]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/crypto/sha512-avx2-asm.S
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / crypto / sha512-avx2-asm.S
1 ########################################################################
2 # Implement fast SHA-512 with AVX2 instructions. (x86_64)
3 #
4 # Copyright (C) 2013 Intel Corporation.
5 #
6 # Authors:
7 # James Guilford <james.guilford@intel.com>
8 # Kirk Yap <kirk.s.yap@intel.com>
9 # David Cote <david.m.cote@intel.com>
10 # Tim Chen <tim.c.chen@linux.intel.com>
11 #
12 # This software is available to you under a choice of one of two
13 # licenses. You may choose to be licensed under the terms of the GNU
14 # General Public License (GPL) Version 2, available from the file
15 # COPYING in the main directory of this source tree, or the
16 # OpenIB.org BSD license below:
17 #
18 # Redistribution and use in source and binary forms, with or
19 # without modification, are permitted provided that the following
20 # conditions are met:
21 #
22 # - Redistributions of source code must retain the above
23 # copyright notice, this list of conditions and the following
24 # disclaimer.
25 #
26 # - Redistributions in binary form must reproduce the above
27 # copyright notice, this list of conditions and the following
28 # disclaimer in the documentation and/or other materials
29 # provided with the distribution.
30 #
31 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 # SOFTWARE.
39 #
40 ########################################################################
41 #
42 # This code is described in an Intel White-Paper:
43 # "Fast SHA-512 Implementations on Intel Architecture Processors"
44 #
45 # To find it, surf to http://www.intel.com/p/en_US/embedded
46 # and search for that title.
47 #
48 ########################################################################
49 # This code schedules 1 blocks at a time, with 4 lanes per block
50 ########################################################################
51
52 #ifdef CONFIG_AS_AVX2
53 #include <linux/linkage.h>
54
55 .text
56
57 # Virtual Registers
58 Y_0 = %ymm4
59 Y_1 = %ymm5
60 Y_2 = %ymm6
61 Y_3 = %ymm7
62
63 YTMP0 = %ymm0
64 YTMP1 = %ymm1
65 YTMP2 = %ymm2
66 YTMP3 = %ymm3
67 YTMP4 = %ymm8
68 XFER = YTMP0
69
70 BYTE_FLIP_MASK = %ymm9
71
72 # 1st arg is %rdi, which is saved to the stack and accessed later via %r12
73 CTX1 = %rdi
74 CTX2 = %r12
75 # 2nd arg
76 INP = %rsi
77 # 3rd arg
78 NUM_BLKS = %rdx
79
80 c = %rcx
81 d = %r8
82 e = %rdx
83 y3 = %rsi
84
85 TBL = %rdi # clobbers CTX1
86
87 a = %rax
88 b = %rbx
89
90 f = %r9
91 g = %r10
92 h = %r11
93 old_h = %r11
94
95 T1 = %r12 # clobbers CTX2
96 y0 = %r13
97 y1 = %r14
98 y2 = %r15
99
100 # Local variables (stack frame)
101 XFER_SIZE = 4*8
102 SRND_SIZE = 1*8
103 INP_SIZE = 1*8
104 INPEND_SIZE = 1*8
105 CTX_SIZE = 1*8
106 RSPSAVE_SIZE = 1*8
107 GPRSAVE_SIZE = 5*8
108
109 frame_XFER = 0
110 frame_SRND = frame_XFER + XFER_SIZE
111 frame_INP = frame_SRND + SRND_SIZE
112 frame_INPEND = frame_INP + INP_SIZE
113 frame_CTX = frame_INPEND + INPEND_SIZE
114 frame_RSPSAVE = frame_CTX + CTX_SIZE
115 frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
116 frame_size = frame_GPRSAVE + GPRSAVE_SIZE
117
118 ## assume buffers not aligned
119 #define VMOVDQ vmovdqu
120
121 # addm [mem], reg
122 # Add reg to mem using reg-mem add and store
123 .macro addm p1 p2
124 add \p1, \p2
125 mov \p2, \p1
126 .endm
127
128
129 # COPY_YMM_AND_BSWAP ymm, [mem], byte_flip_mask
130 # Load ymm with mem and byte swap each dword
131 .macro COPY_YMM_AND_BSWAP p1 p2 p3
132 VMOVDQ \p2, \p1
133 vpshufb \p3, \p1, \p1
134 .endm
135 # rotate_Ys
136 # Rotate values of symbols Y0...Y3
