]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/crypto/sm4-aesni-avx-asm_64.S
crypto: x86/sm4 - Fix frame pointer stack corruption
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / crypto / sm4-aesni-avx-asm_64.S
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * SM4 Cipher Algorithm, AES-NI/AVX optimized.
4 * as specified in
5 * https://tools.ietf.org/id/draft-ribose-cfrg-sm4-10.html
6 *
7 * Copyright (C) 2018 Markku-Juhani O. Saarinen <mjos@iki.fi>
8 * Copyright (C) 2020 Jussi Kivilinna <jussi.kivilinna@iki.fi>
9 * Copyright (c) 2021 Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
10 */
11
12 /* Based on SM4 AES-NI work by libgcrypt and Markku-Juhani O. Saarinen at:
13 * https://github.com/mjosaarinen/sm4ni
14 */
15
16 #include <linux/linkage.h>
17 #include <asm/frame.h>
18
19 #define rRIP (%rip)
20
21 #define RX0 %xmm0
22 #define RX1 %xmm1
23 #define MASK_4BIT %xmm2
24 #define RTMP0 %xmm3
25 #define RTMP1 %xmm4
26 #define RTMP2 %xmm5
27 #define RTMP3 %xmm6
28 #define RTMP4 %xmm7
29
30 #define RA0 %xmm8
31 #define RA1 %xmm9
32 #define RA2 %xmm10
33 #define RA3 %xmm11
34
35 #define RB0 %xmm12
36 #define RB1 %xmm13
37 #define RB2 %xmm14
38 #define RB3 %xmm15
39
40 #define RNOT %xmm0
41 #define RBSWAP %xmm1
42
43
44 /* Transpose four 32-bit words between 128-bit vectors. */
45 #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
46 vpunpckhdq x1, x0, t2; \
47 vpunpckldq x1, x0, x0; \
48 \
49 vpunpckldq x3, x2, t1; \
50 vpunpckhdq x3, x2, x2; \
51 \
52 vpunpckhqdq t1, x0, x1; \
53 vpunpcklqdq t1, x0, x0; \
54 \
55 vpunpckhqdq x2, t2, x3; \
56 vpunpcklqdq x2, t2, x2;
57
58 /* pre-SubByte transform. */
59 #define transform_pre(x, lo_t, hi_t, mask4bit, tmp0) \
60 vpand x, mask4bit, tmp0; \
61 vpandn x, mask4bit, x; \
62 vpsrld $4, x, x; \
63 \
64 vpshufb tmp0, lo_t, tmp0; \
65 vpshufb x, hi_t, x; \
66 vpxor tmp0, x, x;
67
68 /* post-SubByte transform. Note: x has been XOR'ed with mask4bit by
69 * 'vaeslastenc' instruction.
70 */
71 #define transform_post(x, lo_t, hi_t, mask4bit, tmp0) \
72 vpandn mask4bit, x, tmp0; \
73 vpsrld $4, x, x; \
74 vpand x, mask4bit, x; \
75 \
76 vpshufb tmp0, lo_t, tmp0; \
77 vpshufb x, hi_t, x; \
78 vpxor tmp0, x, x;
79
80
81 .section .rodata.cst164, "aM", @progbits, 164
82 .align 16
83
84 /*
85 * Following four affine transform look-up tables are from work by
86 * Markku-Juhani O. Saarinen, at https://github.com/mjosaarinen/sm4ni
87 *
88 * These allow exposing SM4 S-Box from AES SubByte.
