]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/crypto/camellia-aesni-avx2-asm_64.S
Merge tag 'ceph-for-4.11-rc1' of git://github.com/ceph/ceph-client
[mirror_ubuntu-artful-kernel.git] / arch / x86 / crypto / camellia-aesni-avx2-asm_64.S
1 /*
2 * x86_64/AVX2/AES-NI assembler implementation of Camellia
3 *
4 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 */
12
13 #include <linux/linkage.h>
14 #include <asm/frame.h>
15
16 #define CAMELLIA_TABLE_BYTE_LEN 272
17
18 /* struct camellia_ctx: */
19 #define key_table 0
20 #define key_length CAMELLIA_TABLE_BYTE_LEN
21
22 /* register macros */
23 #define CTX %rdi
24 #define RIO %r8
25
26 /**********************************************************************
27 helper macros
28 **********************************************************************/
29 #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
30 vpand x, mask4bit, tmp0; \
31 vpandn x, mask4bit, x; \
32 vpsrld $4, x, x; \
33 \
34 vpshufb tmp0, lo_t, tmp0; \
35 vpshufb x, hi_t, x; \
36 vpxor tmp0, x, x;
37
38 #define ymm0_x xmm0
39 #define ymm1_x xmm1
40 #define ymm2_x xmm2
41 #define ymm3_x xmm3
42 #define ymm4_x xmm4
43 #define ymm5_x xmm5
44 #define ymm6_x xmm6
45 #define ymm7_x xmm7
46 #define ymm8_x xmm8
47 #define ymm9_x xmm9
48 #define ymm10_x xmm10
49 #define ymm11_x xmm11
50 #define ymm12_x xmm12
51 #define ymm13_x xmm13
52 #define ymm14_x xmm14
53 #define ymm15_x xmm15
54
55 /**********************************************************************
56 32-way camellia
57 **********************************************************************/
58
59 /*
60 * IN:
61 * x0..x7: byte-sliced AB state
62 * mem_cd: register pointer storing CD state
63 * key: index for key material
64 * OUT:
65 * x0..x7: new byte-sliced CD state
66 */
67 #define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
68 t7, mem_cd, key) \
69 /* \
70 * S-function with AES subbytes \
71 */ \
72 vbroadcasti128 .Linv_shift_row, t4; \
73 vpbroadcastd .L0f0f0f0f, t7; \
74 vbroadcasti128 .Lpre_tf_lo_s1, t5; \
75 vbroadcasti128 .Lpre_tf_hi_s1, t6; \
76 vbroadcasti128 .Lpre_tf_lo_s4, t2; \
77 vbroadcasti128 .Lpre_tf_hi_s4, t3; \
78 \
79 /* AES inverse shift rows */ \
80 vpshufb t4, x0, x0; \
81 vpshufb t4, x7, x7; \
82 vpshufb t4, x3, x3; \
83 vpshufb t4, x6, x6; \
84 vpshufb t4, x2, x2; \
85 vpshufb t4, x5, x5; \
86 vpshufb t4, x1, x1; \
87 vpshufb t4, x4, x4; \
88 \
89 /* prefilter sboxes 1, 2 and 3 */ \
90 /* prefilter sbox 4 */ \
91 filter_8bit(x0, t5, t6, t7, t4); \
92 filter_8bit(x7, t5, t6, t7, t4); \
93 vextracti128 $1, x0, t0##_x; \
94 vextracti128 $1, x7, t1##_x; \
95 filter_8bit(x3, t2, t3, t7, t4); \
96 filter_8bit(x6, t2, t3, t7, t4); \
97 vextracti128 $1, x3, t3##_x; \
98 vextracti128 $1, x6, t2##_x; \
99 filter_8bit(x2, t5, t6, t7, t4); \
100 filter_8bit(x5, t5, t6, t7, t4); \
101 filter_8bit(x1, t5, t6, t7, t4); \
102 filter_8bit(x4, t5, t6, t7, t4); \
103 \
104 vpxor t4##_x, t4##_x, t4##_x; \
105 \
106 /* AES subbytes + AES shift rows */ \
107 vextracti128 $1, x2, t6##_x; \
108 vextracti128 $1, x5, t5##_x; \
109 vaesenclast t4##_x, x0##_x, x0##_x; \
110 vaesenclast t4##_x, t0##_x, t0##_x; \
111 vinserti128 $1, t0##_x, x0, x0; \
112 vaesenclast t4##_x, x7##_x, x7##_x; \
113 vaesenclast t4##_x, t1##_x, t1##_x; \
114 vinserti128 $1, t1##_x, x7, x7; \
115 vaesenclast t4##_x, x3##_x, x3##_x; \
116 vaesenclast t4##_x, t3##_x, t3##_x; \
117 vinserti128 $1, t3##_x, x3, x3; \
118 vaesenclast t4##_x, x6##_x, x6##_x; \
119 vaesenclast t4##_x, t2##_x, t2##_x; \
120 vinserti128 $1, t2##_x, x6, x6; \
121 vextracti128 $1, x1, t3##_x; \
122 vextracti128 $1, x4, t2##_x; \
123 vbroadcasti128 .Lpost_tf_lo_s1, t0; \
124 vbroadcasti128 .Lpost_tf_hi_s1, t1; \
125 vaesenclast t4##_x, x2##_x, x2##_x; \
126 vaesenclast t4##_x, t6##_x, t6##_x; \
127 vinserti128 $1, t6##_x, x2, x2; \
128 vaesenclast t4##_x, x5##_x, x5##_x; \
129 vaesenclast t4##_x, t5##_x, t5##_x; \
130 vinserti128 $1, t5##_x, x5, x5; \
131 vaesenclast t4##_x, x1##_x, x1##_x; \
132 vaesenclast t4##_x, t3##_x, t3##_x; \
133 vinserti128 $1, t3##_x, x1, x1; \
134 vaesenclast t4##_x, x4##_x, x4##_x; \
135 vaesenclast t4##_x, t2##_x, t2##_x; \
136 vinserti128 $1, t2##_x, x4, x4; \
137 \
138 /* postfilter sboxes 1 and 4 */ \
139 vbroadcasti128 .Lpost_tf_lo_s3, t2; \
140 vbroadcasti128 .Lpost_tf_hi_s3, t3; \
141 filter_8bit(x0, t0, t1, t7, t6); \
142 filter_8bit(x7, t0, t1, t7, t6); \
143 filter_8bit(x3, t0, t1, t7, t6); \
144 filter_8bit(x6, t0, t1, t7, t6); \
145 \
146 /* postfilter sbox 3 */ \
147 vbroadcasti128 .Lpost_tf_lo_s2, t4; \
148 vbroadcasti128 .Lpost_tf_hi_s2, t5; \
149 filter_8bit(x2, t2, t3, t7, t6); \
150 filter_8bit(x5, t2, t3, t7, t6); \
151 \
152 vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
153 \
154 /* postfilter sbox 2 */ \
155 filter_8bit(x1, t4, t5, t7, t2); \
156 filter_8bit(x4, t4, t5, t7, t2); \
157 vpxor t7, t7, t7; \
158 \
159 vpsrldq $1, t0, t1; \
160 vpsrldq $2, t0, t2; \
161 vpshufb t7, t1, t1; \
162 vpsrldq $3, t0, t3; \
163 \
164 /* P-function */ \
165 vpxor x5, x0, x0; \
166 vpxor x6, x1, x1; \
167 vpxor x7, x2, x2; \
168 vpxor x4, x3, x3; \
169 \
170 vpshufb t7, t2, t2; \
171 vpsrldq $4, t0, t4; \
172 vpshufb t7, t3, t3; \
173 vpsrldq $5, t0, t5; \