137 .macro rotate_Ys
138 Y_ = Y_0
139 Y_0 = Y_1
140 Y_1 = Y_2
141 Y_2 = Y_3
142 Y_3 = Y_
143 .endm
144
145 # RotateState
146 .macro RotateState
147 # Rotate symbols a..h right
148 old_h = h
149 TMP_ = h
150 h = g
151 g = f
152 f = e
153 e = d
154 d = c
155 c = b
156 b = a
157 a = TMP_
158 .endm
159
160 # macro MY_VPALIGNR YDST, YSRC1, YSRC2, RVAL
161 # YDST = {YSRC1, YSRC2} >> RVAL*8
162 .macro MY_VPALIGNR YDST YSRC1 YSRC2 RVAL
163 vperm2f128 $0x3, \YSRC2, \YSRC1, \YDST # YDST = {YS1_LO, YS2_HI}
164 vpalignr $\RVAL, \YSRC2, \YDST, \YDST # YDST = {YDS1, YS2} >> RVAL*8
165 .endm
166
167 .macro FOUR_ROUNDS_AND_SCHED
168 ################################### RND N + 0 #########################################
169
170 # Extract w[t-7]
171 MY_VPALIGNR YTMP0, Y_3, Y_2, 8 # YTMP0 = W[-7]
172 # Calculate w[t-16] + w[t-7]
173 vpaddq Y_0, YTMP0, YTMP0 # YTMP0 = W[-7] + W[-16]
174 # Extract w[t-15]
175 MY_VPALIGNR YTMP1, Y_1, Y_0, 8 # YTMP1 = W[-15]
176
177 # Calculate sigma0
178
179 # Calculate w[t-15] ror 1
180 vpsrlq $1, YTMP1, YTMP2
181 vpsllq $(64-1), YTMP1, YTMP3
182 vpor YTMP2, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1
183 # Calculate w[t-15] shr 7
184 vpsrlq $7, YTMP1, YTMP4 # YTMP4 = W[-15] >> 7
185
186 mov a, y3 # y3 = a # MAJA
187 rorx $41, e, y0 # y0 = e >> 41 # S1A
188 rorx $18, e, y1 # y1 = e >> 18 # S1B
189 add frame_XFER(%rsp),h # h = k + w + h # --
190 or c, y3 # y3 = a|c # MAJA
191 mov f, y2 # y2 = f # CH
192 rorx $34, a, T1 # T1 = a >> 34 # S0B
193
194 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
195 xor g, y2 # y2 = f^g # CH
196 rorx $14, e, y1 # y1 = (e >> 14) # S1
197
198 and e, y2 # y2 = (f^g)&e # CH
199 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
200 rorx $39, a, y1 # y1 = a >> 39 # S0A
201 add h, d # d = k + w + h + d # --
202
203 and b, y3 # y3 = (a|c)&b # MAJA
204 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
205 rorx $28, a, T1 # T1 = (a >> 28) # S0
206
207 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
208 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
209 mov a, T1 # T1 = a # MAJB
210 and c, T1 # T1 = a&c # MAJB
211
212 add y0, y2 # y2 = S1 + CH # --
213 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
214 add y1, h # h = k + w + h + S0 # --
215
216 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
217
218 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
219 add y3, h # h = t1 + S0 + MAJ # --
220
221 RotateState
222
223 ################################### RND N + 1 #########################################
224
225 # Calculate w[t-15] ror 8
226 vpsrlq $8, YTMP1, YTMP2
227 vpsllq $(64-8), YTMP1, YTMP1
228 vpor YTMP2, YTMP1, YTMP1 # YTMP1 = W[-15] ror 8
229 # XOR the three components
230 vpxor YTMP4, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1 ^ W[-15] >> 7
231 vpxor YTMP1, YTMP3, YTMP1 # YTMP1 = s0
232
233
234 # Add three components, w[t-16], w[t-7] and sigma0
235 vpaddq YTMP1, YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0
236 # Move to appropriate lanes for calculating w[16] and w[17]
237 vperm2f128 $0x0, YTMP0, YTMP0, Y_0 # Y_0 = W[-16] + W[-7] + s0 {BABA}
238 # Move to appropriate lanes for calculating w[18] and w[19]
239 vpand MASK_YMM_LO(%rip), YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0 {DC00}
240
241 # Calculate w[16] and w[17] in both 128 bit lanes
242
243 # Calculate sigma1 for w[16] and w[17] on both 128 bit lanes
244 vperm2f128 $0x11, Y_3, Y_3, YTMP2 # YTMP2 = W[-2] {BABA}
245 vpsrlq $6, YTMP2, YTMP4 # YTMP4 = W[-2] >> 6 {BABA}
246
247
248 mov a, y3 # y3 = a # MAJA
249 rorx $41, e, y0 # y0 = e >> 41 # S1A
250 rorx $18, e, y1 # y1 = e >> 18 # S1B
