]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/crypto/sha512-ssse3-asm.S
Merge tag 'platform-drivers-x86-v4.15-4' of git://git.infradead.org/linux-platform...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / crypto / sha512-ssse3-asm.S
1 ########################################################################
2 # Implement fast SHA-512 with SSSE3 instructions. (x86_64)
3 #
4 # Copyright (C) 2013 Intel Corporation.
5 #
6 # Authors:
7 # James Guilford <james.guilford@intel.com>
8 # Kirk Yap <kirk.s.yap@intel.com>
9 # David Cote <david.m.cote@intel.com>
10 # Tim Chen <tim.c.chen@linux.intel.com>
11 #
12 # This software is available to you under a choice of one of two
13 # licenses. You may choose to be licensed under the terms of the GNU
14 # General Public License (GPL) Version 2, available from the file
15 # COPYING in the main directory of this source tree, or the
16 # OpenIB.org BSD license below:
17 #
18 # Redistribution and use in source and binary forms, with or
19 # without modification, are permitted provided that the following
20 # conditions are met:
21 #
22 # - Redistributions of source code must retain the above
23 # copyright notice, this list of conditions and the following
24 # disclaimer.
25 #
26 # - Redistributions in binary form must reproduce the above
27 # copyright notice, this list of conditions and the following
28 # disclaimer in the documentation and/or other materials
29 # provided with the distribution.
30 #
31 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 # SOFTWARE.
39 #
40 ########################################################################
41 #
42 # This code is described in an Intel White-Paper:
43 # "Fast SHA-512 Implementations on Intel Architecture Processors"
44 #
45 # To find it, surf to http://www.intel.com/p/en_US/embedded
46 # and search for that title.
47 #
48 ########################################################################
49
50 #include <linux/linkage.h>
51
52 .text
53
54 # Virtual Registers
55 # ARG1
56 digest = %rdi
57 # ARG2
58 msg = %rsi
59 # ARG3
60 msglen = %rdx
61 T1 = %rcx
62 T2 = %r8
63 a_64 = %r9
64 b_64 = %r10
65 c_64 = %r11
66 d_64 = %r12
67 e_64 = %r13
68 f_64 = %r14
69 g_64 = %r15
70 h_64 = %rbx
71 tmp0 = %rax
72
73 # Local variables (stack frame)
74
75 W_SIZE = 80*8
76 WK_SIZE = 2*8
77 RSPSAVE_SIZE = 1*8
78 GPRSAVE_SIZE = 5*8
79
80 frame_W = 0
81 frame_WK = frame_W + W_SIZE
82 frame_RSPSAVE = frame_WK + WK_SIZE
83 frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
84 frame_size = frame_GPRSAVE + GPRSAVE_SIZE
85
86 # Useful QWORD "arrays" for simpler memory references
87 # MSG, DIGEST, K_t, W_t are arrays
88 # WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
89
90 # Input message (arg1)
91 #define MSG(i) 8*i(msg)
92
93 # Output Digest (arg2)
94 #define DIGEST(i) 8*i(digest)
95
96 # SHA Constants (static mem)
97 #define K_t(i) 8*i+K512(%rip)
98
99 # Message Schedule (stack frame)
100 #define W_t(i) 8*i+frame_W(%rsp)
101
102 # W[t]+K[t] (stack frame)