174 vpshufb t7, t4, t4; \
175 \
176 vpxor x2, x4, x4; \
177 vpxor x3, x5, x5; \
178 vpxor x0, x6, x6; \
179 vpxor x1, x7, x7; \
180 \
181 vpsrldq $6, t0, t6; \
182 vpshufb t7, t5, t5; \
183 vpshufb t7, t6, t6; \
184 \
185 vpxor x7, x0, x0; \
186 vpxor x4, x1, x1; \
187 vpxor x5, x2, x2; \
188 vpxor x6, x3, x3; \
189 \
190 vpxor x3, x4, x4; \
191 vpxor x0, x5, x5; \
192 vpxor x1, x6, x6; \
193 vpxor x2, x7, x7; /* note: high and low parts swapped */ \
194 \
195 /* Add key material and result to CD (x becomes new CD) */ \
196 \
197 vpxor t6, x1, x1; \
198 vpxor 5 * 32(mem_cd), x1, x1; \
199 \
200 vpsrldq $7, t0, t6; \
201 vpshufb t7, t0, t0; \
202 vpshufb t7, t6, t7; \
203 \
204 vpxor t7, x0, x0; \
205 vpxor 4 * 32(mem_cd), x0, x0; \
206 \
207 vpxor t5, x2, x2; \
208 vpxor 6 * 32(mem_cd), x2, x2; \
209 \
210 vpxor t4, x3, x3; \
211 vpxor 7 * 32(mem_cd), x3, x3; \
212 \
213 vpxor t3, x4, x4; \
214 vpxor 0 * 32(mem_cd), x4, x4; \
215 \
216 vpxor t2, x5, x5; \
217 vpxor 1 * 32(mem_cd), x5, x5; \
218 \
219 vpxor t1, x6, x6; \
220 vpxor 2 * 32(mem_cd), x6, x6; \
221 \
222 vpxor t0, x7, x7; \
223 vpxor 3 * 32(mem_cd), x7, x7;
224
225 /*
226 * Size optimization... with inlined roundsm32 binary would be over 5 times
227 * larger and would only marginally faster.
228 */
229 .align 8
230 roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
231 roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
232 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
233 %rcx, (%r9));
234 ret;
235 ENDPROC(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
236
237 .align 8
238 roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
239 roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
240 %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
241 %rax, (%r9));
242 ret;
243 ENDPROC(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
244
245 /*
246 * IN/OUT:
247 * x0..x7: byte-sliced AB state preloaded
248 * mem_ab: byte-sliced AB state in memory
249 * mem_cb: byte-sliced CD state in memory
250 */
251 #define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
252 y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
253 leaq (key_table + (i) * 8)(CTX), %r9; \
254 call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
255 \
256 vmovdqu x0, 4 * 32(mem_cd); \
257 vmovdqu x1, 5 * 32(mem_cd); \
258 vmovdqu x2, 6 * 32(mem_cd); \
259 vmovdqu x3, 7 * 32(mem_cd); \
260 vmovdqu x4, 0 * 32(mem_cd); \
261 vmovdqu x5, 1 * 32(mem_cd); \
262 vmovdqu x6, 2 * 32(mem_cd); \
263 vmovdqu x7, 3 * 32(mem_cd); \
264 \
265 leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
266 call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
267 \
268 store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
269
270 #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
271
272 #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
273 /* Store new AB state */ \
274 vmovdqu x4, 4 * 32(mem_ab); \
275 vmovdqu x5, 5 * 32(mem_ab); \
276 vmovdqu x6, 6 * 32(mem_ab); \
277 vmovdqu x7, 7 * 32(mem_ab); \
278 vmovdqu x0, 0 * 32(mem_ab); \
279 vmovdqu x1, 1 * 32(mem_ab); \
280 vmovdqu x2, 2 * 32(mem_ab); \
281 vmovdqu x3, 3 * 32(mem_ab);
282
283 #define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
284 y6, y7, mem_ab, mem_cd, i) \
285 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
286 y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
287 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
288 y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
289 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
290 y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
291
292 #define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
293 y6, y7, mem_ab, mem_cd, i) \
294 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
295 y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
296 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
297 y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
298 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
299 y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
300
301 /*
302 * IN:
303 * v0..3: byte-sliced 32-bit integers
304 * OUT:
305 * v0..3: (IN <<< 1)
306 */
307 #define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
308 vpcmpgtb v0, zero, t0; \
309 vpaddb v0, v0, v0; \
310 vpabsb t0, t0; \
311 \
312 vpcmpgtb v1, zero, t1; \
313 vpaddb v1, v1, v1; \
314 vpabsb t1, t1; \
315 \
316 vpcmpgtb v2, zero, t2; \
317 vpaddb v2, v2, v2; \
318 vpabsb t2, t2; \
319 \
320 vpor t0, v1, v1; \
321 \
322 vpcmpgtb v3, zero, t0; \
323 vpaddb v3, v3, v3; \
324 vpabsb t0, t0; \
325 \
326 vpor t1, v2, v2; \
327 vpor t2, v3, v3; \
328 vpor t0, v0, v0;
329
330 /*
331 * IN:
332 * r: byte-sliced AB state in memory
333 * l: byte-sliced CD state in memory
334 * OUT:
335 * x0..x7: new byte-sliced CD state
336 */
337 #define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
338 tt1, tt2, tt3, kll, klr, krl, krr) \
339 /* \
340 * t0 = kll; \
341 * t0 &= ll; \
342 * lr ^= rol32(t0, 1); \
343 */ \
344 vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
345 vpxor tt0, tt0, tt0; \
346 vpshufb tt0, t0, t3; \
347 vpsrldq $1, t0, t0; \
348 vpshufb tt0, t0, t2; \
349 vpsrldq $1, t0, t0; \
350 vpshufb tt0, t0, t1; \
351 vpsrldq $1, t0, t0; \