89 */
90
91 /* pre-SubByte affine transform, from SM4 field to AES field. */
92 .Lpre_tf_lo_s:
93 .quad 0x9197E2E474720701, 0xC7C1B4B222245157
94 .Lpre_tf_hi_s:
95 .quad 0xE240AB09EB49A200, 0xF052B91BF95BB012
96
97 /* post-SubByte affine transform, from AES field to SM4 field. */
98 .Lpost_tf_lo_s:
99 .quad 0x5B67F2CEA19D0834, 0xEDD14478172BBE82
100 .Lpost_tf_hi_s:
101 .quad 0xAE7201DD73AFDC00, 0x11CDBE62CC1063BF
102
103 /* For isolating SubBytes from AESENCLAST, inverse shift row */
104 .Linv_shift_row:
105 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
106 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
107
108 /* Inverse shift row + Rotate left by 8 bits on 32-bit words with vpshufb */
109 .Linv_shift_row_rol_8:
110 .byte 0x07, 0x00, 0x0d, 0x0a, 0x0b, 0x04, 0x01, 0x0e
111 .byte 0x0f, 0x08, 0x05, 0x02, 0x03, 0x0c, 0x09, 0x06
112
113 /* Inverse shift row + Rotate left by 16 bits on 32-bit words with vpshufb */
114 .Linv_shift_row_rol_16:
115 .byte 0x0a, 0x07, 0x00, 0x0d, 0x0e, 0x0b, 0x04, 0x01
116 .byte 0x02, 0x0f, 0x08, 0x05, 0x06, 0x03, 0x0c, 0x09
117
118 /* Inverse shift row + Rotate left by 24 bits on 32-bit words with vpshufb */
119 .Linv_shift_row_rol_24:
120 .byte 0x0d, 0x0a, 0x07, 0x00, 0x01, 0x0e, 0x0b, 0x04
121 .byte 0x05, 0x02, 0x0f, 0x08, 0x09, 0x06, 0x03, 0x0c
122
123 /* For CTR-mode IV byteswap */
124 .Lbswap128_mask:
125 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
126
127 /* For input word byte-swap */
128 .Lbswap32_mask:
129 .byte 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12
130
131 .align 4
132 /* 4-bit mask */
133 .L0f0f0f0f:
134 .long 0x0f0f0f0f
135
136
137 .text
138 .align 16
139
140 /*
141 * void sm4_aesni_avx_crypt4(const u32 *rk, u8 *dst,
142 * const u8 *src, int nblocks)
143 */
144 .align 8
145 SYM_FUNC_START(sm4_aesni_avx_crypt4)
146 /* input:
147 * %rdi: round key array, CTX
148 * %rsi: dst (1..4 blocks)
149 * %rdx: src (1..4 blocks)
150 * %rcx: num blocks (1..4)
151 */
152 FRAME_BEGIN
153
154 vmovdqu 0*16(%rdx), RA0;
155 vmovdqa RA0, RA1;
156 vmovdqa RA0, RA2;
157 vmovdqa RA0, RA3;
158 cmpq $2, %rcx;
159 jb .Lblk4_load_input_done;
160 vmovdqu 1*16(%rdx), RA1;
161 je .Lblk4_load_input_done;
162 vmovdqu 2*16(%rdx), RA2;
163 cmpq $3, %rcx;
164 je .Lblk4_load_input_done;
165 vmovdqu 3*16(%rdx), RA3;
166
167 .Lblk4_load_input_done:
168
169 vmovdqa .Lbswap32_mask rRIP, RTMP2;
170 vpshufb RTMP2, RA0, RA0;
171 vpshufb RTMP2, RA1, RA1;
172 vpshufb RTMP2, RA2, RA2;