251 add 1*8+frame_XFER(%rsp), h # h = k + w + h # --
252 or c, y3 # y3 = a|c # MAJA
253
254
255 mov f, y2 # y2 = f # CH
256 rorx $34, a, T1 # T1 = a >> 34 # S0B
257 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
258 xor g, y2 # y2 = f^g # CH
259
260
261 rorx $14, e, y1 # y1 = (e >> 14) # S1
262 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
263 rorx $39, a, y1 # y1 = a >> 39 # S0A
264 and e, y2 # y2 = (f^g)&e # CH
265 add h, d # d = k + w + h + d # --
266
267 and b, y3 # y3 = (a|c)&b # MAJA
268 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
269
270 rorx $28, a, T1 # T1 = (a >> 28) # S0
271 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
272
273 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
274 mov a, T1 # T1 = a # MAJB
275 and c, T1 # T1 = a&c # MAJB
276 add y0, y2 # y2 = S1 + CH # --
277
278 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
279 add y1, h # h = k + w + h + S0 # --
280
281 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
282 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
283 add y3, h # h = t1 + S0 + MAJ # --
284
285 RotateState
286
287
288 ################################### RND N + 2 #########################################
289
290 vpsrlq $19, YTMP2, YTMP3 # YTMP3 = W[-2] >> 19 {BABA}
291 vpsllq $(64-19), YTMP2, YTMP1 # YTMP1 = W[-2] << 19 {BABA}
292 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {BABA}
293 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {BABA}
294 vpsrlq $61, YTMP2, YTMP3 # YTMP3 = W[-2] >> 61 {BABA}
295 vpsllq $(64-61), YTMP2, YTMP1 # YTMP1 = W[-2] << 61 {BABA}
296 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {BABA}
297 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
298 # (W[-2] ror 61) ^ (W[-2] >> 6) {BABA}
299
300 # Add sigma1 to the other compunents to get w[16] and w[17]
301 vpaddq YTMP4, Y_0, Y_0 # Y_0 = {W[1], W[0], W[1], W[0]}
302
303 # Calculate sigma1 for w[18] and w[19] for upper 128 bit lane
304 vpsrlq $6, Y_0, YTMP4 # YTMP4 = W[-2] >> 6 {DC--}
305
306 mov a, y3 # y3 = a # MAJA
307 rorx $41, e, y0 # y0 = e >> 41 # S1A
308 add 2*8+frame_XFER(%rsp), h # h = k + w + h # --
309
310 rorx $18, e, y1 # y1 = e >> 18 # S1B
311 or c, y3 # y3 = a|c # MAJA
312 mov f, y2 # y2 = f # CH
313 xor g, y2 # y2 = f^g # CH
314
315 rorx $34, a, T1 # T1 = a >> 34 # S0B
316 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
317 and e, y2 # y2 = (f^g)&e # CH
318
319 rorx $14, e, y1 # y1 = (e >> 14) # S1
320 add h, d # d = k + w + h + d # --
321 and b, y3 # y3 = (a|c)&b # MAJA
322
323 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
324 rorx $39, a, y1 # y1 = a >> 39 # S0A
325 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
326
327 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
328 rorx $28, a, T1 # T1 = (a >> 28) # S0
329
330 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
331 mov a, T1 # T1 = a # MAJB
332 and c, T1 # T1 = a&c # MAJB
333 add y0, y2 # y2 = S1 + CH # --
334
335 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
336 add y1, h # h = k + w + h + S0 # --
337 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
338 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
339
340 add y3, h # h = t1 + S0 + MAJ # --
341
342 RotateState
343
344 ################################### RND N + 3 #########################################
345
346 vpsrlq $19, Y_0, YTMP3 # YTMP3 = W[-2] >> 19 {DC--}
347 vpsllq $(64-19), Y_0, YTMP1 # YTMP1 = W[-2] << 19 {DC--}
348 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {DC--}
349 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {DC--}
350 vpsrlq $61, Y_0, YTMP3 # YTMP3 = W[-2] >> 61 {DC--}
