]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/entry/entry_64.S
Revert "x86/entry: Use retpoline for syscall's indirect calls"
[mirror_ubuntu-artful-kernel.git] / arch / x86 / entry / entry_64.S
1 /*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include <asm/asm-offsets.h>
26 #include <asm/msr.h>
27 #include <asm/unistd.h>
28 #include <asm/thread_info.h>
29 #include <asm/hw_irq.h>
30 #include <asm/page_types.h>
31 #include <asm/irqflags.h>
32 #include <asm/paravirt.h>
33 #include <asm/percpu.h>
34 #include <asm/asm.h>
35 #include <asm/smap.h>
36 #include <asm/pgtable_types.h>
37 #include <asm/export.h>
38 #include <asm/frame.h>
39 #include <asm/spec_ctrl.h>
40 #include <linux/err.h>
41
42 #include "calling.h"
43
44 .code64
45 .section .entry.text, "ax"
46
47 #ifdef CONFIG_PARAVIRT
48 ENTRY(native_usergs_sysret64)
49 UNWIND_HINT_EMPTY
50 swapgs
51 sysretq
52 END(native_usergs_sysret64)
53 #endif /* CONFIG_PARAVIRT */
54
55 .macro TRACE_IRQS_IRETQ
56 #ifdef CONFIG_TRACE_IRQFLAGS
57 bt $9, EFLAGS(%rsp) /* interrupts off? */
58 jnc 1f
59 TRACE_IRQS_ON
60 1:
61 #endif
62 .endm
63
64 /*
65 * When dynamic function tracer is enabled it will add a breakpoint
66 * to all locations that it is about to modify, sync CPUs, update
67 * all the code, sync CPUs, then remove the breakpoints. In this time
68 * if lockdep is enabled, it might jump back into the debug handler
69 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
70 *
71 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
72 * make sure the stack pointer does not get reset back to the top
73 * of the debug stack, and instead just reuses the current stack.
74 */
75 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
76
77 .macro TRACE_IRQS_OFF_DEBUG
78 call debug_stack_set_zero
79 TRACE_IRQS_OFF
80 call debug_stack_reset
81 .endm
82
83 .macro TRACE_IRQS_ON_DEBUG
84 call debug_stack_set_zero
85 TRACE_IRQS_ON
86 call debug_stack_reset
87 .endm
88
89 .macro TRACE_IRQS_IRETQ_DEBUG
90 bt $9, EFLAGS(%rsp) /* interrupts off? */
91 jnc 1f
92 TRACE_IRQS_ON_DEBUG
93 1:
94 .endm
95
96 #else
97 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
98 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
99 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
100 #endif
101
102 /*
103 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
104 *
105 * This is the only entry point used for 64-bit system calls. The
106 * hardware interface is reasonably well designed and the register to
107 * argument mapping Linux uses fits well with the registers that are
108 * available when SYSCALL is used.
109 *
110 * SYSCALL instructions can be found inlined in libc implementations as
111 * well as some other programs and libraries. There are also a handful
112 * of SYSCALL instructions in the vDSO used, for example, as a
113 * clock_gettimeofday fallback.
114 *
115 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
116 * then loads new ss, cs, and rip from previously programmed MSRs.
117 * rflags gets masked by a value from another MSR (so CLD and CLAC
118 * are not needed). SYSCALL does not save anything on the stack
119 * and does not change rsp.
120 *
121 * Registers on entry:
122 * rax system call number
123 * rcx return address
124 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
125 * rdi arg0
126 * rsi arg1
127 * rdx arg2
128 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
129 * r8 arg4
130 * r9 arg5
131 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
132 *
133 * Only called from user space.
134 *
135 * When user can change pt_regs->foo always force IRET. That is because
136 * it deals with uncanonical addresses better. SYSRET has trouble
137 * with them due to bugs in both AMD and Intel CPUs.
138 */
139
140 .pushsection .entry_trampoline, "ax"
141
142 /*
143 * The code in here gets remapped into cpu_entry_area's trampoline. This means
144 * that the assembler and linker have the wrong idea as to where this code
145 * lives (and, in fact, it's mapped more than once, so it's not even at a
146 * fixed address). So we can't reference any symbols outside the entry
147 * trampoline and expect it to work.