352 vpshufb tt0, t0, t0; \
353 \
354 vpand l0, t0, t0; \
355 vpand l1, t1, t1; \
356 vpand l2, t2, t2; \
357 vpand l3, t3, t3; \
358 \
359 rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
360 \
361 vpxor l4, t0, l4; \
362 vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
363 vmovdqu l4, 4 * 32(l); \
364 vpxor l5, t1, l5; \
365 vmovdqu l5, 5 * 32(l); \
366 vpxor l6, t2, l6; \
367 vmovdqu l6, 6 * 32(l); \
368 vpxor l7, t3, l7; \
369 vmovdqu l7, 7 * 32(l); \
370 \
371 /* \
372 * t2 = krr; \
373 * t2 |= rr; \
374 * rl ^= t2; \
375 */ \
376 \
377 vpshufb tt0, t0, t3; \
378 vpsrldq $1, t0, t0; \
379 vpshufb tt0, t0, t2; \
380 vpsrldq $1, t0, t0; \
381 vpshufb tt0, t0, t1; \
382 vpsrldq $1, t0, t0; \
383 vpshufb tt0, t0, t0; \
384 \
385 vpor 4 * 32(r), t0, t0; \
386 vpor 5 * 32(r), t1, t1; \
387 vpor 6 * 32(r), t2, t2; \
388 vpor 7 * 32(r), t3, t3; \
389 \
390 vpxor 0 * 32(r), t0, t0; \
391 vpxor 1 * 32(r), t1, t1; \
392 vpxor 2 * 32(r), t2, t2; \
393 vpxor 3 * 32(r), t3, t3; \
394 vmovdqu t0, 0 * 32(r); \
395 vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
396 vmovdqu t1, 1 * 32(r); \
397 vmovdqu t2, 2 * 32(r); \
398 vmovdqu t3, 3 * 32(r); \
399 \
400 /* \
401 * t2 = krl; \
402 * t2 &= rl; \
403 * rr ^= rol32(t2, 1); \
404 */ \
405 vpshufb tt0, t0, t3; \
406 vpsrldq $1, t0, t0; \
407 vpshufb tt0, t0, t2; \
408 vpsrldq $1, t0, t0; \
409 vpshufb tt0, t0, t1; \
410 vpsrldq $1, t0, t0; \
411 vpshufb tt0, t0, t0; \
412 \
413 vpand 0 * 32(r), t0, t0; \
414 vpand 1 * 32(r), t1, t1; \
415 vpand 2 * 32(r), t2, t2; \
416 vpand 3 * 32(r), t3, t3; \
417 \
418 rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
419 \
420 vpxor 4 * 32(r), t0, t0; \
421 vpxor 5 * 32(r), t1, t1; \
422 vpxor 6 * 32(r), t2, t2; \
423 vpxor 7 * 32(r), t3, t3; \
424 vmovdqu t0, 4 * 32(r); \
425 vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
426 vmovdqu t1, 5 * 32(r); \
427 vmovdqu t2, 6 * 32(r); \
428 vmovdqu t3, 7 * 32(r); \
429 \
430 /* \
431 * t0 = klr; \
432 * t0 |= lr; \
433 * ll ^= t0; \
434 */ \
435 \
436 vpshufb tt0, t0, t3; \
437 vpsrldq $1, t0, t0; \
438 vpshufb tt0, t0, t2; \
439 vpsrldq $1, t0, t0; \
440 vpshufb tt0, t0, t1; \
441 vpsrldq $1, t0, t0; \
442 vpshufb tt0, t0, t0; \
443 \
444 vpor l4, t0, t0; \
445 vpor l5, t1, t1; \
446 vpor l6, t2, t2; \
447 vpor l7, t3, t3; \
448 \
449 vpxor l0, t0, l0; \
450 vmovdqu l0, 0 * 32(l); \
451 vpxor l1, t1, l1; \
452 vmovdqu l1, 1 * 32(l); \
453 vpxor l2, t2, l2; \
454 vmovdqu l2, 2 * 32(l); \
455 vpxor l3, t3, l3; \
456 vmovdqu l3, 3 * 32(l);
457
458 #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
459 vpunpckhdq x1, x0, t2; \
460 vpunpckldq x1, x0, x0; \
461 \
462 vpunpckldq x3, x2, t1; \
463 vpunpckhdq x3, x2, x2; \
464 \
465 vpunpckhqdq t1, x0, x1; \
466 vpunpcklqdq t1, x0, x0; \
467 \
468 vpunpckhqdq x2, t2, x3; \
469 vpunpcklqdq x2, t2, x2;
470
471 #define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
472 a3, b3, c3, d3, st0, st1) \
473 vmovdqu d2, st0; \
474 vmovdqu d3, st1; \
475 transpose_4x4(a0, a1, a2, a3, d2, d3); \
476 transpose_4x4(b0, b1, b2, b3, d2, d3); \
477 vmovdqu st0, d2; \
478 vmovdqu st1, d3; \
479 \
480 vmovdqu a0, st0; \
481 vmovdqu a1, st1; \
482 transpose_4x4(c0, c1, c2, c3, a0, a1); \
483 transpose_4x4(d0, d1, d2, d3, a0, a1); \
484 \
485 vbroadcasti128 .Lshufb_16x16b, a0; \
486 vmovdqu st1, a1; \
487 vpshufb a0, a2, a2; \
488 vpshufb a0, a3, a3; \
489 vpshufb a0, b0, b0; \
490 vpshufb a0, b1, b1; \
491 vpshufb a0, b2, b2; \
492 vpshufb a0, b3, b3; \
493 vpshufb a0, a1, a1; \
494 vpshufb a0, c0, c0; \
495 vpshufb a0, c1, c1; \
496 vpshufb a0, c2, c2; \
497 vpshufb a0, c3, c3; \
498 vpshufb a0, d0, d0; \
499 vpshufb a0, d1, d1; \
500 vpshufb a0, d2, d2; \
501 vpshufb a0, d3, d3; \
502 vmovdqu d3, st1; \
503 vmovdqu st0, d3; \
504 vpshufb a0, d3, a0; \
505 vmovdqu d2, st0; \
506 \
507 transpose_4x4(a0, b0, c0, d0, d2, d3); \
508 transpose_4x4(a1, b1, c1, d1, d2, d3); \
509 vmovdqu st0, d2; \
510 vmovdqu st1, d3; \
511 \
512 vmovdqu b0, st0; \
513 vmovdqu b1, st1; \
514 transpose_4x4(a2, b2, c2, d2, b0, b1); \
515 transpose_4x4(a3, b3, c3, d3, b0, b1); \
516 vmovdqu st0, b0; \
517 vmovdqu st1, b1; \
518 /* does not adjust output bytes inside vectors */
519
520 /* load blocks to registers and apply pre-whitening */
521 #define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
522 y6, y7, rio, key) \
523 vpbroadcastq key, x0; \
524 vpshufb .Lpack_bswap, x0, x0; \
525 \
526 vpxor 0 * 32(rio), x0, y7; \
527 vpxor 1 * 32(rio), x0, y6; \
528 vpxor 2 * 32(rio), x0, y5; \
529 vpxor 3 * 32(rio), x0, y4; \
530 vpxor 4 * 32(rio), x0, y3; \
531 vpxor 5 * 32(rio), x0, y2; \
532 vpxor 6 * 32(rio), x0, y1; \
533 vpxor 7 * 32(rio), x0, y0; \
534 vpxor 8 * 32(rio), x0, x7; \
535 vpxor 9 * 32(rio), x0, x6; \
536 vpxor 10 * 32(rio), x0, x5; \
537 vpxor 11 * 32(rio), x0, x4; \
538 vpxor 12 * 32(rio), x0, x3; \
539 vpxor 13 * 32(rio), x0, x2; \
540 vpxor 14 * 32(rio), x0, x1; \
541 vpxor 15 * 32(rio), x0, x0;
542
543 /* byteslice pre-whitened blocks and store to temporary memory */
544 #define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
545 y6, y7, mem_ab, mem_cd) \
546 byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
547 y4, y5, y6, y7, (mem_ab), (mem_cd)); \