351 vpsllq $(64-61), Y_0, YTMP1 # YTMP1 = W[-2] << 61 {DC--}
352 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {DC--}
353 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
354 # (W[-2] ror 61) ^ (W[-2] >> 6) {DC--}
355
356 # Add the sigma0 + w[t-7] + w[t-16] for w[18] and w[19]
357 # to newly calculated sigma1 to get w[18] and w[19]
358 vpaddq YTMP4, YTMP0, YTMP2 # YTMP2 = {W[3], W[2], --, --}
359
360 # Form w[19, w[18], w17], w[16]
361 vpblendd $0xF0, YTMP2, Y_0, Y_0 # Y_0 = {W[3], W[2], W[1], W[0]}
362
363 mov a, y3 # y3 = a # MAJA
364 rorx $41, e, y0 # y0 = e >> 41 # S1A
365 rorx $18, e, y1 # y1 = e >> 18 # S1B
366 add 3*8+frame_XFER(%rsp), h # h = k + w + h # --
367 or c, y3 # y3 = a|c # MAJA
368
369
370 mov f, y2 # y2 = f # CH
371 rorx $34, a, T1 # T1 = a >> 34 # S0B
372 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
373 xor g, y2 # y2 = f^g # CH
374
375
376 rorx $14, e, y1 # y1 = (e >> 14) # S1
377 and e, y2 # y2 = (f^g)&e # CH
378 add h, d # d = k + w + h + d # --
379 and b, y3 # y3 = (a|c)&b # MAJA
380
381 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
382 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
383
384 rorx $39, a, y1 # y1 = a >> 39 # S0A
385 add y0, y2 # y2 = S1 + CH # --
386
387 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
388 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
389
390 rorx $28, a, T1 # T1 = (a >> 28) # S0
391
392 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
393 mov a, T1 # T1 = a # MAJB
394 and c, T1 # T1 = a&c # MAJB
395 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
396
397 add y1, h # h = k + w + h + S0 # --
398 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
399 add y3, h # h = t1 + S0 + MAJ # --
400
401 RotateState
402
403 rotate_Ys
404 .endm
405
406 .macro DO_4ROUNDS
407
408 ################################### RND N + 0 #########################################
409
410 mov f, y2 # y2 = f # CH
411 rorx $41, e, y0 # y0 = e >> 41 # S1A
412 rorx $18, e, y1 # y1 = e >> 18 # S1B
413 xor g, y2 # y2 = f^g # CH
414
415 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
416 rorx $14, e, y1 # y1 = (e >> 14) # S1
417 and e, y2 # y2 = (f^g)&e # CH
418
419 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
420 rorx $34, a, T1 # T1 = a >> 34 # S0B
421 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
422 rorx $39, a, y1 # y1 = a >> 39 # S0A
423 mov a, y3 # y3 = a # MAJA
424
425 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
426 rorx $28, a, T1 # T1 = (a >> 28) # S0
427 add frame_XFER(%rsp), h # h = k + w + h # --
428 or c, y3 # y3 = a|c # MAJA
429
430 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
431 mov a, T1 # T1 = a # MAJB
432 and b, y3 # y3 = (a|c)&b # MAJA
433 and c, T1 # T1 = a&c # MAJB
434 add y0, y2 # y2 = S1 + CH # --
435
436 add h, d # d = k + w + h + d # --
437 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
438 add y1, h # h = k + w + h + S0 # --
439
440 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
441
442 RotateState
443
444 ################################### RND N + 1 #########################################
445
446 add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
447 mov f, y2 # y2 = f # CH
448 rorx $41, e, y0 # y0 = e >> 41 # S1A
449 rorx $18, e, y1 # y1 = e >> 18 # S1B
450 xor g, y2 # y2 = f^g # CH
451
452 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
453 rorx $14, e, y1 # y1 = (e >> 14) # S1
454 and e, y2 # y2 = (f^g)&e # CH
455 add y3, old_h # h = t1 + S0 + MAJ # --
456
457 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
458 rorx $34, a, T1 # T1 = a >> 34 # S0B
459 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
460 rorx $39, a, y1 # y1 = a >> 39 # S0A