148 *
149 * Instead, we carefully abuse %rip-relative addressing.
150 * _entry_trampoline(%rip) refers to the start of the remapped) entry
151 * trampoline. We can thus find cpu_entry_area with this macro:
152 */
153
154 #define CPU_ENTRY_AREA \
155 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
156
157 /* The top word of the SYSENTER stack is hot and is usable as scratch space. */
158 #define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
159 SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
160
161 ENTRY(entry_SYSCALL_64_trampoline)
162 UNWIND_HINT_EMPTY
163 swapgs
164
165 /* Stash the user RSP. */
166 movq %rsp, RSP_SCRATCH
167
168 /* Note: using %rsp as a scratch reg. */
169 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
170
171 /* Load the top of the task stack into RSP */
172 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
173
174 /* Start building the simulated IRET frame. */
175 pushq $__USER_DS /* pt_regs->ss */
176 pushq RSP_SCRATCH /* pt_regs->sp */
177 pushq %r11 /* pt_regs->flags */
178 pushq $__USER_CS /* pt_regs->cs */
179 pushq %rcx /* pt_regs->ip */
180
181 /*
182 * x86 lacks a near absolute jump, and we can't jump to the real
183 * entry text with a relative jump. We could push the target
184 * address and then use retq, but this destroys the pipeline on
185 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
186 * spill RDI and restore it in a second-stage trampoline.
187 */
188 pushq %rdi
189 movq $entry_SYSCALL_64_stage2, %rdi
190 jmp *%rdi
191 END(entry_SYSCALL_64_trampoline)
192
193 .popsection
194
195 ENTRY(entry_SYSCALL_64_stage2)
196 UNWIND_HINT_EMPTY
197 popq %rdi
198 jmp entry_SYSCALL_64_after_hwframe
199 END(entry_SYSCALL_64_stage2)
200
201 ENTRY(entry_SYSCALL_64)
202 UNWIND_HINT_EMPTY
203 /*
204 * Interrupts are off on entry.
205 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
206 * it is too small to ever cause noticeable irq latency.
207 */
208
209 swapgs
210 /*
211 * This path is not taken when PAGE_TABLE_ISOLATION is disabled so it
212 * is not required to switch CR3.
213 */
214 movq %rsp, PER_CPU_VAR(rsp_scratch)
215 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
216
217 /* Construct struct pt_regs on stack */
218 pushq $__USER_DS /* pt_regs->ss */
219 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
220 pushq %r11 /* pt_regs->flags */
221 pushq $__USER_CS /* pt_regs->cs */
222 pushq %rcx /* pt_regs->ip */
223 GLOBAL(entry_SYSCALL_64_after_hwframe)
224 pushq %rax /* pt_regs->orig_ax */
225 pushq %rdi /* pt_regs->di */
226 pushq %rsi /* pt_regs->si */
227 pushq %rdx /* pt_regs->dx */
228 pushq %rcx /* pt_regs->cx */
229 pushq $-ENOSYS /* pt_regs->ax */
230 pushq %r8 /* pt_regs->r8 */
231 pushq %r9 /* pt_regs->r9 */
232 pushq %r10 /* pt_regs->r10 */
233 pushq %r11 /* pt_regs->r11 */
234 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not used */
235 UNWIND_HINT_REGS extra=0
236
237 ENABLE_IBRS
238 /*
239 * Clear the unused extra regs for code hygiene.
240 * Will restore the callee saved extra regs at end of syscall.
241 */
242 SAVE_EXTRA_REGS
243 CLEAR_EXTRA_REGS
244
245 STUFF_RSB
246
247 TRACE_IRQS_OFF
248
249 /*
250 * If we need to do entry work or if we guess we'll need to do
251 * exit work, go straight to the slow path.
252 */
253 movq PER_CPU_VAR(current_task), %r11
254 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
255 jnz entry_SYSCALL64_slow_path
256
257 entry_SYSCALL_64_fastpath:
258 /*
259 * Easy case: enable interrupts and issue the syscall. If the syscall
260 * needs pt_regs, we'll call a stub that disables interrupts again
261 * and jumps to the slow path.
