]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/crypto/sha256-avx-asm.S
Merge branch 'i2c/cht-wc-fusb302-immutable' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / crypto / sha256-avx-asm.S
1 ########################################################################
2 # Implement fast SHA-256 with AVX1 instructions. (x86_64)
3 #
4 # Copyright (C) 2013 Intel Corporation.
5 #
6 # Authors:
7 # James Guilford <james.guilford@intel.com>
8 # Kirk Yap <kirk.s.yap@intel.com>
9 # Tim Chen <tim.c.chen@linux.intel.com>
10 #
11 # This software is available to you under a choice of one of two
12 # licenses. You may choose to be licensed under the terms of the GNU
13 # General Public License (GPL) Version 2, available from the file
14 # COPYING in the main directory of this source tree, or the
15 # OpenIB.org BSD license below:
16 #
17 # Redistribution and use in source and binary forms, with or
18 # without modification, are permitted provided that the following
19 # conditions are met:
20 #
21 # - Redistributions of source code must retain the above
22 # copyright notice, this list of conditions and the following
23 # disclaimer.
24 #
25 # - Redistributions in binary form must reproduce the above
26 # copyright notice, this list of conditions and the following
27 # disclaimer in the documentation and/or other materials
28 # provided with the distribution.
29 #
30 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
31 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
32 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
33 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
34 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
35 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
36 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
37 # SOFTWARE.
38 ########################################################################
39 #
40 # This code is described in an Intel White-Paper:
41 # "Fast SHA-256 Implementations on Intel Architecture Processors"
42 #
43 # To find it, surf to http://www.intel.com/p/en_US/embedded
44 # and search for that title.
45 #
46 ########################################################################
47 # This code schedules 1 block at a time, with 4 lanes per block
48 ########################################################################
49
50 #ifdef CONFIG_AS_AVX
51 #include <linux/linkage.h>
52
53 ## assume buffers not aligned
54 #define VMOVDQ vmovdqu
55
56 ################################ Define Macros
57
58 # addm [mem], reg
59 # Add reg to mem using reg-mem add and store
60 .macro addm p1 p2
61 add \p1, \p2
62 mov \p2, \p1
63 .endm
64
65
66 .macro MY_ROR p1 p2
67 shld $(32-(\p1)), \p2, \p2
68 .endm
69
70 ################################
71
72 # COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask
73 # Load xmm with mem and byte swap each dword
74 .macro COPY_XMM_AND_BSWAP p1 p2 p3
75 VMOVDQ \p2, \p1
76 vpshufb \p3, \p1, \p1
77 .endm
78
79 ################################
80
81 X0 = %xmm4
82 X1 = %xmm5
83 X2 = %xmm6
84 X3 = %xmm7
85
86 XTMP0 = %xmm0
87 XTMP1 = %xmm1
88 XTMP2 = %xmm2
89 XTMP3 = %xmm3
90 XTMP4 = %xmm8
91 XFER = %xmm9
92 XTMP5 = %xmm11
93
94 SHUF_00BA = %xmm10 # shuffle xBxA -> 00BA
95 SHUF_DC00 = %xmm12 # shuffle xDxC -> DC00
96 BYTE_FLIP_MASK = %xmm13
97
98 NUM_BLKS = %rdx # 3rd arg
99 INP = %rsi # 2nd arg
100 CTX = %rdi # 1st arg
101
102 SRND = %rsi # clobbers INP
103 c = %ecx
104 d = %r8d
105 e = %edx
106 TBL = %r12
107 a = %eax
108 b = %ebx
109
110 f = %r9d
111 g = %r10d
112 h = %r11d
113
114 y0 = %r13d
115 y1 = %r14d
116 y2 = %r15d
117
118
119 _INP_END_SIZE = 8
120 _INP_SIZE = 8
121 _XFER_SIZE = 16
122 _XMM_SAVE_SIZE = 0
123
124 _INP_END = 0
125 _INP = _INP_END + _INP_END_SIZE
126 _XFER = _INP + _INP_SIZE
127 _XMM_SAVE = _XFER + _XFER_SIZE
128 STACK_SIZE = _XMM_SAVE + _XMM_SAVE_SIZE
129
130 # rotate_Xs
131 # Rotate values of symbols X0...X3
132 .macro rotate_Xs
133 X_ = X0
134 X0 = X1
135 X1 = X2
136 X2 = X3
137 X3 = X_
138 .endm
139
