec_loop4:
2416 movups (INP), STATE1
2417 movups 0x10(INP), STATE2
2418 movups 0x20(INP), STATE3
2419 movups 0x30(INP), STATE4
2420 call _aesni_dec4
2421 movups STATE1, (OUTP)
2422 movups STATE2, 0x10(OUTP)
2423 movups STATE3, 0x20(OUTP)
2424 movups STATE4, 0x30(OUTP)
2425 sub $64, LEN
2426 add $64, INP
2427 add $64, OUTP
2428 cmp $64, LEN
2429 jge .Lecb_dec_loop4
2430 cmp $16, LEN
2431 jb .Lecb_dec_ret
2432 .align 4
2433 .Lecb_dec_loop1:
2434 movups (INP), STATE1
2435 call _aesni_dec1
2436 movups STATE1, (OUTP)
2437 sub $16, LEN
2438 add $16, INP
2439 add $16, OUTP
2440 cmp $16, LEN
2441 jge .Lecb_dec_loop1
2442 .Lecb_dec_ret:
2443 #ifndef __x86_64__
2444 popl KLEN
2445 popl KEYP
2446 popl LEN
2447 #endif
2448 FRAME_END
2449 ret
2450 ENDPROC(aesni_ecb_dec)
2451
2452 /*
2453 * void aesni_cbc_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2454 * size_t len, u8 *iv)
2455 */
2456 ENTRY(aesni_cbc_enc)
2457 FRAME_BEGIN
2458 #ifndef __x86_64__
2459 pushl IVP
2460 pushl LEN
2461 pushl KEYP
2462 pushl KLEN
2463 movl (FRAME_OFFSET+20)(%esp), KEYP # ctx
2464 movl (FRAME_OFFSET+24)(%esp), OUTP # dst
2465 movl (FRAME_OFFSET+28)(%esp), INP # src
2466 movl (FRAME_OFFSET+32)(%esp), LEN # len
2467 movl (FRAME_OFFSET+36)(%esp), IVP # iv
2468 #endif
2469 cmp $16, LEN
2470 jb .Lcbc_enc_ret
2471 mov 480(KEYP), KLEN
2472 movups (IVP), STATE # load iv as initial state
2473 .align 4
2474 .Lcbc_enc_loop:
2475 movups (INP), IN # load input
2476 pxor IN, STATE
2477 call _aesni_enc1
2478 movups STATE, (OUTP) # store output
2479 sub $16, LEN
2480 add $16, INP
2481 add $16, OUTP
2482 cmp $16, LEN
2483 jge .Lcbc_enc_loop
2484 movups STATE, (IVP)
2485 .Lcbc_enc_ret:
2486 #ifndef __x86_64__
2487 popl KLEN
2488 popl KEYP
2489 popl LEN
2490 popl IVP
2491 #endif
2492 FRAME_END
2493 ret
2494 ENDPROC(aesni_cbc_enc)
2495
2496 /*
2497 * void aesni_cbc_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2498 * size_t len, u8 *iv)
2499 */
2500 ENTRY(aesni_cbc_dec)
2501 FRAME_BEGIN
2502 #ifndef __x86_64__
2503 pushl IVP
2504 pushl LEN
2505 pushl KEYP
2506 pushl KLEN
2507 movl (FRAME_OFFSET+20)(%esp), KEYP # ctx
2508 movl (FRAME_OFFSET+24)(%esp), OUTP # dst
2509 movl (FRAME_OFFSET+28)(%esp), INP # src
2510 movl (FRAME_OFFSET+32)(%esp), LEN # len
2511 movl (FRAME_OFFSET+36)(%esp), IVP # iv
2512 #endif
2513 cmp $16, LEN
2514 jb .Lcbc_dec_just_ret
2515 mov 480(KEYP), KLEN
2516 add $240, KEYP
2517 movups (IVP), IV
2518 cmp $64, LEN
2519 jb .Lcbc_dec_loop1
2520 .align 4
2521 .Lcbc_dec_loop4:
2522 movups (INP), IN1
2523 movaps IN1, STATE1
2524 movups 0x10(INP), IN2
2525 movaps IN2, STATE2
2526 #ifdef __x86_64__
2527 movups 0x20(INP), IN3
2528 movaps IN3, STATE3
2529 movups 0x30(INP), IN4
2530 movaps IN4, STATE4
2531 #else
2532 movups 0x20(INP), IN1
2533 movaps IN1, STATE3
2534 movups 0x30(INP), IN2
2535 movaps IN2, STATE4
2536 #endif
2537 call _aesni_dec4
2538 pxor IV, STATE1
2539 #ifdef __x86_64__
2540 pxor IN1, STATE2
2541 pxor IN2, STATE3
2542 pxor IN3, STATE4
2543 movaps IN4, IV
2544 #else
2545 pxor IN1, STATE4
2546 movaps IN2, IV
2547 movups (INP), IN1
2548 pxor IN1, STATE2
2549 movups 0x10(INP), IN2
2550 pxor IN2, STATE3