262 */
263 TRACE_IRQS_ON
264 ENABLE_INTERRUPTS(CLBR_NONE)
265 #if __SYSCALL_MASK == ~0
266 cmpq $__NR_syscall_max, %rax
267 #else
268 andl $__SYSCALL_MASK, %eax
269 cmpl $__NR_syscall_max, %eax
270 #endif
271 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
272 movq %r10, %rcx
273
274 /*
275 * This call instruction is handled specially in stub_ptregs_64.
276 * It might end up jumping to the slow path. If it jumps, RAX
277 * and all argument registers are clobbered.
278 */
279 call *sys_call_table(, %rax, 8)
280 .Lentry_SYSCALL_64_after_fastpath_call:
281
282 movq %rax, RAX(%rsp)
283 1:
284
285 /*
286 * If we get here, then we know that pt_regs is clean for SYSRET64.
287 * If we see that no exit work is required (which we are required
288 * to check with IRQs off), then we can go straight to SYSRET64.
289 */
290 DISABLE_INTERRUPTS(CLBR_ANY)
291 TRACE_IRQS_OFF
292 movq PER_CPU_VAR(current_task), %r11
293 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
294 jnz 1f
295
296 LOCKDEP_SYS_EXIT
297 TRACE_IRQS_ON /* user mode is traced as IRQs on */
298 movq RIP(%rsp), %rcx
299 movq EFLAGS(%rsp), %r11
300 DISABLE_IBRS
301 POP_EXTRA_REGS
302 UNWIND_HINT_EMPTY
303 jmp .Lpop_c_regs_except_rcx_r11_and_sysret
304
305 1:
306 /*
307 * The fast path looked good when we started, but something changed
308 * along the way and we need to switch to the slow path. Calling
309 * raise(3) will trigger this, for example. IRQs are off.
310 */
311 TRACE_IRQS_ON
312 ENABLE_INTERRUPTS(CLBR_ANY)
313 movq %rsp, %rdi
314 call syscall_return_slowpath /* returns with IRQs disabled */
315 jmp return_from_SYSCALL_64
316
317 entry_SYSCALL64_slow_path:
318 /* IRQs are off. */
319 movq %rsp, %rdi
320 call do_syscall_64 /* returns with IRQs disabled */
321
322 return_from_SYSCALL_64:
323 TRACE_IRQS_IRETQ /* we're about to change IF */
324
325 /*
326 * Try to use SYSRET instead of IRET if we're returning to
327 * a completely clean 64-bit userspace context. If we're not,
328 * go to the slow exit path.
329 */
330 movq RCX(%rsp), %rcx
331 movq RIP(%rsp), %r11
332
333 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
334 jne swapgs_restore_regs_and_return_to_usermode
335
336 /*
337 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
338 * in kernel space. This essentially lets the user take over
339 * the kernel, since userspace controls RSP.
340 *
341 * If width of "canonical tail" ever becomes variable, this will need
342 * to be updated to remain correct on both old and new CPUs.
343 *
344 * Change top bits to match most significant bit (47th or 56th bit
345 * depending on paging mode) in the address.
346 */
347 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
348 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
349
350 /* If this changed %rcx, it was not canonical */
351 cmpq %rcx, %r11
352 jne swapgs_restore_regs_and_return_to_usermode
353
354 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
355 jne swapgs_restore_regs_and_return_to_usermode
356
357 movq R11(%rsp), %r11
358 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
359 jne swapgs_restore_regs_and_return_to_usermode
360
361 /*
362 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
363 * restore RF properly. If the slowpath sets it for whatever reason, we
364 * need to restore it correctly.
365 *
366 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
367 * trap from userspace immediately after SYSRET. This would cause an
368 * infinite loop whenever #DB happens with register state that satisfies
369 * the opportunistic SYSRET conditions. For example, single-stepping
370 * this user code:
371 *
372 * movq $stuck_here, %rcx
373 * pushfq
374 * popq %r11
375 * stuck_here:
376 *
377 * would never get past 'stuck_here'.