173 vpshufb RTMP2, RA3, RA3;
174
175 vbroadcastss .L0f0f0f0f rRIP, MASK_4BIT;
176 vmovdqa .Lpre_tf_lo_s rRIP, RTMP4;
177 vmovdqa .Lpre_tf_hi_s rRIP, RB0;
178 vmovdqa .Lpost_tf_lo_s rRIP, RB1;
179 vmovdqa .Lpost_tf_hi_s rRIP, RB2;
180 vmovdqa .Linv_shift_row rRIP, RB3;
181 vmovdqa .Linv_shift_row_rol_8 rRIP, RTMP2;
182 vmovdqa .Linv_shift_row_rol_16 rRIP, RTMP3;
183 transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
184
185 #define ROUND(round, s0, s1, s2, s3) \
186 vbroadcastss (4*(round))(%rdi), RX0; \
187 vpxor s1, RX0, RX0; \
188 vpxor s2, RX0, RX0; \
189 vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \
190 \
191 /* sbox, non-linear part */ \
192 transform_pre(RX0, RTMP4, RB0, MASK_4BIT, RTMP0); \
193 vaesenclast MASK_4BIT, RX0, RX0; \
194 transform_post(RX0, RB1, RB2, MASK_4BIT, RTMP0); \
195 \
196 /* linear part */ \
197 vpshufb RB3, RX0, RTMP0; \
198 vpxor RTMP0, s0, s0; /* s0 ^ x */ \
199 vpshufb RTMP2, RX0, RTMP1; \
200 vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) */ \
201 vpshufb RTMP3, RX0, RTMP1; \
202 vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) ^ rol(x,16) */ \
203 vpshufb .Linv_shift_row_rol_24 rRIP, RX0, RTMP1; \
204 vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,24) */ \
205 vpslld $2, RTMP0, RTMP1; \
206 vpsrld $30, RTMP0, RTMP0; \
207 vpxor RTMP0, s0, s0; \
208 /* s0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \
209 vpxor RTMP1, s0, s0;
210
211 leaq (32*4)(%rdi), %rax;
212 .align 16
213 .Lroundloop_blk4:
214 ROUND(0, RA0, RA1, RA2, RA3);
215 ROUND(1, RA1, RA2, RA3, RA0);
216 ROUND(2, RA2, RA3, RA0, RA1);
217 ROUND(3, RA3, RA0, RA1, RA2);
218 leaq (4*4)(%rdi), %rdi;
219 cmpq %rax, %rdi;
220 jne .Lroundloop_blk4;
221
222 #undef ROUND
223
224 vmovdqa .Lbswap128_mask rRIP, RTMP2;
225
226 transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
227 vpshufb RTMP2, RA0, RA0;
228 vpshufb RTMP2, RA1, RA1;
229 vpshufb RTMP2, RA2, RA2;
230 vpshufb RTMP2, RA3, RA3;
231
232 vmovdqu RA0, 0*16(%rsi);
233 cmpq $2, %rcx;
234 jb .Lblk4_store_output_done;
235 vmovdqu RA1, 1*16(%rsi);
236 je .Lblk4_store_output_done;
237 vmovdqu RA2, 2*16(%rsi);
238 cmpq $3, %rcx;
239 je .Lblk4_store_output_done;
240 vmovdqu RA3, 3*16(%rsi);
241
242 .Lblk4_store_output_done:
243 vzeroall;
244 FRAME_END
245 ret;
246 SYM_FUNC_END(sm4_aesni_avx_crypt4)
247
248 .align 8
249 SYM_FUNC_START_LOCAL(__sm4_crypt_blk8)
250 /* input:
251 * %rdi: round key array, CTX
252 * RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: eight parallel