548 \
549 vmovdqu x0, 0 * 32(mem_ab); \
550 vmovdqu x1, 1 * 32(mem_ab); \
551 vmovdqu x2, 2 * 32(mem_ab); \
552 vmovdqu x3, 3 * 32(mem_ab); \
553 vmovdqu x4, 4 * 32(mem_ab); \
554 vmovdqu x5, 5 * 32(mem_ab); \
555 vmovdqu x6, 6 * 32(mem_ab); \
556 vmovdqu x7, 7 * 32(mem_ab); \
557 vmovdqu y0, 0 * 32(mem_cd); \
558 vmovdqu y1, 1 * 32(mem_cd); \
559 vmovdqu y2, 2 * 32(mem_cd); \
560 vmovdqu y3, 3 * 32(mem_cd); \
561 vmovdqu y4, 4 * 32(mem_cd); \
562 vmovdqu y5, 5 * 32(mem_cd); \
563 vmovdqu y6, 6 * 32(mem_cd); \
564 vmovdqu y7, 7 * 32(mem_cd);
565
566 /* de-byteslice, apply post-whitening and store blocks */
567 #define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
568 y5, y6, y7, key, stack_tmp0, stack_tmp1) \
569 byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
570 y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
571 \
572 vmovdqu x0, stack_tmp0; \
573 \
574 vpbroadcastq key, x0; \
575 vpshufb .Lpack_bswap, x0, x0; \
576 \
577 vpxor x0, y7, y7; \
578 vpxor x0, y6, y6; \
579 vpxor x0, y5, y5; \
580 vpxor x0, y4, y4; \
581 vpxor x0, y3, y3; \
582 vpxor x0, y2, y2; \
583 vpxor x0, y1, y1; \
584 vpxor x0, y0, y0; \
585 vpxor x0, x7, x7; \
586 vpxor x0, x6, x6; \
587 vpxor x0, x5, x5; \
588 vpxor x0, x4, x4; \
589 vpxor x0, x3, x3; \
590 vpxor x0, x2, x2; \
591 vpxor x0, x1, x1; \
592 vpxor stack_tmp0, x0, x0;
593
594 #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
595 y6, y7, rio) \
596 vmovdqu x0, 0 * 32(rio); \
597 vmovdqu x1, 1 * 32(rio); \
598 vmovdqu x2, 2 * 32(rio); \
599 vmovdqu x3, 3 * 32(rio); \
600 vmovdqu x4, 4 * 32(rio); \
601 vmovdqu x5, 5 * 32(rio); \
602 vmovdqu x6, 6 * 32(rio); \
603 vmovdqu x7, 7 * 32(rio); \
604 vmovdqu y0, 8 * 32(rio); \
605 vmovdqu y1, 9 * 32(rio); \
606 vmovdqu y2, 10 * 32(rio); \
607 vmovdqu y3, 11 * 32(rio); \
608 vmovdqu y4, 12 * 32(rio); \
609 vmovdqu y5, 13 * 32(rio); \
610 vmovdqu y6, 14 * 32(rio); \
611 vmovdqu y7, 15 * 32(rio);
612
613
614 .section .rodata.cst32.shufb_16x16b, "aM", @progbits, 32
615 .align 32
616 #define SHUFB_BYTES(idx) \
617 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
618 .Lshufb_16x16b:
619 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
620 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
621
622 .section .rodata.cst32.pack_bswap, "aM", @progbits, 32
623 .align 32
624 .Lpack_bswap:
625 .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
626 .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
627
628 /* NB: section is mergeable, all elements must be aligned 16-byte blocks */
629 .section .rodata.cst16, "aM", @progbits, 16
630 .align 16
631
632 /* For CTR-mode IV byteswap */
633 .Lbswap128_mask:
634 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
635
636 /* For XTS mode */
637 .Lxts_gf128mul_and_shl1_mask_0:
638 .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
639 .Lxts_gf128mul_and_shl1_mask_1:
640 .byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
641
642 /*
643 * pre-SubByte transform
644 *
645 * pre-lookup for sbox1, sbox2, sbox3:
646 * swap_bitendianness(
647 * isom_map_camellia_to_aes(
648 * camellia_f(
649 * swap_bitendianess(in)
650 * )
651 * )
652 * )
653 *
654 * (note: '⊕ 0xc5' inside camellia_f())
655 */
656 .Lpre_tf_lo_s1:
657 .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
658 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
659 .Lpre_tf_hi_s1:
660 .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
661 .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
662
663 /*
664 * pre-SubByte transform
665 *
666 * pre-lookup for sbox4:
667 * swap_bitendianness(
668 * isom_map_camellia_to_aes(
669 * camellia_f(
670 * swap_bitendianess(in <<< 1)
671 * )
672 * )
673 * )
674 *
675 * (note: '⊕ 0xc5' inside camellia_f())
676 */
677 .Lpre_tf_lo_s4:
678 .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
679 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
680 .Lpre_tf_hi_s4:
681 .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
682 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
683
684 /*
685 * post-SubByte transform
686 *
687 * post-lookup for sbox1, sbox4:
688 * swap_bitendianness(
689 * camellia_h(
690 * isom_map_aes_to_camellia(
691 * swap_bitendianness(
692 * aes_inverse_affine_transform(in)
693 * )
694 * )
695 * )
696 * )
697 *
698 * (note: '⊕ 0x6e' inside camellia_h())
699 */
700 .Lpost_tf_lo_s1:
701 .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
702 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
703 .Lpost_tf_hi_s1:
704 .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
705 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
706
707 /*
708 * post-SubByte transform
709 *
710 * post-lookup for sbox2:
711 * swap_bitendianness(
712 * camellia_h(
713 * isom_map_aes_to_camellia(
714 * swap_bitendianness(
715 * aes_inverse_affine_transform(in)
716 * )
717 * )
718 * )
719 * ) <<< 1
720 *
721 * (note: '⊕ 0x6e' inside camellia_h())
722 */
723 .Lpost_tf_lo_s2:
724 .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
725 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
726 .Lpost_tf_hi_s2:
727 .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
728 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
729
730 /*