378 */
379 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
380 jnz swapgs_restore_regs_and_return_to_usermode
381
382 /* nothing to check for RSP */
383
384 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
385 jne swapgs_restore_regs_and_return_to_usermode
386
387 /*
388 * We win! This label is here just for ease of understanding
389 * perf profiles. Nothing jumps here.
390 */
391 syscall_return_via_sysret:
392 DISABLE_IBRS
393
394 /* rcx and r11 are already restored (see code above) */
395 UNWIND_HINT_EMPTY
396 POP_EXTRA_REGS
397 .Lpop_c_regs_except_rcx_r11_and_sysret:
398 popq %rsi /* skip r11 */
399 popq %r10
400 popq %r9
401 popq %r8
402 popq %rax
403 popq %rsi /* skip rcx */
404 popq %rdx
405 popq %rsi
406
407 /*
408 * Now all regs are restored except RSP and RDI.
409 * Save old stack pointer and switch to trampoline stack.
410 */
411 movq %rsp, %rdi
412 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
413
414 pushq RSP-RDI(%rdi) /* RSP */
415 pushq (%rdi) /* RDI */
416
417 /*
418 * We are on the trampoline stack. All regs except RDI are live.
419 * We can do future final exit work right here.
420 */
421 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
422
423 popq %rdi
424 popq %rsp
425 USERGS_SYSRET64
426 END(entry_SYSCALL_64)
427
428 ENTRY(stub_ptregs_64)
429 /*
430 * Syscalls marked as needing ptregs land here.
431 * If we are on the fast path, we need to save the extra regs,
432 * which we achieve by trying again on the slow path. If we are on
433 * the slow path, the extra regs are already saved.
434 *
435 * RAX stores a pointer to the C function implementing the syscall.
436 * IRQs are on.
437 */
438 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
439 jne 1f
440
441 /*
442 * Called from fast path -- disable IRQs again, pop return address
443 * and jump to slow path
444 */
445 DISABLE_INTERRUPTS(CLBR_ANY)
446 TRACE_IRQS_OFF
447 popq %rax
448 UNWIND_HINT_REGS extra=0
449 jmp entry_SYSCALL64_slow_path
450
451 1:
452 jmp *%rax /* Called from C */
453 END(stub_ptregs_64)
454
455 .macro ptregs_stub func
456 ENTRY(ptregs_\func)
457 UNWIND_HINT_FUNC
458 leaq \func(%rip), %rax
459 jmp stub_ptregs_64
460 END(ptregs_\func)
461 .endm
462
463 /* Instantiate ptregs_stub for each ptregs-using syscall */
464 #define __SYSCALL_64_QUAL_(sym)
465 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
466 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
467 #include <asm/syscalls_64.h>
468
469 /*
470 * %rdi: prev task
471 * %rsi: next task
472 */
473 ENTRY(__switch_to_asm)
474 UNWIND_HINT_FUNC
475 /*
476 * Save callee-saved registers
477 * This must match the order in inactive_task_frame
478 */
479 pushq %rbp
480 pushq %rbx
481 pushq %r12
482 pushq %r13
483 pushq %r14
484 pushq %r15
485
486 /* switch stack */
487 movq %rsp, TASK_threadsp(%rdi)
488 movq TASK_threadsp(%rsi), %rsp
489
490 #ifdef CONFIG_CC_STACKPROTECTOR
491 movq TASK_stack_canary(%rsi), %rbx
492 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
493 #endif
494
495 /* restore callee-saved registers */
496 popq %r15
497 popq %r14
498 popq %r13
499 popq %r12
500 popq %rbx
501 popq %rbp
502
503 jmp __switch_to
504 END(__switch_to_asm)
505
506 /*
507 * A newly forked process directly context switches into this address.