140 # ROTATE_ARGS
141 # Rotate values of symbols a...h
142 .macro ROTATE_ARGS
143 TMP_ = h
144 h = g
145 g = f
146 f = e
147 e = d
148 d = c
149 c = b
150 b = a
151 a = TMP_
152 .endm
153
154 .macro FOUR_ROUNDS_AND_SCHED
155 ## compute s0 four at a time and s1 two at a time
156 ## compute W[-16] + W[-7] 4 at a time
157
158 mov e, y0 # y0 = e
159 MY_ROR (25-11), y0 # y0 = e >> (25-11)
160 mov a, y1 # y1 = a
161 vpalignr $4, X2, X3, XTMP0 # XTMP0 = W[-7]
162 MY_ROR (22-13), y1 # y1 = a >> (22-13)
163 xor e, y0 # y0 = e ^ (e >> (25-11))
164 mov f, y2 # y2 = f
165 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
166 xor a, y1 # y1 = a ^ (a >> (22-13)
167 xor g, y2 # y2 = f^g
168 vpaddd X0, XTMP0, XTMP0 # XTMP0 = W[-7] + W[-16]
169 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
170 and e, y2 # y2 = (f^g)&e
171 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
172 ## compute s0
173 vpalignr $4, X0, X1, XTMP1 # XTMP1 = W[-15]
174 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
175 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
176 xor g, y2 # y2 = CH = ((f^g)&e)^g
177 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
178 add y0, y2 # y2 = S1 + CH
179 add _XFER(%rsp), y2 # y2 = k + w + S1 + CH
180 mov a, y0 # y0 = a
181 add y2, h # h = h + S1 + CH + k + w
182 mov a, y2 # y2 = a
183 vpsrld $7, XTMP1, XTMP2
184 or c, y0 # y0 = a|c
185 add h, d # d = d + h + S1 + CH + k + w
186 and c, y2 # y2 = a&c
187 vpslld $(32-7), XTMP1, XTMP3
188 and b, y0 # y0 = (a|c)&b
189 add y1, h # h = h + S1 + CH + k + w + S0
190 vpor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7
191 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
192 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
193 ROTATE_ARGS
194 mov e, y0 # y0 = e
195 mov a, y1 # y1 = a
196 MY_ROR (25-11), y0 # y0 = e >> (25-11)
197 xor e, y0 # y0 = e ^ (e >> (25-11))
198 mov f, y2 # y2 = f
199 MY_ROR (22-13), y1 # y1 = a >> (22-13)
200 vpsrld $18, XTMP1, XTMP2 #
201 xor a, y1 # y1 = a ^ (a >> (22-13)
202 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
203 xor g, y2 # y2 = f^g
204 vpsrld $3, XTMP1, XTMP4 # XTMP4 = W[-15] >> 3
205 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
206 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
207 and e, y2 # y2 = (f^g)&e
208 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
209 vpslld $(32-18), XTMP1, XTMP1
210 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
211 xor g, y2 # y2 = CH = ((f^g)&e)^g
212 vpxor XTMP1, XTMP3, XTMP3 #
213 add y0, y2 # y2 = S1 + CH
214 add (1*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
215 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
216 vpxor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR
217 mov a, y0 # y0 = a
218 add y2, h # h = h + S1 + CH + k + w
219 mov a, y2 # y2 = a
220 vpxor XTMP4, XTMP3, XTMP1 # XTMP1 = s0
221 or c, y0 # y0 = a|c
222 add h, d # d = d + h + S1 + CH + k + w
223 and c, y2 # y2 = a&c
224 ## compute low s1
225 vpshufd $0b11111010, X3, XTMP2 # XTMP2 = W[-2] {BBAA}
226 and b, y0 # y0 = (a|c)&b
227 add y1, h # h = h + S1 + CH + k + w + S0
228 vpaddd XTMP1, XTMP0, XTMP0 # XTMP0 = W[-16] + W[-7] + s0
229 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
230 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
231 ROTATE_ARGS
232 mov e, y0 # y0 = e
233 mov a, y1 # y1 = a
234 MY_ROR (25-11), y0 # y0 = e >> (25-11)
235 xor e, y0 # y0 = e ^ (e >> (25-11))
236 MY_ROR (22-13), y1 # y1 = a >> (22-13)
237 mov f, y2 # y2 = f
238 xor a, y1 # y1 = a ^ (a >> (22-13)
239 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
240 vpsrld $10, XTMP2, XTMP4 # XTMP4 = W[-2] >> 10 {BBAA}
241 xor g, y2 # y2 = f^g
242 vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xBxA}
243 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
244 and e, y2 # y2 = (f^g)&e
245 vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xBxA}
246 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
247 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