731 * post-SubByte transform
732 *
733 * post-lookup for sbox3:
734 * swap_bitendianness(
735 * camellia_h(
736 * isom_map_aes_to_camellia(
737 * swap_bitendianness(
738 * aes_inverse_affine_transform(in)
739 * )
740 * )
741 * )
742 * ) >>> 1
743 *
744 * (note: '⊕ 0x6e' inside camellia_h())
745 */
746 .Lpost_tf_lo_s3:
747 .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
748 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
749 .Lpost_tf_hi_s3:
750 .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
751 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
752
753 /* For isolating SubBytes from AESENCLAST, inverse shift row */
754 .Linv_shift_row:
755 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
756 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
757
758 .section .rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
759 .align 4
760 /* 4-bit mask */
761 .L0f0f0f0f:
762 .long 0x0f0f0f0f
763
764 .text
765
766 .align 8
767 __camellia_enc_blk32:
768 /* input:
769 * %rdi: ctx, CTX
770 * %rax: temporary storage, 512 bytes
771 * %ymm0..%ymm15: 32 plaintext blocks
772 * output:
773 * %ymm0..%ymm15: 32 encrypted blocks, order swapped:
774 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
775 */
776 FRAME_BEGIN
777
778 leaq 8 * 32(%rax), %rcx;
779
780 inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
781 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
782 %ymm15, %rax, %rcx);
783
784 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
785 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
786 %ymm15, %rax, %rcx, 0);
787
788 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
789 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
790 %ymm15,
791 ((key_table + (8) * 8) + 0)(CTX),
792 ((key_table + (8) * 8) + 4)(CTX),
793 ((key_table + (8) * 8) + 8)(CTX),
794 ((key_table + (8) * 8) + 12)(CTX));
795
796 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
797 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
798 %ymm15, %rax, %rcx, 8);
799
800 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
801 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
802 %ymm15,
803 ((key_table + (16) * 8) + 0)(CTX),
804 ((key_table + (16) * 8) + 4)(CTX),
805 ((key_table + (16) * 8) + 8)(CTX),
806 ((key_table + (16) * 8) + 12)(CTX));
807
808 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
809 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
810 %ymm15, %rax, %rcx, 16);
811
812 movl $24, %r8d;
813 cmpl $16, key_length(CTX);
814 jne .Lenc_max32;
815
816 .Lenc_done:
817 /* load CD for output */
818 vmovdqu 0 * 32(%rcx), %ymm8;
819 vmovdqu 1 * 32(%rcx), %ymm9;
820 vmovdqu 2 * 32(%rcx), %ymm10;
821 vmovdqu 3 * 32(%rcx), %ymm11;
822 vmovdqu 4 * 32(%rcx), %ymm12;
823 vmovdqu 5 * 32(%rcx), %ymm13;
824 vmovdqu 6 * 32(%rcx), %ymm14;
825 vmovdqu 7 * 32(%rcx), %ymm15;
826
827 outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
828 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
829 %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
830
831 FRAME_END
832 ret;
833
834 .align 8
835 .Lenc_max32:
836 movl $32, %r8d;
837
838 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
839 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
840 %ymm15,
841 ((key_table + (24) * 8) + 0)(CTX),
842 ((key_table + (24) * 8) + 4)(CTX),
843 ((key_table + (24) * 8) + 8)(CTX),
844 ((key_table + (24) * 8) + 12)(CTX));
845
846 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
847 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
848 %ymm15, %rax, %rcx, 24);
849
850 jmp .Lenc_done;
851 ENDPROC(__camellia_enc_blk32)
852
853 .align 8
854 __camellia_dec_blk32:
855 /* input:
856 * %rdi: ctx, CTX
857 * %rax: temporary storage, 512 bytes
858 * %r8d: 24 for 16 byte key, 32 for larger
859 * %ymm0..%ymm15: 16 encrypted blocks
860 * output:
861 * %ymm0..%ymm15: 16 plaintext blocks, order swapped:
862 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
863 */
864 FRAME_BEGIN
865
866 leaq 8 * 32(%rax), %rcx;
867
868 inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
869 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
870 %ymm15, %rax, %rcx);
871
872 cmpl $32, %r8d;
873 je .Ldec_max32;
874
875 .Ldec_max24:
876 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
877 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
878 %ymm15, %rax, %rcx, 16);
879
880 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
881 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
882 %ymm15,
883 ((key_table + (16) * 8) + 8)(CTX),
884 ((key_table + (16) * 8) + 12)(CTX),
885 ((key_table + (16) * 8) + 0)(CTX),
886 ((key_table + (16) * 8) + 4)(CTX));
887
888 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
889 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
890 %ymm15, %rax, %rcx, 8);
891
892 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
893 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
894 %ymm15,
895 ((key_table + (8) * 8) + 8)(CTX),
896 ((key_table + (8) * 8) + 12)(CTX),
897 ((key_table + (8) * 8) + 0)(CTX),
898 ((key_table + (8) * 8) + 4)(CTX));
899
900 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
901 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
902 %ymm15, %rax, %rcx, 0);
903