508 *
509 * rax: prev task we switched from
510 * rbx: kernel thread func (NULL for user thread)
511 * r12: kernel thread arg
512 */
513 ENTRY(ret_from_fork)
514 UNWIND_HINT_EMPTY
515 movq %rax, %rdi
516 call schedule_tail /* rdi: 'prev' task parameter */
517
518 testq %rbx, %rbx /* from kernel_thread? */
519 jnz 1f /* kernel threads are uncommon */
520
521 2:
522 UNWIND_HINT_REGS
523 movq %rsp, %rdi
524 call syscall_return_slowpath /* returns with IRQs disabled */
525 TRACE_IRQS_ON /* user mode is traced as IRQS on */
526 jmp swapgs_restore_regs_and_return_to_usermode
527
528 1:
529 /* kernel thread */
530 movq %r12, %rdi
531 call *%rbx
532 /*
533 * A kernel thread is allowed to return here after successfully
534 * calling do_execve(). Exit to userspace to complete the execve()
535 * syscall.
536 */
537 movq $0, RAX(%rsp)
538 jmp 2b
539 END(ret_from_fork)
540
541 /*
542 * Build the entry stubs with some assembler magic.
543 * We pack 1 stub into every 8-byte block.
544 */
545 .align 8
546 ENTRY(irq_entries_start)
547 vector=FIRST_EXTERNAL_VECTOR
548 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
549 UNWIND_HINT_IRET_REGS
550 pushq $(~vector+0x80) /* Note: always in signed byte range */
551 jmp common_interrupt
552 .align 8
553 vector=vector+1
554 .endr
555 END(irq_entries_start)
556
557 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
558 #ifdef CONFIG_DEBUG_ENTRY
559 pushq %rax
560 SAVE_FLAGS(CLBR_RAX)
561 testl $X86_EFLAGS_IF, %eax
562 jz .Lokay_\@
563 ud2
564 .Lokay_\@:
565 popq %rax
566 #endif
567 .endm
568
569 /*
570 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
571 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
572 * Requires kernel GSBASE.
573 *
574 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
575 */
576 .macro ENTER_IRQ_STACK regs=1 old_rsp
577 DEBUG_ENTRY_ASSERT_IRQS_OFF
578 movq %rsp, \old_rsp
579
580 .if \regs
581 UNWIND_HINT_REGS base=\old_rsp
582 .endif
583
584 incl PER_CPU_VAR(irq_count)
585 jnz .Lirq_stack_push_old_rsp_\@
586
587 /*
588 * Right now, if we just incremented irq_count to zero, we've
589 * claimed the IRQ stack but we haven't switched to it yet.
590 *
591 * If anything is added that can interrupt us here without using IST,
592 * it must be *extremely* careful to limit its stack usage. This
593 * could include kprobes and a hypothetical future IST-less #DB
594 * handler.
595 *
596 * The OOPS unwinder relies on the word at the top of the IRQ
597 * stack linking back to the previous RSP for the entire time we're
598 * on the IRQ stack. For this to work reliably, we need to write
599 * it before we actually move ourselves to the IRQ stack.
600 */
601
602 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
603 movq PER_CPU_VAR(irq_stack_ptr), %rsp
604
605 #ifdef CONFIG_DEBUG_ENTRY
606 /*
607 * If the first movq above becomes wrong due to IRQ stack layout
608 * changes, the only way we'll notice is if we try to unwind right
609 * here. Assert that we set up the stack right to catch this type
610 * of bug quickly.
611 */
612 cmpq -8(%rsp), \old_rsp
613 je .Lirq_stack_okay\@
614 ud2
615 .Lirq_stack_okay\@:
616 #endif
617
618 .Lirq_stack_push_old_rsp_\@:
619 pushq \old_rsp
620
621 .if \regs
622 UNWIND_HINT_REGS indirect=1
623 .endif
624 .endm
625
626 /*
627 * Undoes ENTER_IRQ_STACK.
628 */
629 .macro LEAVE_IRQ_STACK regs=1
630 DEBUG_ENTRY_ASSERT_IRQS_OFF
631 /* We need to be off the IRQ stack before decrementing irq_count. */
632 popq %rsp
633
634 .if \regs
635 UNWIND_HINT_REGS
636 .endif
637
638 /*
639 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
640 * the irq stack but we're not on it.
641 */
642
643 decl PER_CPU_VAR(irq_count)
644 .endm
645
646 /*
647 * Interrupt entry/exit.
648 *
649 * Interrupt entry points save only callee clobbered registers in fast path.
650 *
651 * Entry runs with interrupts off.