253 * plaintext blocks
254 * output:
255 * RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: eight parallel
256 * ciphertext blocks
257 */
258 FRAME_BEGIN
259
260 vmovdqa .Lbswap32_mask rRIP, RTMP2;
261 vpshufb RTMP2, RA0, RA0;
262 vpshufb RTMP2, RA1, RA1;
263 vpshufb RTMP2, RA2, RA2;
264 vpshufb RTMP2, RA3, RA3;
265 vpshufb RTMP2, RB0, RB0;
266 vpshufb RTMP2, RB1, RB1;
267 vpshufb RTMP2, RB2, RB2;
268 vpshufb RTMP2, RB3, RB3;
269
270 vbroadcastss .L0f0f0f0f rRIP, MASK_4BIT;
271 transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
272 transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1);
273
274 #define ROUND(round, s0, s1, s2, s3, r0, r1, r2, r3) \
275 vbroadcastss (4*(round))(%rdi), RX0; \
276 vmovdqa .Lpre_tf_lo_s rRIP, RTMP4; \
277 vmovdqa .Lpre_tf_hi_s rRIP, RTMP1; \
278 vmovdqa RX0, RX1; \
279 vpxor s1, RX0, RX0; \
280 vpxor s2, RX0, RX0; \
281 vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \
282 vmovdqa .Lpost_tf_lo_s rRIP, RTMP2; \
283 vmovdqa .Lpost_tf_hi_s rRIP, RTMP3; \
284 vpxor r1, RX1, RX1; \
285 vpxor r2, RX1, RX1; \
286 vpxor r3, RX1, RX1; /* r1 ^ r2 ^ r3 ^ rk */ \
287 \
288 /* sbox, non-linear part */ \
289 transform_pre(RX0, RTMP4, RTMP1, MASK_4BIT, RTMP0); \
290 transform_pre(RX1, RTMP4, RTMP1, MASK_4BIT, RTMP0); \
291 vmovdqa .Linv_shift_row rRIP, RTMP4; \
292 vaesenclast MASK_4BIT, RX0, RX0; \
293 vaesenclast MASK_4BIT, RX1, RX1; \
294 transform_post(RX0, RTMP2, RTMP3, MASK_4BIT, RTMP0); \
295 transform_post(RX1, RTMP2, RTMP3, MASK_4BIT, RTMP0); \
296 \
297 /* linear part */ \
298 vpshufb RTMP4, RX0, RTMP0; \
299 vpxor RTMP0, s0, s0; /* s0 ^ x */ \
300 vpshufb RTMP4, RX1, RTMP2; \
301 vmovdqa .Linv_shift_row_rol_8 rRIP, RTMP4; \
302 vpxor RTMP2, r0, r0; /* r0 ^ x */ \
303 vpshufb RTMP4, RX0, RTMP1; \
304 vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) */ \
305 vpshufb RTMP4, RX1, RTMP3; \
306 vmovdqa .Linv_shift_row_rol_16 rRIP, RTMP4; \
307 vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) */ \
308 vpshufb RTMP4, RX0, RTMP1; \
309 vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) ^ rol(x,16) */ \
310 vpshufb RTMP4, RX1, RTMP3; \
311 vmovdqa .Linv_shift_row_rol_24 rRIP, RTMP4; \
312 vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) ^ rol(x,16) */ \
313 vpshufb RTMP4, RX0, RTMP1; \
314 vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,24) */ \
315 /* s0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \
316 vpslld $2, RTMP0, RTMP1; \
317 vpsrld $30, RTMP0, RTMP0; \
318 vpxor RTMP0, s0, s0; \
319 vpxor RTMP1, s0, s0; \
320 vpshufb RTMP4, RX1, RTMP3; \
321 vpxor RTMP3, r0, r0; /* r0 ^ x ^ rol(x,24) */ \
322 /* r0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \
323 vpslld $2, RTMP2, RTMP3; \
324 vpsrld $30, RTMP2, RTMP2; \
325 vpxor RTMP2, r0, r0; \
326 vpxor RTMP3, r0, r0;
327
328 leaq (32*4)(%rdi), %rax;
329 .align 16
330 .Lroundloop_blk8:
331 ROUND(0, RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3);
332 ROUND(1, RA1, RA2, RA3, RA0, RB1, RB2, RB3, RB0);
333 ROUND(2, RA2, RA3, RA0, RA1, RB2, RB3, RB0, RB1);
334 ROUND(3, RA3, RA0, RA1, RA2, RB3, RB0, RB1, RB2);
335 leaq (4*4)(%rdi), %rdi;
336 cmpq %rax, %rdi;
337 jne .Lroundloop_blk8;
338
339 #undef ROUND
340
341 vmovdqa .Lbswap128_mask rRIP, RTMP2;
342
343 transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
344 transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1);
345 vpshufb RTMP2, RA0, RA0;
346 vpshufb RTMP2, RA1, RA1;
347 vpshufb RTMP2, RA2, RA2;
348 vpshufb RTMP2, RA3, RA3;
349 vpshufb RTMP2, RB0, RB0;
350 vpshufb RTMP2, RB1, RB1;
351 vpshufb RTMP2, RB2, RB2;
352 vpshufb RTMP2, RB3, RB3;
353
354 FRAME_END
355 ret;
356 SYM_FUNC_END(__sm4_crypt_blk8)
357
358 /*
359 * void sm4_aesni_avx_crypt8(const u32 *rk, u8 *dst,
360 * const u8 *src, int nblocks)
361 */
362 .align 8
363 SYM_FUNC_START(sm4_aesni_avx_crypt8)
364 /* input:
365 * %rdi: round key array, CTX
366 * %rsi: dst (1..8 blocks)
367 * %rdx: src (1..8 blocks)
368 * %rcx: num blocks (1..8)
369 */
370 cmpq $5, %rcx;
371 jb sm4_aesni_avx_crypt4;
372
373 FRAME_BEGIN
374
375 vmovdqu (0 * 16)(%rdx), RA0;
376 vmovdqu (1 * 16)(%rdx), RA1;
377 vmovdqu (2 * 16)(%rdx), RA2;
378 vmovdqu (3 * 16)(%rdx), RA3;
379 vmovdqu (4 * 16)(%rdx), RB0;
380 vmovdqa RB0, RB1;
381 vmovdqa RB0, RB2;
382 vmovdqa RB0, RB3;
383 je .Lblk8_load_input_done;
384 vmovdqu (5 * 16)(%rdx), RB1;
385 cmpq $7, %rcx;
386 jb .Lblk8_load_input_done;
387 vmovdqu (6 * 16)(%rdx), RB2;
388 je .Lblk8_load_input_done;
389 vmovdqu (7 * 16)(%rdx), RB3;
390
391 .Lblk8_load_input_done:
392 call __sm4_crypt_blk8;
393
394 cmpq $6, %rcx;
395 vmovdqu RA0, (0 * 16)(%rsi);
396 vmovdqu RA1, (1 * 16)(%rsi);
397 vmovdqu RA2, (2 * 16)(%rsi);
398 vmovdqu RA3, (3 * 16)(%rsi);
399 vmovdqu RB0, (4 * 16)(%rsi);
400 jb .Lblk8_store_output_done;
401 vmovdqu RB1, (5 * 16)(%rsi);
402 je .Lblk8_store_output_done;
403 vmovdqu RB2, (6 * 16)(%rsi);
404 cmpq $7, %rcx;