461 mov a, y3 # y3 = a # MAJA
462
463 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
464 rorx $28, a, T1 # T1 = (a >> 28) # S0
465 add 8*1+frame_XFER(%rsp), h # h = k + w + h # --
466 or c, y3 # y3 = a|c # MAJA
467
468 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
469 mov a, T1 # T1 = a # MAJB
470 and b, y3 # y3 = (a|c)&b # MAJA
471 and c, T1 # T1 = a&c # MAJB
472 add y0, y2 # y2 = S1 + CH # --
473
474 add h, d # d = k + w + h + d # --
475 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
476 add y1, h # h = k + w + h + S0 # --
477
478 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
479
480 RotateState
481
482 ################################### RND N + 2 #########################################
483
484 add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
485 mov f, y2 # y2 = f # CH
486 rorx $41, e, y0 # y0 = e >> 41 # S1A
487 rorx $18, e, y1 # y1 = e >> 18 # S1B
488 xor g, y2 # y2 = f^g # CH
489
490 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
491 rorx $14, e, y1 # y1 = (e >> 14) # S1
492 and e, y2 # y2 = (f^g)&e # CH
493 add y3, old_h # h = t1 + S0 + MAJ # --
494
495 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
496 rorx $34, a, T1 # T1 = a >> 34 # S0B
497 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
498 rorx $39, a, y1 # y1 = a >> 39 # S0A
499 mov a, y3 # y3 = a # MAJA
500
501 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
502 rorx $28, a, T1 # T1 = (a >> 28) # S0
503 add 8*2+frame_XFER(%rsp), h # h = k + w + h # --
504 or c, y3 # y3 = a|c # MAJA
505
506 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
507 mov a, T1 # T1 = a # MAJB
508 and b, y3 # y3 = (a|c)&b # MAJA
509 and c, T1 # T1 = a&c # MAJB
510 add y0, y2 # y2 = S1 + CH # --
511
512 add h, d # d = k + w + h + d # --
513 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
514 add y1, h # h = k + w + h + S0 # --
515
516 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
517
518 RotateState
519
520 ################################### RND N + 3 #########################################
521
522 add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
523 mov f, y2 # y2 = f # CH
524 rorx $41, e, y0 # y0 = e >> 41 # S1A
525 rorx $18, e, y1 # y1 = e >> 18 # S1B
526 xor g, y2 # y2 = f^g # CH
527
528 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
529 rorx $14, e, y1 # y1 = (e >> 14) # S1
530 and e, y2 # y2 = (f^g)&e # CH
531 add y3, old_h # h = t1 + S0 + MAJ # --
532
533 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
534 rorx $34, a, T1 # T1 = a >> 34 # S0B
535 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
536 rorx $39, a, y1 # y1 = a >> 39 # S0A
537 mov a, y3 # y3 = a # MAJA
538
539 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
540 rorx $28, a, T1 # T1 = (a >> 28) # S0
541 add 8*3+frame_XFER(%rsp), h # h = k + w + h # --
542 or c, y3 # y3 = a|c # MAJA
543
544 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
545 mov a, T1 # T1 = a # MAJB
546 and b, y3 # y3 = (a|c)&b # MAJA
547 and c, T1 # T1 = a&c # MAJB
548 add y0, y2 # y2 = S1 + CH # --
549
550
551 add h, d # d = k + w + h + d # --
552 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
553 add y1, h # h = k + w + h + S0 # --
554
555 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
556
557 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
558
559 add y3, h # h = t1 + S0 + MAJ # --
560
561 RotateState
562
563 .endm
564
565 ########################################################################
566 # void sha512_transform_rorx(void* D, const void* M, uint64_t L)#
567 # Purpose: Updates the SHA512 digest stored at D with the message stored in M.