248 xor g, y2 # y2 = CH = ((f^g)&e)^g
249 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
250 vpxor XTMP3, XTMP2, XTMP2 #
251 add y0, y2 # y2 = S1 + CH
252 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
253 add (2*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
254 vpxor XTMP2, XTMP4, XTMP4 # XTMP4 = s1 {xBxA}
255 mov a, y0 # y0 = a
256 add y2, h # h = h + S1 + CH + k + w
257 mov a, y2 # y2 = a
258 vpshufb SHUF_00BA, XTMP4, XTMP4 # XTMP4 = s1 {00BA}
259 or c, y0 # y0 = a|c
260 add h, d # d = d + h + S1 + CH + k + w
261 and c, y2 # y2 = a&c
262 vpaddd XTMP4, XTMP0, XTMP0 # XTMP0 = {..., ..., W[1], W[0]}
263 and b, y0 # y0 = (a|c)&b
264 add y1, h # h = h + S1 + CH + k + w + S0
265 ## compute high s1
266 vpshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {DDCC}
267 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
268 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
269 ROTATE_ARGS
270 mov e, y0 # y0 = e
271 MY_ROR (25-11), y0 # y0 = e >> (25-11)
272 mov a, y1 # y1 = a
273 MY_ROR (22-13), y1 # y1 = a >> (22-13)
274 xor e, y0 # y0 = e ^ (e >> (25-11))
275 mov f, y2 # y2 = f
276 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
277 vpsrld $10, XTMP2, XTMP5 # XTMP5 = W[-2] >> 10 {DDCC}
278 xor a, y1 # y1 = a ^ (a >> (22-13)
279 xor g, y2 # y2 = f^g
280 vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xDxC}
281 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
282 and e, y2 # y2 = (f^g)&e
283 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
284 vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xDxC}
285 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
286 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
287 xor g, y2 # y2 = CH = ((f^g)&e)^g
288 vpxor XTMP3, XTMP2, XTMP2
289 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
290 add y0, y2 # y2 = S1 + CH
291 add (3*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
292 vpxor XTMP2, XTMP5, XTMP5 # XTMP5 = s1 {xDxC}
293 mov a, y0 # y0 = a
294 add y2, h # h = h + S1 + CH + k + w
295 mov a, y2 # y2 = a
296 vpshufb SHUF_DC00, XTMP5, XTMP5 # XTMP5 = s1 {DC00}
297 or c, y0 # y0 = a|c
298 add h, d # d = d + h + S1 + CH + k + w
299 and c, y2 # y2 = a&c
300 vpaddd XTMP0, XTMP5, X0 # X0 = {W[3], W[2], W[1], W[0]}
301 and b, y0 # y0 = (a|c)&b
302 add y1, h # h = h + S1 + CH + k + w + S0
303 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
304 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
305 ROTATE_ARGS
306 rotate_Xs
307 .endm
308
309 ## input is [rsp + _XFER + %1 * 4]
310 .macro DO_ROUND round
311 mov e, y0 # y0 = e
312 MY_ROR (25-11), y0 # y0 = e >> (25-11)
313 mov a, y1 # y1 = a
314 xor e, y0 # y0 = e ^ (e >> (25-11))
315 MY_ROR (22-13), y1 # y1 = a >> (22-13)
316 mov f, y2 # y2 = f
317 xor a, y1 # y1 = a ^ (a >> (22-13)
318 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
319 xor g, y2 # y2 = f^g
320 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
321 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
322 and e, y2 # y2 = (f^g)&e
323 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
324 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
325 xor g, y2 # y2 = CH = ((f^g)&e)^g
326 add y0, y2 # y2 = S1 + CH
327 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
328 offset = \round * 4 + _XFER #
329 add offset(%rsp), y2 # y2 = k + w + S1 + CH
330 mov a, y0 # y0 = a
331 add y2, h # h = h + S1 + CH + k + w
332 mov a, y2 # y2 = a
333 or c, y0 # y0 = a|c
334 add h, d # d = d + h + S1 + CH + k + w
335 and c, y2 # y2 = a&c
336 and b, y0 # y0 = (a|c)&b
337 add y1, h # h = h + S1 + CH + k + w + S0
338 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
339 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
340 ROTATE_ARGS
341 .endm
342
343 ########################################################################
344 ## void sha256_transform_avx(void *input_data, UINT32 digest[8], UINT64 num_blks)
345 ## arg 1 : pointer to digest
346 ## arg 2 : pointer to input data
347 ## arg 3 : Num blocks