652 */
653
654 /* 0(%rsp): ~(interrupt number) */
655 .macro interrupt func
656 cld
657
658 testb $3, CS-ORIG_RAX(%rsp)
659 jz 1f
660 SWAPGS
661 call switch_to_thread_stack
662 1:
663
664 ALLOC_PT_GPREGS_ON_STACK
665 SAVE_C_REGS
666 SAVE_EXTRA_REGS
667
668 /*
669 * Have to do stuffing before encoding frame pointer.
670 * Could add some unnecessary RSB clearing if coming
671 * from kernel for non-SMEP platform.
672 */
673 STUFF_RSB
674 ENCODE_FRAME_POINTER
675
676 testb $3, CS(%rsp)
677 jz 1f
678
679 /*
680 * IRQ from user mode.
681 *
682 */
683 ENABLE_IBRS
684
685 /*
686 * We need to tell lockdep that IRQs are off. We can't do this until
687 * we fix gsbase, and we should do it before enter_from_user_mode
688 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
689 * the simplest way to handle it is to just call it twice if
690 * we enter from user mode. There's no reason to optimize this since
691 * TRACE_IRQS_OFF is a no-op if lockdep is off.
692 */
693 TRACE_IRQS_OFF
694
695 CALL_enter_from_user_mode
696
697 1:
698 ENTER_IRQ_STACK old_rsp=%rdi
699 /* We entered an interrupt context - irqs are off: */
700 TRACE_IRQS_OFF
701
702 call \func /* rdi points to pt_regs */
703 .endm
704
705 /*
706 * The interrupt stubs push (~vector+0x80) onto the stack and
707 * then jump to common_interrupt.
708 */
709 .p2align CONFIG_X86_L1_CACHE_SHIFT
710 common_interrupt:
711 ASM_CLAC
712 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
713 interrupt do_IRQ
714 /* 0(%rsp): old RSP */
715 ret_from_intr:
716 DISABLE_INTERRUPTS(CLBR_ANY)
717 TRACE_IRQS_OFF
718
719 LEAVE_IRQ_STACK
720
721 testb $3, CS(%rsp)
722 jz retint_kernel
723
724 /* Interrupt came from user space */
725 GLOBAL(retint_user)
726 mov %rsp,%rdi
727 call prepare_exit_to_usermode
728 TRACE_IRQS_IRETQ
729
730 GLOBAL(swapgs_restore_regs_and_return_to_usermode)
731 #ifdef CONFIG_DEBUG_ENTRY
732 /* Assert that pt_regs indicates user mode. */
733 testb $3, CS(%rsp)
734 jnz 1f
735 ud2
736 1:
737 #endif
738 POP_EXTRA_REGS
739 popq %r11
740 popq %r10
741 popq %r9
742 popq %r8
743 popq %rax
744 popq %rcx
745 popq %rdx
746 popq %rsi
747
748 /*
749 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
750 * Save old stack pointer and switch to trampoline stack.
751 */
752 movq %rsp, %rdi
753 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
754
755 /* Copy the IRET frame to the trampoline stack. */
756 pushq 6*8(%rdi) /* SS */
757 pushq 5*8(%rdi) /* RSP */
758 pushq 4*8(%rdi) /* EFLAGS */
759 pushq 3*8(%rdi) /* CS */
760 pushq 2*8(%rdi) /* RIP */
761
762 /* Push user RDI on the trampoline stack. */
763 pushq (%rdi)
764
765 /*
766 * We are on the trampoline stack. All regs except RDI are live.
767 * We can do future final exit work right here.