568 # The size of the message pointed to by M must be an integer multiple of SHA512
569 # message blocks.
570 # L is the message length in SHA512 blocks
571 ########################################################################
572 ENTRY(sha512_transform_rorx)
573 # Allocate Stack Space
574 mov %rsp, %rax
575 sub $frame_size, %rsp
576 and $~(0x20 - 1), %rsp
577 mov %rax, frame_RSPSAVE(%rsp)
578
579 # Save GPRs
580 mov %rbx, 8*0+frame_GPRSAVE(%rsp)
581 mov %r12, 8*1+frame_GPRSAVE(%rsp)
582 mov %r13, 8*2+frame_GPRSAVE(%rsp)
583 mov %r14, 8*3+frame_GPRSAVE(%rsp)
584 mov %r15, 8*4+frame_GPRSAVE(%rsp)
585
586 shl $7, NUM_BLKS # convert to bytes
587 jz done_hash
588 add INP, NUM_BLKS # pointer to end of data
589 mov NUM_BLKS, frame_INPEND(%rsp)
590
591 ## load initial digest
592 mov 8*0(CTX1), a
593 mov 8*1(CTX1), b
594 mov 8*2(CTX1), c
595 mov 8*3(CTX1), d
596 mov 8*4(CTX1), e
597 mov 8*5(CTX1), f
598 mov 8*6(CTX1), g
599 mov 8*7(CTX1), h
600
601 # save %rdi (CTX) before it gets clobbered
602 mov %rdi, frame_CTX(%rsp)
603
604 vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
605
606 loop0:
607 lea K512(%rip), TBL
608
609 ## byte swap first 16 dwords
610 COPY_YMM_AND_BSWAP Y_0, (INP), BYTE_FLIP_MASK
611 COPY_YMM_AND_BSWAP Y_1, 1*32(INP), BYTE_FLIP_MASK
612 COPY_YMM_AND_BSWAP Y_2, 2*32(INP), BYTE_FLIP_MASK
613 COPY_YMM_AND_BSWAP Y_3, 3*32(INP), BYTE_FLIP_MASK
614
615 mov INP, frame_INP(%rsp)
616
617 ## schedule 64 input dwords, by doing 12 rounds of 4 each
618 movq $4, frame_SRND(%rsp)
619
620 .align 16
621 loop1:
622 vpaddq (TBL), Y_0, XFER
623 vmovdqa XFER, frame_XFER(%rsp)
624 FOUR_ROUNDS_AND_SCHED
625
626 vpaddq 1*32(TBL), Y_0, XFER
627 vmovdqa XFER, frame_XFER(%rsp)
628 FOUR_ROUNDS_AND_SCHED
629
630 vpaddq 2*32(TBL), Y_0, XFER
631 vmovdqa XFER, frame_XFER(%rsp)
632 FOUR_ROUNDS_AND_SCHED
633
634 vpaddq 3*32(TBL), Y_0, XFER
635 vmovdqa XFER, frame_XFER(%rsp)
636 add $(4*32), TBL
637 FOUR_ROUNDS_AND_SCHED
638
639 subq $1, frame_SRND(%rsp)
640 jne loop1
641
642 movq $2, frame_SRND(%rsp)
643 loop2:
644 vpaddq (TBL), Y_0, XFER
645 vmovdqa XFER, frame_XFER(%rsp)
646 DO_4ROUNDS
647 vpaddq 1*32(TBL), Y_1, XFER
648 vmovdqa XFER, frame_XFER(%rsp)
649 add $(2*32), TBL
650 DO_4ROUNDS
651
652 vmovdqa Y_2, Y_0
653 vmovdqa Y_3, Y_1
654
655 subq $1, frame_SRND(%rsp)
656 jne loop2
657
658 mov frame_CTX(%rsp), CTX2
659 addm 8*0(CTX2), a
660 addm 8*1(CTX2), b
661 addm 8*2(CTX2), c
662 addm 8*3(CTX2), d
663 addm 8*4(CTX2), e
664 addm 8*5(CTX2), f
665 addm 8*6(CTX2), g
666 addm 8*7(CTX2), h
667
668 mov frame_INP(%rsp), INP
669 add $128, INP
670 cmp frame_INPEND(%rsp), INP
671 jne loop0
672
673 done_hash:
674
675 # Restore GPRs
676 mov 8*0+frame_GPRSAVE(%rsp), %rbx
677 mov 8*1+frame_GPRSAVE(%rsp), %r12
678 mov 8*2+frame_GPRSAVE(%rsp), %r13
679 mov 8*3+frame_GPRSAVE(%rsp), %r14
680 mov 8*4+frame_GPRSAVE(%rsp), %r15
681
682 # Restore Stack Pointer
683 mov frame_RSPSAVE(%rsp), %rsp
684 ret
685 ENDPROC(sha512_transform_rorx)
686
687 ########################################################################