348 ########################################################################
349 .text
350 ENTRY(sha256_transform_avx)
351 .align 32
352 pushq %rbx
353 pushq %r12
354 pushq %r13
355 pushq %r14
356 pushq %r15
357 pushq %rbp
358 movq %rsp, %rbp
359
360 subq $STACK_SIZE, %rsp # allocate stack space
361 and $~15, %rsp # align stack pointer
362
363 shl $6, NUM_BLKS # convert to bytes
364 jz done_hash
365 add INP, NUM_BLKS # pointer to end of data
366 mov NUM_BLKS, _INP_END(%rsp)
367
368 ## load initial digest
369 mov 4*0(CTX), a
370 mov 4*1(CTX), b
371 mov 4*2(CTX), c
372 mov 4*3(CTX), d
373 mov 4*4(CTX), e
374 mov 4*5(CTX), f
375 mov 4*6(CTX), g
376 mov 4*7(CTX), h
377
378 vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
379 vmovdqa _SHUF_00BA(%rip), SHUF_00BA
380 vmovdqa _SHUF_DC00(%rip), SHUF_DC00
381 loop0:
382 lea K256(%rip), TBL
383
384 ## byte swap first 16 dwords
385 COPY_XMM_AND_BSWAP X0, 0*16(INP), BYTE_FLIP_MASK
386 COPY_XMM_AND_BSWAP X1, 1*16(INP), BYTE_FLIP_MASK
387 COPY_XMM_AND_BSWAP X2, 2*16(INP), BYTE_FLIP_MASK
388 COPY_XMM_AND_BSWAP X3, 3*16(INP), BYTE_FLIP_MASK
389
390 mov INP, _INP(%rsp)
391
392 ## schedule 48 input dwords, by doing 3 rounds of 16 each
393 mov $3, SRND
394 .align 16
395 loop1:
396 vpaddd (TBL), X0, XFER
397 vmovdqa XFER, _XFER(%rsp)
398 FOUR_ROUNDS_AND_SCHED
399
400 vpaddd 1*16(TBL), X0, XFER
401 vmovdqa XFER, _XFER(%rsp)
402 FOUR_ROUNDS_AND_SCHED
403
404 vpaddd 2*16(TBL), X0, XFER
405 vmovdqa XFER, _XFER(%rsp)
406 FOUR_ROUNDS_AND_SCHED
407
408 vpaddd 3*16(TBL), X0, XFER
409 vmovdqa XFER, _XFER(%rsp)
410 add $4*16, TBL
411 FOUR_ROUNDS_AND_SCHED
412
413 sub $1, SRND
414 jne loop1
415
416 mov $2, SRND
417 loop2:
418 vpaddd (TBL), X0, XFER
419 vmovdqa XFER, _XFER(%rsp)
420 DO_ROUND 0
421 DO_ROUND 1
422 DO_ROUND 2
423 DO_ROUND 3
424
425 vpaddd 1*16(TBL), X1, XFER
426 vmovdqa XFER, _XFER(%rsp)
427 add $2*16, TBL
428 DO_ROUND 0
429 DO_ROUND 1
430 DO_ROUND 2
431 DO_ROUND 3
432
433 vmovdqa X2, X0
434 vmovdqa X3, X1
435
436 sub $1, SRND
437 jne loop2
438
439 addm (4*0)(CTX),a
440 addm (4*1)(CTX),b
441 addm (4*2)(CTX),c
442 addm (4*3)(CTX),d
443 addm (4*4)(CTX),e
444 addm (4*5)(CTX),f
445 addm (4*6)(CTX),g
446 addm (4*7)(CTX),h
447
448 mov _INP(%rsp), INP
449 add $64, INP
450 cmp _INP_END(%rsp), INP
451 jne loop0
452
453 done_hash:
454
455 mov %rbp, %rsp
456 popq %rbp
457 popq %r15
458 popq %r14
459 popq %r13
460 popq %r12
461 popq %rbx
462 ret
463 ENDPROC(sha256_transform_avx)
464
465 .section .rodata.cst256.K256, "aM", @progbits, 256
466 .align 64
467 K256:
468 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
469 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
470 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
471 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
472 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
473 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
474 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
475 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
476 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
477 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
478 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
479 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
480 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
481 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
482 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
483 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
484
485 .section .rodata.cst16.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 16
486 .align 16
487 PSHUFFLE_BYTE_FLIP_MASK:
488 .octa 0x0c0d0e0f08090a0b0405060700010203
489
490 .section .rodata.cst16._SHUF_00BA, "aM", @progbits, 16
491 .align 16
492 # shuffle xBxA -> 00BA
493 _SHUF_00BA:
494 .octa 0xFFFFFFFFFFFFFFFF0b0a090803020100
495
496 .section .rodata.cst16._SHUF_DC00, "aM", @progbits, 16
497 .align 16
498 # shuffle xDxC -> DC00
499 _SHUF_DC00:
500 .octa 0x0b0a090803020100FFFFFFFFFFFFFFFF
501
502 #endif