904 /* load CD for output */
905 vmovdqu 0 * 32(%rcx), %ymm8;
906 vmovdqu 1 * 32(%rcx), %ymm9;
907 vmovdqu 2 * 32(%rcx), %ymm10;
908 vmovdqu 3 * 32(%rcx), %ymm11;
909 vmovdqu 4 * 32(%rcx), %ymm12;
910 vmovdqu 5 * 32(%rcx), %ymm13;
911 vmovdqu 6 * 32(%rcx), %ymm14;
912 vmovdqu 7 * 32(%rcx), %ymm15;
913
914 outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
915 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
916 %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
917
918 FRAME_END
919 ret;
920
921 .align 8
922 .Ldec_max32:
923 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
924 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
925 %ymm15, %rax, %rcx, 24);
926
927 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
928 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
929 %ymm15,
930 ((key_table + (24) * 8) + 8)(CTX),
931 ((key_table + (24) * 8) + 12)(CTX),
932 ((key_table + (24) * 8) + 0)(CTX),
933 ((key_table + (24) * 8) + 4)(CTX));
934
935 jmp .Ldec_max24;
936 ENDPROC(__camellia_dec_blk32)
937
938 ENTRY(camellia_ecb_enc_32way)
939 /* input:
940 * %rdi: ctx, CTX
941 * %rsi: dst (32 blocks)
942 * %rdx: src (32 blocks)
943 */
944 FRAME_BEGIN
945
946 vzeroupper;
947
948 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
949 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
950 %ymm15, %rdx, (key_table)(CTX));
951
952 /* now dst can be used as temporary buffer (even in src == dst case) */
953 movq %rsi, %rax;
954
955 call __camellia_enc_blk32;
956
957 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
958 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
959 %ymm8, %rsi);
960
961 vzeroupper;
962
963 FRAME_END
964 ret;
965 ENDPROC(camellia_ecb_enc_32way)
966
967 ENTRY(camellia_ecb_dec_32way)
968 /* input:
969 * %rdi: ctx, CTX
970 * %rsi: dst (32 blocks)
971 * %rdx: src (32 blocks)
972 */
973 FRAME_BEGIN
974
975 vzeroupper;
976
977 cmpl $16, key_length(CTX);
978 movl $32, %r8d;
979 movl $24, %eax;
980 cmovel %eax, %r8d; /* max */
981
982 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
983 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
984 %ymm15, %rdx, (key_table)(CTX, %r8, 8));
985
986 /* now dst can be used as temporary buffer (even in src == dst case) */
987 movq %rsi, %rax;
988
989 call __camellia_dec_blk32;
990
991 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
992 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
993 %ymm8, %rsi);
994
995 vzeroupper;
996
997 FRAME_END
998 ret;
999 ENDPROC(camellia_ecb_dec_32way)
1000
1001 ENTRY(camellia_cbc_dec_32way)
1002 /* input:
1003 * %rdi: ctx, CTX
1004 * %rsi: dst (32 blocks)
1005 * %rdx: src (32 blocks)
1006 */
1007 FRAME_BEGIN
1008
1009 vzeroupper;
1010
1011 cmpl $16, key_length(CTX);
1012 movl $32, %r8d;
1013 movl $24, %eax;
1014 cmovel %eax, %r8d; /* max */
1015
1016 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
1017 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1018 %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1019
1020 movq %rsp, %r10;
1021 cmpq %rsi, %rdx;
1022 je .Lcbc_dec_use_stack;
1023
1024 /* dst can be used as temporary storage, src is not overwritten. */
1025 movq %rsi, %rax;
1026 jmp .Lcbc_dec_continue;
1027
1028 .Lcbc_dec_use_stack:
1029 /*
1030 * dst still in-use (because dst == src), so use stack for temporary
1031 * storage.
1032 */
1033 subq $(16 * 32), %rsp;
1034 movq %rsp, %rax;
1035
1036 .Lcbc_dec_continue:
1037 call __camellia_dec_blk32;
1038
1039 vmovdqu %ymm7, (%rax);
1040 vpxor %ymm7, %ymm7, %ymm7;
1041 vinserti128 $1, (%rdx), %ymm7, %ymm7;
1042 vpxor (%rax), %ymm7, %ymm7;
1043 movq %r10, %rsp;
1044 vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1045 vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1046 vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1047 vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1048 vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1049 vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1050 vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1051 vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1052 vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1053 vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1054 vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1055 vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1056 vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1057 vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1058 vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1059 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1060 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1061 %ymm8, %rsi);
1062
1063 vzeroupper;
1064
1065 FRAME_END
1066 ret;
1067 ENDPROC(camellia_cbc_dec_32way)
1068
1069 #define inc_le128(x, minus_one, tmp) \
1070 vpcmpeqq minus_one, x, tmp; \
1071 vpsubq minus_one, x, x; \
1072 vpslldq $8, tmp, tmp; \
1073 vpsubq tmp, x, x;
1074
1075 #define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \
1076 vpcmpeqq minus_one, x, tmp1; \
1077 vpcmpeqq minus_two, x, tmp2; \
1078 vpsubq minus_two, x, x; \
1079 vpor tmp2, tmp1, tmp1; \
1080 vpslldq $8, tmp1, tmp1; \
1081 vpsubq tmp1, x, x;
1082
1083 ENTRY(camellia_ctr_32way)
1084 /* input:
1085 * %rdi: ctx, CTX