688 ### Binary Data
689
690
691 # Mergeable 640-byte rodata section. This allows linker to merge the table
692 # with other, exactly the same 640-byte fragment of another rodata section
693 # (if such section exists).
694 .section .rodata.cst640.K512, "aM", @progbits, 640
695 .align 64
696 # K[t] used in SHA512 hashing
697 K512:
698 .quad 0x428a2f98d728ae22,0x7137449123ef65cd
699 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
700 .quad 0x3956c25bf348b538,0x59f111f1b605d019
701 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
702 .quad 0xd807aa98a3030242,0x12835b0145706fbe
703 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
704 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
705 .quad 0x9bdc06a725c71235,0xc19bf174cf692694
706 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
707 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
708 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
709 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
710 .quad 0x983e5152ee66dfab,0xa831c66d2db43210
711 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
712 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
713 .quad 0x06ca6351e003826f,0x142929670a0e6e70
714 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
715 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
716 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
717 .quad 0x81c2c92e47edaee6,0x92722c851482353b
718 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
719 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
720 .quad 0xd192e819d6ef5218,0xd69906245565a910
721 .quad 0xf40e35855771202a,0x106aa07032bbd1b8
722 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
723 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
724 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
725 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
726 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
727 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
728 .quad 0x90befffa23631e28,0xa4506cebde82bde9
729 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
730 .quad 0xca273eceea26619c,0xd186b8c721c0c207
731 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
732 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
733 .quad 0x113f9804bef90dae,0x1b710b35131c471b
734 .quad 0x28db77f523047d84,0x32caab7b40c72493
735 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
736 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
737 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
738
739 .section .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32
740 .align 32
741 # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
742 PSHUFFLE_BYTE_FLIP_MASK:
743 .octa 0x08090a0b0c0d0e0f0001020304050607
744 .octa 0x18191a1b1c1d1e1f1011121314151617
745
746 .section .rodata.cst32.MASK_YMM_LO, "aM", @progbits, 32
747 .align 32
748 MASK_YMM_LO:
749 .octa 0x00000000000000000000000000000000
750 .octa 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
751
752 #endif