2551 #endif
2552 movups STATE1, (OUTP)
2553 movups STATE2, 0x10(OUTP)
2554 movups STATE3, 0x20(OUTP)
2555 movups STATE4, 0x30(OUTP)
2556 sub $64, LEN
2557 add $64, INP
2558 add $64, OUTP
2559 cmp $64, LEN
2560 jge .Lcbc_dec_loop4
2561 cmp $16, LEN
2562 jb .Lcbc_dec_ret
2563 .align 4
2564 .Lcbc_dec_loop1:
2565 movups (INP), IN
2566 movaps IN, STATE
2567 call _aesni_dec1
2568 pxor IV, STATE
2569 movups STATE, (OUTP)
2570 movaps IN, IV
2571 sub $16, LEN
2572 add $16, INP
2573 add $16, OUTP
2574 cmp $16, LEN
2575 jge .Lcbc_dec_loop1
2576 .Lcbc_dec_ret:
2577 movups IV, (IVP)
2578 .Lcbc_dec_just_ret:
2579 #ifndef __x86_64__
2580 popl KLEN
2581 popl KEYP
2582 popl LEN
2583 popl IVP
2584 #endif
2585 FRAME_END
2586 ret
2587 ENDPROC(aesni_cbc_dec)
2588
2589 #ifdef __x86_64__
2590 .pushsection .rodata
2591 .align 16
2592 .Lbswap_mask:
2593 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
2594 .popsection
2595
2596 /*
2597 * _aesni_inc_init: internal ABI
2598 * setup registers used by _aesni_inc
2599 * input:
2600 * IV
2601 * output:
2602 * CTR: == IV, in little endian
2603 * TCTR_LOW: == lower qword of CTR
2604 * INC: == 1, in little endian
2605 * BSWAP_MASK == endian swapping mask
2606 */
2607 .align 4
2608 _aesni_inc_init:
2609 movaps .Lbswap_mask, BSWAP_MASK
2610 movaps IV, CTR
2611 PSHUFB_XMM BSWAP_MASK CTR
2612 mov $1, TCTR_LOW
2613 MOVQ_R64_XMM TCTR_LOW INC
2614 MOVQ_R64_XMM CTR TCTR_LOW
2615 ret
2616 ENDPROC(_aesni_inc_init)
2617
2618 /*
2619 * _aesni_inc: internal ABI
2620 * Increase IV by 1, IV is in big endian
2621 * input:
2622 * IV
2623 * CTR: == IV, in little endian
2624 * TCTR_LOW: == lower qword of CTR
2625 * INC: == 1, in little endian
2626 * BSWAP_MASK == endian swapping mask
2627 * output:
2628 * IV: Increase by 1
2629 * changed:
2630 * CTR: == output IV, in little endian
2631 * TCTR_LOW: == lower qword of CTR
2632 */
2633 .align 4
2634 _aesni_inc:
2635 paddq INC, CTR
2636 add $1, TCTR_LOW
2637 jnc .Linc_low
2638 pslldq $8, INC
2639 paddq INC, CTR
2640 psrldq $8, INC
2641 .Linc_low:
2642 movaps CTR, IV
2643 PSHUFB_XMM BSWAP_MASK IV
2644 ret
2645 ENDPROC(_aesni_inc)
2646
2647 /*
2648 * void aesni_ctr_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2649 * size_t len, u8 *iv)
2650 */
2651 ENTRY(aesni_ctr_enc)
2652 FRAME_BEGIN
2653 cmp $16, LEN
2654 jb .Lctr_enc_just_ret
2655 mov 480(KEYP), KLEN
2656 movups (IVP), IV
2657 call _aesni_inc_init
2658 cmp $64, LEN
2659 jb .Lctr_enc_loop1
2660 .align 4
2661 .Lctr_enc_loop4:
2662 movaps IV, STATE1
2663 call _aesni_inc
2664 movups (INP), IN1
2665 movaps IV, STATE2
2666 call _aesni_inc
2667 movups 0x10(INP), IN2
2668 movaps IV, STATE3
2669 call _aesni_inc
2670 movups 0x20(INP), IN3
2671 movaps IV, STATE4
2672 call _aesni_inc
2673 movups 0x30(INP), IN4
2674 call _aesni_enc4
2675 pxor IN1, STATE1
2676 movups STATE1, (OUTP)
2677 pxor IN2, STATE2
2678 movups STATE2, 0x10(OUTP)
2679 pxor IN3, STATE3
2680 movups STATE3, 0x20(OUTP)
2681 pxor IN4, STATE4
2682 movups STATE4, 0x30(OUTP)
2683 sub $64, LEN
2684 add $64, INP
2685 add $64, OUTP
2686 cmp $64, LEN
2687 jge .Lctr_enc_loop4
2688 cmp $16, LEN
2689 jb .Lctr_enc_ret
2690 .align 4
2691 .Lctr_enc_loop1:
2692 movaps IV, STATE
2693 call _aesni_inc
2694 movups (INP), IN
2695 call _aesni_enc1
2696 pxor IN, STATE
2697 movups STATE, (OUTP)
2698 sub $16, LEN
2699 add $16, INP
2700 add $16, OUTP
2701 cmp $16, LEN
2702 jge .Lctr_enc_loop1
2703 .Lctr_enc_ret:
2704 movups IV, (IVP)
2705 .Lctr_enc_just_ret:
2706 FRAME_END
2707 ret
2708 ENDPROC(aesni_ctr_enc)
2709
2710 /*
2711 * _aesni_gf128mul_x_ble: internal ABI
2712 * Multiply in GF(2^128) for XTS IVs
2713 * input:
2714 * IV: current IV
2715 * GF128MUL_MASK == mask with 0x87 and 0x01
2716 * output:
2717 * IV: next IV
2718 * changed:
2719 * CTR: == temporary value
2720 */
2721 #define _aesni_gf128mul_x_ble() \
2722 pshufd $0x13, IV, CTR; \
2723 paddq IV, IV; \
2724 psrad $31, CTR; \
2725 pand GF128MUL_MASK, CTR; \
2726 pxor CTR, IV;
2727
2728 /*
2729 * void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2730 * bool enc, u8 *iv)
2731 */
2732 ENTRY(aesni_xts_crypt8)
2733 FRAME_BEGIN
2734 cmpb $0, %cl
2735 movl $0, %ecx
2736 movl $240, %r10d
2737 leaq _aesni_enc4, %r11
2738 leaq _aesni_dec4, %rax
2739 cmovel %r10d, %ecx
2740 cmoveq %rax, %r11
2741
2742 movdqa .Lgf128mul_x_ble_mask, GF128MUL_MASK
2743 movups (IVP), IV
2744
2745 mov 480(KEYP), KLEN
2746 addq %rcx, KEYP
2747
2748 movdqa IV, STATE1
2749 movdqu 0x00(INP), INC
2750 pxor INC, STATE1
2751 movdqu IV, 0x00(OUTP)
2752
2753 _aesni_gf128mul_x_ble()
2754 movdqa IV, STATE2
2755 movdqu 0x10(INP), INC
2756 pxor INC, STATE2
2757 movdqu IV, 0x10(OUTP)
2758
2759 _aesni_gf128mul_x_ble()
2760 movdqa IV, STATE3
2761 movdqu 0x20(INP), INC
2762 pxor INC, STATE3
2763 movdqu IV, 0x20(OUTP)
2764
2765 _aesni_gf128mul_x_ble()
2766 movdqa IV, STATE4
2767 movdqu 0x30(INP), INC
2768 pxor INC, STATE4
2769 movdqu IV, 0x30(OUTP)
2770
2771 CALL_NOSPEC %r11
2772
2773 movdqu 0x00(OUTP), INC
2774 pxor INC, STATE1
2775 movdqu STATE1, 0x00(OUTP)
2776
2777 _aesni_gf128mul_x_ble()
2778 movdqa IV, STATE1
2779 movdqu 0x40(INP), INC
2780 pxor INC, STATE1
2781 movdqu IV, 0x40(OUTP)
2782
2783 movdqu 0x10(OUTP), INC
2784 pxor INC, STATE2
2785 movdqu STATE2, 0x10(OUTP)
2786
2787 _aesni_gf128mul_x_ble()
2788 movdqa IV, STATE2
2789 movdqu 0x50(INP), INC
2790 pxor INC, STATE2
2791 movdqu IV, 0x50(OUTP)
2792
2793 movdqu 0x20(OUTP), INC
2794 pxor INC, STATE3
2795 movdqu STATE3, 0x20(OUTP)
2796
2797 _aesni_gf128mul_x_ble()
2798 movdqa IV, STATE3
2799 movdqu 0x60(INP), INC
2800 pxor INC, STATE3
2801 movdqu IV, 0x60(OUTP)
2802
2803 movdqu 0x30(OUTP), INC
2804 pxor INC, STATE4
2805 movdqu STATE4, 0x30(OUTP)
2806
2807 _aesni_gf128mul_x_ble()
2808 movdqa IV, STATE4
2809 movdqu 0x70(INP), INC
2810 pxor INC, STATE4
2811 movdqu IV, 0x70(OUTP)
2812
2813 _aesni_gf128mul_x_ble()
2814 movups IV, (IVP)
2815
2816 CALL_NOSPEC %r11
2817
2818 movdqu 0x40(OUTP), INC
2819 pxor INC, STATE1
2820 movdqu STATE1, 0x40(OUTP)
2821
2822 movdqu 0x50(OUTP), INC
2823 pxor INC, STATE2
2824 movdqu STATE2, 0x50(OUTP)
2825
2826 movdqu 0x60(OUTP), INC
2827 pxor INC, STATE3
2828 movdqu STATE3, 0x60(OUTP)
2829
2830 movdqu 0x70(OUTP), INC
2831 pxor INC, STATE4
2832 movdqu STATE4, 0x70(OUTP)
2833
2834 FRAME_END
2835 ret
2836 ENDPROC(aesni_xts_crypt8)
2837
2838 #endif