1086 * %rsi: dst (32 blocks)
1087 * %rdx: src (32 blocks)
1088 * %rcx: iv (little endian, 128bit)
1089 */
1090 FRAME_BEGIN
1091
1092 vzeroupper;
1093
1094 movq %rsp, %r10;
1095 cmpq %rsi, %rdx;
1096 je .Lctr_use_stack;
1097
1098 /* dst can be used as temporary storage, src is not overwritten. */
1099 movq %rsi, %rax;
1100 jmp .Lctr_continue;
1101
1102 .Lctr_use_stack:
1103 subq $(16 * 32), %rsp;
1104 movq %rsp, %rax;
1105
1106 .Lctr_continue:
1107 vpcmpeqd %ymm15, %ymm15, %ymm15;
1108 vpsrldq $8, %ymm15, %ymm15; /* ab: -1:0 ; cd: -1:0 */
1109 vpaddq %ymm15, %ymm15, %ymm12; /* ab: -2:0 ; cd: -2:0 */
1110
1111 /* load IV and byteswap */
1112 vmovdqu (%rcx), %xmm0;
1113 vmovdqa %xmm0, %xmm1;
1114 inc_le128(%xmm0, %xmm15, %xmm14);
1115 vbroadcasti128 .Lbswap128_mask, %ymm14;
1116 vinserti128 $1, %xmm0, %ymm1, %ymm0;
1117 vpshufb %ymm14, %ymm0, %ymm13;
1118 vmovdqu %ymm13, 15 * 32(%rax);
1119
1120 /* construct IVs */
1121 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); /* ab:le2 ; cd:le3 */
1122 vpshufb %ymm14, %ymm0, %ymm13;
1123 vmovdqu %ymm13, 14 * 32(%rax);
1124 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1125 vpshufb %ymm14, %ymm0, %ymm13;
1126 vmovdqu %ymm13, 13 * 32(%rax);
1127 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1128 vpshufb %ymm14, %ymm0, %ymm13;
1129 vmovdqu %ymm13, 12 * 32(%rax);
1130 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1131 vpshufb %ymm14, %ymm0, %ymm13;
1132 vmovdqu %ymm13, 11 * 32(%rax);
1133 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1134 vpshufb %ymm14, %ymm0, %ymm10;
1135 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1136 vpshufb %ymm14, %ymm0, %ymm9;
1137 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1138 vpshufb %ymm14, %ymm0, %ymm8;
1139 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1140 vpshufb %ymm14, %ymm0, %ymm7;
1141 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1142 vpshufb %ymm14, %ymm0, %ymm6;
1143 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1144 vpshufb %ymm14, %ymm0, %ymm5;
1145 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1146 vpshufb %ymm14, %ymm0, %ymm4;
1147 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1148 vpshufb %ymm14, %ymm0, %ymm3;
1149 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1150 vpshufb %ymm14, %ymm0, %ymm2;
1151 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1152 vpshufb %ymm14, %ymm0, %ymm1;
1153 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1154 vextracti128 $1, %ymm0, %xmm13;
1155 vpshufb %ymm14, %ymm0, %ymm0;
1156 inc_le128(%xmm13, %xmm15, %xmm14);
1157 vmovdqu %xmm13, (%rcx);
1158
1159 /* inpack32_pre: */
1160 vpbroadcastq (key_table)(CTX), %ymm15;
1161 vpshufb .Lpack_bswap, %ymm15, %ymm15;
1162 vpxor %ymm0, %ymm15, %ymm0;
1163 vpxor %ymm1, %ymm15, %ymm1;
1164 vpxor %ymm2, %ymm15, %ymm2;
1165 vpxor %ymm3, %ymm15, %ymm3;
1166 vpxor %ymm4, %ymm15, %ymm4;
1167 vpxor %ymm5, %ymm15, %ymm5;
1168 vpxor %ymm6, %ymm15, %ymm6;
1169 vpxor %ymm7, %ymm15, %ymm7;
1170 vpxor %ymm8, %ymm15, %ymm8;
1171 vpxor %ymm9, %ymm15, %ymm9;
1172 vpxor %ymm10, %ymm15, %ymm10;
1173 vpxor 11 * 32(%rax), %ymm15, %ymm11;
1174 vpxor 12 * 32(%rax), %ymm15, %ymm12;
1175 vpxor 13 * 32(%rax), %ymm15, %ymm13;
1176 vpxor 14 * 32(%rax), %ymm15, %ymm14;
1177 vpxor 15 * 32(%rax), %ymm15, %ymm15;
1178
1179 call __camellia_enc_blk32;
1180
1181 movq %r10, %rsp;
1182
1183 vpxor 0 * 32(%rdx), %ymm7, %ymm7;
1184 vpxor 1 * 32(%rdx), %ymm6, %ymm6;
1185 vpxor 2 * 32(%rdx), %ymm5, %ymm5;
1186 vpxor 3 * 32(%rdx), %ymm4, %ymm4;
1187 vpxor 4 * 32(%rdx), %ymm3, %ymm3;
1188 vpxor 5 * 32(%rdx), %ymm2, %ymm2;
1189 vpxor 6 * 32(%rdx), %ymm1, %ymm1;
1190 vpxor 7 * 32(%rdx), %ymm0, %ymm0;
1191 vpxor 8 * 32(%rdx), %ymm15, %ymm15;
1192 vpxor 9 * 32(%rdx), %ymm14, %ymm14;
1193 vpxor 10 * 32(%rdx), %ymm13, %ymm13;
1194 vpxor 11 * 32(%rdx), %ymm12, %ymm12;
1195 vpxor 12 * 32(%rdx), %ymm11, %ymm11;
1196 vpxor 13 * 32(%rdx), %ymm10, %ymm10;
1197 vpxor 14 * 32(%rdx), %ymm9, %ymm9;
1198 vpxor 15 * 32(%rdx), %ymm8, %ymm8;
1199 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1200 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1201 %ymm8, %rsi);
1202
1203 vzeroupper;
1204
1205 FRAME_END
1206 ret;
1207 ENDPROC(camellia_ctr_32way)
1208
1209 #define gf128mul_x_ble(iv, mask, tmp) \
1210 vpsrad $31, iv, tmp; \
1211 vpaddq iv, iv, iv; \
1212 vpshufd $0x13, tmp, tmp; \
1213 vpand mask, tmp, tmp; \
1214 vpxor tmp, iv, iv;
1215
1216 #define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \
1217 vpsrad $31, iv, tmp0; \
1218 vpaddq iv, iv, tmp1; \
1219 vpsllq $2, iv, iv; \
1220 vpshufd $0x13, tmp0, tmp0; \
1221 vpsrad $31, tmp1, tmp1; \
1222 vpand mask2, tmp0, tmp0; \
1223 vpshufd $0x13, tmp1, tmp1; \
1224 vpxor tmp0, iv, iv; \
1225 vpand mask1, tmp1, tmp1; \
1226 vpxor tmp1, iv, iv;
1227
1228 .align 8
1229 camellia_xts_crypt_32way:
1230 /* input:
1231 * %rdi: ctx, CTX
1232 * %rsi: dst (32 blocks)
1233 * %rdx: src (32 blocks)
1234 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1235 * %r8: index for input whitening key
1236 * %r9: pointer to __camellia_enc_blk32 or __camellia_dec_blk32
1237 */
1238 FRAME_BEGIN
1239
1240 vzeroupper;
1241
1242 subq $(16 * 32), %rsp;
1243 movq %rsp, %rax;
1244