103 #define WK_2(i) 8*((i%2))+frame_WK(%rsp)
104
105 .macro RotateState
106 # Rotate symbols a..h right
107 TMP = h_64
108 h_64 = g_64
109 g_64 = f_64
110 f_64 = e_64
111 e_64 = d_64
112 d_64 = c_64
113 c_64 = b_64
114 b_64 = a_64
115 a_64 = TMP
116 .endm
117
118 .macro SHA512_Round rnd
119
120 # Compute Round %%t
121 mov f_64, T1 # T1 = f
122 mov e_64, tmp0 # tmp = e
123 xor g_64, T1 # T1 = f ^ g
124 ror $23, tmp0 # 41 # tmp = e ror 23
125 and e_64, T1 # T1 = (f ^ g) & e
126 xor e_64, tmp0 # tmp = (e ror 23) ^ e
127 xor g_64, T1 # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
128 idx = \rnd
129 add WK_2(idx), T1 # W[t] + K[t] from message scheduler
130 ror $4, tmp0 # 18 # tmp = ((e ror 23) ^ e) ror 4
131 xor e_64, tmp0 # tmp = (((e ror 23) ^ e) ror 4) ^ e
132 mov a_64, T2 # T2 = a
133 add h_64, T1 # T1 = CH(e,f,g) + W[t] + K[t] + h
134 ror $14, tmp0 # 14 # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
135 add tmp0, T1 # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
136 mov a_64, tmp0 # tmp = a
137 xor c_64, T2 # T2 = a ^ c
138 and c_64, tmp0 # tmp = a & c
139 and b_64, T2 # T2 = (a ^ c) & b
140 xor tmp0, T2 # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
141 mov a_64, tmp0 # tmp = a
142 ror $5, tmp0 # 39 # tmp = a ror 5
143 xor a_64, tmp0 # tmp = (a ror 5) ^ a
144 add T1, d_64 # e(next_state) = d + T1
145 ror $6, tmp0 # 34 # tmp = ((a ror 5) ^ a) ror 6
146 xor a_64, tmp0 # tmp = (((a ror 5) ^ a) ror 6) ^ a
147 lea (T1, T2), h_64 # a(next_state) = T1 + Maj(a,b,c)
148 ror $28, tmp0 # 28 # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
149 add tmp0, h_64 # a(next_state) = T1 + Maj(a,b,c) S0(a)
150 RotateState
151 .endm
152
153 .macro SHA512_2Sched_2Round_sse rnd
154
155 # Compute rounds t-2 and t-1
156 # Compute message schedule QWORDS t and t+1
157
158 # Two rounds are computed based on the values for K[t-2]+W[t-2] and
159 # K[t-1]+W[t-1] which were previously stored at WK_2 by the message
160 # scheduler.
161 # The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)].
162 # They are then added to their respective SHA512 constants at
163 # [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)]
164 # For brievity, the comments following vectored instructions only refer to
165 # the first of a pair of QWORDS.
166 # Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]}
167 # The computation of the message schedule and the rounds are tightly
168 # stitched to take advantage of instruction-level parallelism.
169 # For clarity, integer instructions (for the rounds calculation) are indented
170 # by one tab. Vectored instructions (for the message scheduler) are indented
171 # by two tabs.
172
173 mov f_64, T1
174 idx = \rnd -2
175 movdqa W_t(idx), %xmm2 # XMM2 = W[t-2]
176 xor g_64, T1
177 and e_64, T1
178 movdqa %xmm2, %xmm0 # XMM0 = W[t-2]
179 xor g_64, T1
180 idx = \rnd
181 add WK_2(idx), T1
182 idx = \rnd - 15
183 movdqu W_t(idx), %xmm5 # XMM5 = W[t-15]
184 mov e_64, tmp0
185 ror $23, tmp0 # 41
186 movdqa %xmm5, %xmm3 # XMM3 = W[t-15]