405 je .Lblk8_store_output_done;
406 vmovdqu RB3, (7 * 16)(%rsi);
407
408 .Lblk8_store_output_done:
409 vzeroall;
410 FRAME_END
411 ret;
412 SYM_FUNC_END(sm4_aesni_avx_crypt8)
413
414 /*
415 * void sm4_aesni_avx_ctr_enc_blk8(const u32 *rk, u8 *dst,
416 * const u8 *src, u8 *iv)
417 */
418 .align 8
419 SYM_FUNC_START(sm4_aesni_avx_ctr_enc_blk8)
420 /* input:
421 * %rdi: round key array, CTX
422 * %rsi: dst (8 blocks)
423 * %rdx: src (8 blocks)
424 * %rcx: iv (big endian, 128bit)
425 */
426 FRAME_BEGIN
427
428 /* load IV and byteswap */
429 vmovdqu (%rcx), RA0;
430
431 vmovdqa .Lbswap128_mask rRIP, RBSWAP;
432 vpshufb RBSWAP, RA0, RTMP0; /* be => le */
433
434 vpcmpeqd RNOT, RNOT, RNOT;
435 vpsrldq $8, RNOT, RNOT; /* low: -1, high: 0 */
436
437 #define inc_le128(x, minus_one, tmp) \
438 vpcmpeqq minus_one, x, tmp; \
439 vpsubq minus_one, x, x; \
440 vpslldq $8, tmp, tmp; \
441 vpsubq tmp, x, x;
442
443 /* construct IVs */
444 inc_le128(RTMP0, RNOT, RTMP2); /* +1 */
445 vpshufb RBSWAP, RTMP0, RA1;
446 inc_le128(RTMP0, RNOT, RTMP2); /* +2 */
447 vpshufb RBSWAP, RTMP0, RA2;
448 inc_le128(RTMP0, RNOT, RTMP2); /* +3 */
449 vpshufb RBSWAP, RTMP0, RA3;
450 inc_le128(RTMP0, RNOT, RTMP2); /* +4 */
451 vpshufb RBSWAP, RTMP0, RB0;
452 inc_le128(RTMP0, RNOT, RTMP2); /* +5 */
453 vpshufb RBSWAP, RTMP0, RB1;
454 inc_le128(RTMP0, RNOT, RTMP2); /* +6 */
455 vpshufb RBSWAP, RTMP0, RB2;
456 inc_le128(RTMP0, RNOT, RTMP2); /* +7 */
457 vpshufb RBSWAP, RTMP0, RB3;
458 inc_le128(RTMP0, RNOT, RTMP2); /* +8 */
459 vpshufb RBSWAP, RTMP0, RTMP1;
460
461 /* store new IV */
462 vmovdqu RTMP1, (%rcx);
463
464 call __sm4_crypt_blk8;
465
466 vpxor (0 * 16)(%rdx), RA0, RA0;
467 vpxor (1 * 16)(%rdx), RA1, RA1;
468 vpxor (2 * 16)(%rdx), RA2, RA2;
469 vpxor (3 * 16)(%rdx), RA3, RA3;
470 vpxor (4 * 16)(%rdx), RB0, RB0;
471 vpxor (5 * 16)(%rdx), RB1, RB1;
472 vpxor (6 * 16)(%rdx), RB2, RB2;
473 vpxor (7 * 16)(%rdx), RB3, RB3;
474
475 vmovdqu RA0, (0 * 16)(%rsi);
476 vmovdqu RA1, (1 * 16)(%rsi);
477 vmovdqu RA2, (2 * 16)(%rsi);
478 vmovdqu RA3, (3 * 16)(%rsi);
479 vmovdqu RB0, (4 * 16)(%rsi);
480 vmovdqu RB1, (5 * 16)(%rsi);
481 vmovdqu RB2, (6 * 16)(%rsi);
482 vmovdqu RB3, (7 * 16)(%rsi);
483
484 vzeroall;
485 FRAME_END
486 ret;
487 SYM_FUNC_END(sm4_aesni_avx_ctr_enc_blk8)
488
489 /*
490 * void sm4_aesni_avx_cbc_dec_blk8(const u32 *rk, u8 *dst,
491 * const u8 *src, u8 *iv)
492 */
493 .align 8
494 SYM_FUNC_START(sm4_aesni_avx_cbc_dec_blk8)
495 /* input:
496 * %rdi: round key array, CTX
497 * %rsi: dst (8 blocks)
498 * %rdx: src (8 blocks)
499 * %rcx: iv
500 */
501 FRAME_BEGIN
502
503 vmovdqu (0 * 16)(%rdx), RA0;
504 vmovdqu (1 * 16)(%rdx), RA1;
505 vmovdqu (2 * 16)(%rdx), RA2;
506 vmovdqu (3 * 16)(%rdx), RA3;
507 vmovdqu (4 * 16)(%rdx), RB0;
508 vmovdqu (5 * 16)(%rdx), RB1;
509 vmovdqu (6 * 16)(%rdx), RB2;
510 vmovdqu (7 * 16)(%rdx), RB3;
511
512 call __sm4_crypt_blk8;
513
514 vmovdqu (7 * 16)(%rdx), RNOT;
515 vpxor (%rcx), RA0, RA0;
516 vpxor (0 * 16)(%rdx), RA1, RA1;
517 vpxor (1 * 16)(%rdx), RA2, RA2;
518 vpxor (2 * 16)(%rdx), RA3, RA3;
519 vpxor (3 * 16)(%rdx), RB0, RB0;
520 vpxor (4 * 16)(%rdx), RB1, RB1;
521 vpxor (5 * 16)(%rdx), RB2, RB2;
522 vpxor (6 * 16)(%rdx), RB3, RB3;
523 vmovdqu RNOT, (%rcx); /* store new IV */
524
525 vmovdqu RA0, (0 * 16)(%rsi);
526 vmovdqu RA1, (1 * 16)(%rsi);
527 vmovdqu RA2, (2 * 16)(%rsi);
528 vmovdqu RA3, (3 * 16)(%rsi);
529 vmovdqu RB0, (4 * 16)(%rsi);
530 vmovdqu RB1, (5 * 16)(%rsi);
531 vmovdqu RB2, (6 * 16)(%rsi);
532 vmovdqu RB3, (7 * 16)(%rsi);
533
534 vzeroall;
535 FRAME_END
536 ret;
537 SYM_FUNC_END(sm4_aesni_avx_cbc_dec_blk8)
538
539 /*
540 * void sm4_aesni_avx_cfb_dec_blk8(const u32 *rk, u8 *dst,
541 * const u8 *src, u8 *iv)
542 */
543 .align 8
544 SYM_FUNC_START(sm4_aesni_avx_cfb_dec_blk8)
545 /* input:
546 * %rdi: round key array, CTX
547 * %rsi: dst (8 blocks)
548 * %rdx: src (8 blocks)
549 * %rcx: iv
550 */
551 FRAME_BEGIN
552
553 /* Load input */
554 vmovdqu (%rcx), RA0;
555 vmovdqu 0 * 16(%rdx), RA1;
556 vmovdqu 1 * 16(%rdx), RA2;
557 vmovdqu 2 * 16(%rdx), RA3;
558 vmovdqu 3 * 16(%rdx), RB0;
559 vmovdqu 4 * 16(%rdx), RB1;
560 vmovdqu 5 * 16(%rdx), RB2;
561 vmovdqu 6 * 16(%rdx), RB3;
562
563 /* Update IV */
564 vmovdqu 7 * 16(%rdx), RNOT;
565 vmovdqu RNOT, (%rcx);
566
567 call __sm4_crypt_blk8;
568
569 vpxor (0 * 16)(%rdx), RA0, RA0;
570 vpxor (1 * 16)(%rdx), RA1, RA1;
571 vpxor (2 * 16)(%rdx), RA2, RA2;
572 vpxor (3 * 16)(%rdx), RA3, RA3;
573 vpxor (4 * 16)(%rdx), RB0, RB0;
574 vpxor (5 * 16)(%rdx), RB1, RB1;
575 vpxor (6 * 16)(%rdx), RB2, RB2;
576 vpxor (7 * 16)(%rdx), RB3, RB3;
577
578 vmovdqu RA0, (0 * 16)(%rsi);
579 vmovdqu RA1, (1 * 16)(%rsi);
580 vmovdqu RA2, (2 * 16)(%rsi);
581 vmovdqu RA3, (3 * 16)(%rsi);
582 vmovdqu RB0, (4 * 16)(%rsi);
583 vmovdqu RB1, (5 * 16)(%rsi);
584 vmovdqu RB2, (6 * 16)(%rsi);
585 vmovdqu RB3, (7 * 16)(%rsi);
586
587 vzeroall;
588 FRAME_END
589 ret;
590 SYM_FUNC_END(sm4_aesni_avx_cfb_dec_blk8)