1245 vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_0, %ymm12;
1246
1247 /* load IV and construct second IV */
1248 vmovdqu (%rcx), %xmm0;
1249 vmovdqa %xmm0, %xmm15;
1250 gf128mul_x_ble(%xmm0, %xmm12, %xmm13);
1251 vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_1, %ymm13;
1252 vinserti128 $1, %xmm0, %ymm15, %ymm0;
1253 vpxor 0 * 32(%rdx), %ymm0, %ymm15;
1254 vmovdqu %ymm15, 15 * 32(%rax);
1255 vmovdqu %ymm0, 0 * 32(%rsi);
1256
1257 /* construct IVs */
1258 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1259 vpxor 1 * 32(%rdx), %ymm0, %ymm15;
1260 vmovdqu %ymm15, 14 * 32(%rax);
1261 vmovdqu %ymm0, 1 * 32(%rsi);
1262
1263 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1264 vpxor 2 * 32(%rdx), %ymm0, %ymm15;
1265 vmovdqu %ymm15, 13 * 32(%rax);
1266 vmovdqu %ymm0, 2 * 32(%rsi);
1267
1268 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1269 vpxor 3 * 32(%rdx), %ymm0, %ymm15;
1270 vmovdqu %ymm15, 12 * 32(%rax);
1271 vmovdqu %ymm0, 3 * 32(%rsi);
1272
1273 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1274 vpxor 4 * 32(%rdx), %ymm0, %ymm11;
1275 vmovdqu %ymm0, 4 * 32(%rsi);
1276
1277 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1278 vpxor 5 * 32(%rdx), %ymm0, %ymm10;
1279 vmovdqu %ymm0, 5 * 32(%rsi);
1280
1281 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1282 vpxor 6 * 32(%rdx), %ymm0, %ymm9;
1283 vmovdqu %ymm0, 6 * 32(%rsi);
1284
1285 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1286 vpxor 7 * 32(%rdx), %ymm0, %ymm8;
1287 vmovdqu %ymm0, 7 * 32(%rsi);
1288
1289 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1290 vpxor 8 * 32(%rdx), %ymm0, %ymm7;
1291 vmovdqu %ymm0, 8 * 32(%rsi);
1292
1293 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1294 vpxor 9 * 32(%rdx), %ymm0, %ymm6;
1295 vmovdqu %ymm0, 9 * 32(%rsi);
1296
1297 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1298 vpxor 10 * 32(%rdx), %ymm0, %ymm5;
1299 vmovdqu %ymm0, 10 * 32(%rsi);
1300
1301 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1302 vpxor 11 * 32(%rdx), %ymm0, %ymm4;
1303 vmovdqu %ymm0, 11 * 32(%rsi);
1304
1305 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1306 vpxor 12 * 32(%rdx), %ymm0, %ymm3;
1307 vmovdqu %ymm0, 12 * 32(%rsi);
1308
1309 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1310 vpxor 13 * 32(%rdx), %ymm0, %ymm2;
1311 vmovdqu %ymm0, 13 * 32(%rsi);
1312
1313 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1314 vpxor 14 * 32(%rdx), %ymm0, %ymm1;
1315 vmovdqu %ymm0, 14 * 32(%rsi);
1316
1317 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1318 vpxor 15 * 32(%rdx), %ymm0, %ymm15;
1319 vmovdqu %ymm15, 0 * 32(%rax);
1320 vmovdqu %ymm0, 15 * 32(%rsi);
1321
1322 vextracti128 $1, %ymm0, %xmm0;
1323 gf128mul_x_ble(%xmm0, %xmm12, %xmm15);
1324 vmovdqu %xmm0, (%rcx);
1325
1326 /* inpack32_pre: */
1327 vpbroadcastq (key_table)(CTX, %r8, 8), %ymm15;
1328 vpshufb .Lpack_bswap, %ymm15, %ymm15;
1329 vpxor 0 * 32(%rax), %ymm15, %ymm0;
1330 vpxor %ymm1, %ymm15, %ymm1;
1331 vpxor %ymm2, %ymm15, %ymm2;
1332 vpxor %ymm3, %ymm15, %ymm3;
1333 vpxor %ymm4, %ymm15, %ymm4;
1334 vpxor %ymm5, %ymm15, %ymm5;
1335 vpxor %ymm6, %ymm15, %ymm6;
1336 vpxor %ymm7, %ymm15, %ymm7;
1337 vpxor %ymm8, %ymm15, %ymm8;
1338 vpxor %ymm9, %ymm15, %ymm9;
1339 vpxor %ymm10, %ymm15, %ymm10;
1340 vpxor %ymm11, %ymm15, %ymm11;
1341 vpxor 12 * 32(%rax), %ymm15, %ymm12;
1342 vpxor 13 * 32(%rax), %ymm15, %ymm13;
1343 vpxor 14 * 32(%rax), %ymm15, %ymm14;
1344 vpxor 15 * 32(%rax), %ymm15, %ymm15;
1345
1346 call *%r9;
1347
1348 addq $(16 * 32), %rsp;
1349
1350 vpxor 0 * 32(%rsi), %ymm7, %ymm7;
1351 vpxor 1 * 32(%rsi), %ymm6, %ymm6;
1352 vpxor 2 * 32(%rsi), %ymm5, %ymm5;
1353 vpxor 3 * 32(%rsi), %ymm4, %ymm4;
1354 vpxor 4 * 32(%rsi), %ymm3, %ymm3;
1355 vpxor 5 * 32(%rsi), %ymm2, %ymm2;
1356 vpxor 6 * 32(%rsi), %ymm1, %ymm1;
1357 vpxor 7 * 32(%rsi), %ymm0, %ymm0;
1358 vpxor 8 * 32(%rsi), %ymm15, %ymm15;
1359 vpxor 9 * 32(%rsi), %ymm14, %ymm14;
1360 vpxor 10 * 32(%rsi), %ymm13, %ymm13;
1361 vpxor 11 * 32(%rsi), %ymm12, %ymm12;
1362 vpxor 12 * 32(%rsi), %ymm11, %ymm11;
1363 vpxor 13 * 32(%rsi), %ymm10, %ymm10;
1364 vpxor 14 * 32(%rsi), %ymm9, %ymm9;
1365 vpxor 15 * 32(%rsi), %ymm8, %ymm8;
1366 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1367 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1368 %ymm8, %rsi);
1369
1370 vzeroupper;
1371
1372 FRAME_END
1373 ret;
1374 ENDPROC(camellia_xts_crypt_32way)
1375
1376 ENTRY(camellia_xts_enc_32way)
1377 /* input:
1378 * %rdi: ctx, CTX
1379 * %rsi: dst (32 blocks)
1380 * %rdx: src (32 blocks)
1381 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1382 */
1383
1384 xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1385
1386 leaq __camellia_enc_blk32, %r9;
1387
1388 jmp camellia_xts_crypt_32way;
1389 ENDPROC(camellia_xts_enc_32way)
1390
1391 ENTRY(camellia_xts_dec_32way)
1392 /* input:
1393 * %rdi: ctx, CTX
1394 * %rsi: dst (32 blocks)
1395 * %rdx: src (32 blocks)
1396 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1397 */
1398
1399 cmpl $16, key_length(CTX);
1400 movl $32, %r8d;
1401 movl $24, %eax;
1402 cmovel %eax, %r8d; /* input whitening key, last for dec */
1403
1404 leaq __camellia_dec_blk32, %r9;
1405
1406 jmp camellia_xts_crypt_32way;
1407 ENDPROC(camellia_xts_dec_32way)