187 xor e_64, tmp0
188 ror $4, tmp0 # 18
189 psrlq $61-19, %xmm0 # XMM0 = W[t-2] >> 42
190 xor e_64, tmp0
191 ror $14, tmp0 # 14
192 psrlq $(8-7), %xmm3 # XMM3 = W[t-15] >> 1
193 add tmp0, T1
194 add h_64, T1
195 pxor %xmm2, %xmm0 # XMM0 = (W[t-2] >> 42) ^ W[t-2]
196 mov a_64, T2
197 xor c_64, T2
198 pxor %xmm5, %xmm3 # XMM3 = (W[t-15] >> 1) ^ W[t-15]
199 and b_64, T2
200 mov a_64, tmp0
201 psrlq $(19-6), %xmm0 # XMM0 = ((W[t-2]>>42)^W[t-2])>>13
202 and c_64, tmp0
203 xor tmp0, T2
204 psrlq $(7-1), %xmm3 # XMM3 = ((W[t-15]>>1)^W[t-15])>>6
205 mov a_64, tmp0
206 ror $5, tmp0 # 39
207 pxor %xmm2, %xmm0 # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2]
208 xor a_64, tmp0
209 ror $6, tmp0 # 34
210 pxor %xmm5, %xmm3 # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]
211 xor a_64, tmp0
212 ror $28, tmp0 # 28
213 psrlq $6, %xmm0 # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6
214 add tmp0, T2
215 add T1, d_64
216 psrlq $1, %xmm3 # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1
217 lea (T1, T2), h_64
218 RotateState
219 movdqa %xmm2, %xmm1 # XMM1 = W[t-2]
220 mov f_64, T1
221 xor g_64, T1
222 movdqa %xmm5, %xmm4 # XMM4 = W[t-15]
223 and e_64, T1
224 xor g_64, T1
225 psllq $(64-19)-(64-61) , %xmm1 # XMM1 = W[t-2] << 42
226 idx = \rnd + 1
227 add WK_2(idx), T1
228 mov e_64, tmp0
229 psllq $(64-1)-(64-8), %xmm4 # XMM4 = W[t-15] << 7
230 ror $23, tmp0 # 41
231 xor e_64, tmp0
232 pxor %xmm2, %xmm1 # XMM1 = (W[t-2] << 42)^W[t-2]
233 ror $4, tmp0 # 18
234 xor e_64, tmp0
235 pxor %xmm5, %xmm4 # XMM4 = (W[t-15]<<7)^W[t-15]
236 ror $14, tmp0 # 14
237 add tmp0, T1
238 psllq $(64-61), %xmm1 # XMM1 = ((W[t-2] << 42)^W[t-2])<<3
239 add h_64, T1
240 mov a_64, T2
241 psllq $(64-8), %xmm4 # XMM4 = ((W[t-15]<<7)^W[t-15])<<56
242 xor c_64, T2
243 and b_64, T2
244 pxor %xmm1, %xmm0 # XMM0 = s1(W[t-2])
245 mov a_64, tmp0
246 and c_64, tmp0
247 idx = \rnd - 7
248 movdqu W_t(idx), %xmm1 # XMM1 = W[t-7]
249 xor tmp0, T2
250 pxor %xmm4, %xmm3 # XMM3 = s0(W[t-15])
251 mov a_64, tmp0
252 paddq %xmm3, %xmm0 # XMM0 = s1(W[t-2]) + s0(W[t-15])
253 ror $5, tmp0 # 39
254 idx =\rnd-16
255 paddq W_t(idx), %xmm0 # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16]
256 xor a_64, tmp0
257 paddq %xmm1, %xmm0 # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16]
258 ror $6, tmp0 # 34
259 movdqa %xmm0, W_t(\rnd) # Store scheduled qwords
260 xor a_64, tmp0
261 paddq K_t(\rnd), %xmm0 # Compute W[t]+K[t]
262 ror $28, tmp0 # 28
263 idx = \rnd
264 movdqa %xmm0, WK_2(idx) # Store W[t]+K[t] for next rounds
265 add tmp0, T2
266 add T1, d_64
267 lea (T1, T2), h_64
268 RotateState
269 .endm
270
271 ########################################################################
272 # void sha512_transform_ssse3(void* D, const void* M, u64 L)#
273 # Purpose: Updates the SHA512 digest stored at D with the message stored in M.
274 # The size of the message pointed to by M must be an integer multiple of SHA512
275 # message blocks.
276 # L is the message length in SHA512 blocks.
277 ########################################################################
278 ENTRY(sha512_transform_ssse3)
279
280 cmp $0, msglen
281 je nowork
282
283 # Allocate Stack Space
284 mov %rsp, %rax
285 sub $frame_size, %rsp
286 and $~(0x20 - 1), %rsp
287 mov %rax, frame_RSPSAVE(%rsp)
288
289 # Save GPRs
290 mov %rbx, frame_GPRSAVE(%rsp)
291 mov %r12, frame_GPRSAVE +8*1(%rsp)
292 mov %r13, frame_GPRSAVE +8*2(%rsp)
293 mov %r14, frame_GPRSAVE +8*3(%rsp)
294 mov %r15, frame_GPRSAVE +8*4(%rsp)
295
296 updateblock:
297
298 # Load state variables
299 mov DIGEST(0), a_64
300 mov DIGEST(1), b_64
301 mov DIGEST(2), c_64
302 mov DIGEST(3), d_64
303 mov DIGEST(4), e_64
304 mov DIGEST(5), f_64
305 mov DIGEST(6), g_64
306 mov DIGEST(7), h_64
307
308 t = 0
309 .rept 80/2 + 1
310 # (80 rounds) / (2 rounds/iteration) + (1 iteration)
311 # +1 iteration because the scheduler leads hashing by 1 iteration
312 .if t < 2
313 # BSWAP 2 QWORDS
314 movdqa XMM_QWORD_BSWAP(%rip), %xmm1
315 movdqu MSG(t), %xmm0
316 pshufb %xmm1, %xmm0 # BSWAP
317 movdqa %xmm0, W_t(t) # Store Scheduled Pair
318 paddq K_t(t), %xmm0 # Compute W[t]+K[t]
319 movdqa %xmm0, WK_2(t) # Store into WK for rounds
320 .elseif t < 16
321 # BSWAP 2 QWORDS# Compute 2 Rounds
322 movdqu MSG(t), %xmm0
323 pshufb %xmm1, %xmm0 # BSWAP
324 SHA512_Round t-2 # Round t-2
325 movdqa %xmm0, W_t(t) # Store Scheduled Pair
326 paddq K_t(t), %xmm0 # Compute W[t]+K[t]
327 SHA512_Round t-1 # Round t-1
328 movdqa %xmm0, WK_2(t) # Store W[t]+K[t] into WK
329 .elseif t < 79
330 # Schedule 2 QWORDS# Compute 2 Rounds
331 SHA512_2Sched_2Round_sse t
332 .else
333 # Compute 2 Rounds
334 SHA512_Round t-2
335 SHA512_Round t-1
336 .endif
337 t = t+2
338 .endr
339
340 # Update digest
341 add a_64, DIGEST(0)
342 add b_64, DIGEST(1)
343 add c_64, DIGEST(2)
344 add d_64, DIGEST(3)
345 add e_64, DIGEST(4)
346 add f_64, DIGEST(5)
347 add g_64, DIGEST(6)
348 add h_64, DIGEST(7)
349
350 # Advance to next message block
351 add $16*8, msg
352 dec msglen
353 jnz updateblock
354
355 # Restore GPRs
356 mov frame_GPRSAVE(%rsp), %rbx
357 mov frame_GPRSAVE +8*1(%rsp), %r12
358 mov frame_GPRSAVE +8*2(%rsp), %r13
359 mov frame_GPRSAVE +8*3(%rsp), %r14
360 mov frame_GPRSAVE +8*4(%rsp), %r15
361
362 # Restore Stack Pointer
363 mov frame_RSPSAVE(%rsp), %rsp
364
365 nowork:
366 ret
367 ENDPROC(sha512_transform_ssse3)
368
369 ########################################################################
370 ### Binary Data
371
372 .section .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
373 .align 16
374 # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
375 XMM_QWORD_BSWAP:
376 .octa 0x08090a0b0c0d0e0f0001020304050607
377
378 # Mergeable 640-byte rodata section. This allows linker to merge the table
379 # with other, exactly the same 640-byte fragment of another rodata section
380 # (if such section exists).
381 .section .rodata.cst640.K512, "aM", @progbits, 640
382 .align 64
383 # K[t] used in SHA512 hashing
384 K512:
385 .quad 0x428a2f98d728ae22,0x7137449123ef65cd
386 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
387 .quad 0x3956c25bf348b538,0x59f111f1b605d019
388 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
389 .quad 0xd807aa98a3030242,0x12835b0145706fbe
390 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
391 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
392 .quad 0x9bdc06a725c71235,0xc19bf174cf692694
393 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
394 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
395 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
396 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
397 .quad 0x983e5152ee66dfab,0xa831c66d2db43210
398 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
399 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
400 .quad 0x06ca6351e003826f,0x142929670a0e6e70
401 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
402 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
403 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
404 .quad 0x81c2c92e47edaee6,0x92722c851482353b
405 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
406 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
407 .quad 0xd192e819d6ef5218,0xd69906245565a910
408 .quad 0xf40e35855771202a,0x106aa07032bbd1b8
409 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
410 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
411 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
412 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
413 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
414 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
415 .quad 0x90befffa23631e28,0xa4506cebde82bde9
416 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
417 .quad 0xca273eceea26619c,0xd186b8c721c0c207
418 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
419 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
420 .quad 0x113f9804bef90dae,0x1b710b35131c471b
421 .quad 0x28db77f523047d84,0x32caab7b40c72493
422 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
423 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
424 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817