768 */
769 DISABLE_IBRS
770 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
771
772 /* Restore RDI. */
773 popq %rdi
774 SWAPGS
775 INTERRUPT_RETURN
776
777
778 /* Returning to kernel space */
779 retint_kernel:
780 #ifdef CONFIG_PREEMPT
781 /* Interrupts are off */
782 /* Check if we need preemption */
783 bt $9, EFLAGS(%rsp) /* were interrupts off? */
784 jnc 1f
785 0: cmpl $0, PER_CPU_VAR(__preempt_count)
786 jnz 1f
787 call preempt_schedule_irq
788 jmp 0b
789 1:
790 #endif
791 /*
792 * The iretq could re-enable interrupts:
793 */
794 TRACE_IRQS_IRETQ
795
796 GLOBAL(restore_regs_and_return_to_kernel)
797 #ifdef CONFIG_DEBUG_ENTRY
798 /* Assert that pt_regs indicates kernel mode. */
799 testb $3, CS(%rsp)
800 jz 1f
801 ud2
802 1:
803 #endif
804 POP_EXTRA_REGS
805 POP_C_REGS
806 addq $8, %rsp /* skip regs->orig_ax */
807 INTERRUPT_RETURN
808
809 ENTRY(native_iret)
810 UNWIND_HINT_IRET_REGS
811 /*
812 * Are we returning to a stack segment from the LDT? Note: in
813 * 64-bit mode SS:RSP on the exception stack is always valid.
814 */
815 #ifdef CONFIG_X86_ESPFIX64
816 testb $4, (SS-RIP)(%rsp)
817 jnz native_irq_return_ldt
818 #endif
819
820 .global native_irq_return_iret
821 native_irq_return_iret:
822 /*
823 * This may fault. Non-paranoid faults on return to userspace are
824 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
825 * Double-faults due to espfix64 are handled in do_double_fault.
826 * Other faults here are fatal.
827 */
828 iretq
829
830 #ifdef CONFIG_X86_ESPFIX64
831 native_irq_return_ldt:
832 /*
833 * We are running with user GSBASE. All GPRs contain their user
834 * values. We have a percpu ESPFIX stack that is eight slots
835 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
836 * of the ESPFIX stack.
837 *
838 * We clobber RAX and RDI in this code. We stash RDI on the
839 * normal stack and RAX on the ESPFIX stack.
840 *
841 * The ESPFIX stack layout we set up looks like this:
842 *
843 * --- top of ESPFIX stack ---
844 * SS
845 * RSP
846 * RFLAGS
847 * CS
848 * RIP <-- RSP points here when we're done
849 * RAX <-- espfix_waddr points here
850 * --- bottom of ESPFIX stack ---
851 */
852
853 pushq %rdi /* Stash user RDI */
854 SWAPGS /* to kernel GS */
855 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
856
857 movq PER_CPU_VAR(espfix_waddr), %rdi
858 movq %rax, (0*8)(%rdi) /* user RAX */
859 movq (1*8)(%rsp), %rax /* user RIP */
860 movq %rax, (1*8)(%rdi)
861 movq (2*8)(%rsp), %rax /* user CS */
862 movq %rax, (2*8)(%rdi)
863 movq (3*8)(%rsp), %rax /* user RFLAGS */
864 movq %rax, (3*8)(%rdi)
865 movq (5*8)(%rsp), %rax /* user SS */
866 movq %rax, (5*8)(%rdi)
867 movq (4*8)(%rsp), %rax /* user RSP */
868 movq %rax, (4*8)(%rdi)
869 /* Now RAX == RSP. */
870
871 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
872
873 /*
874 * espfix_stack[31:16] == 0. The page tables are set up such that
875 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
876 * espfix_waddr for any X. That is, there are 65536 RO aliases of
877 * the same page. Set up RSP so that RSP[31:16] contains the
878 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
879 * still points to an RO alias of the ESPFIX stack.
880 */
881 orq PER_CPU_VAR(espfix_stack), %rax
882
883 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
884 SWAPGS /* to user GS */
885 popq %rdi /* Restore user RDI */
886
887 movq %rax, %rsp
888 UNWIND_HINT_IRET_REGS offset=8
889
890 /*
891 * At this point, we cannot write to the stack any more, but we can
892 * still read.
893 */
894 popq %rax /* Restore user RAX */
895
896 /*
897 * RSP now points to an ordinary IRET frame, except that the page
898 * is read-only and RSP[31:16] are preloaded with the userspace
899 * values. We can now IRET back to userspace.
900 */
901 jmp native_irq_return_iret
902 #endif
903 END(common_interrupt)
904
905 /*
906 * APIC interrupts.
907 */
908 .macro apicinterrupt3 num sym do_sym
909 ENTRY(\sym)
910 UNWIND_HINT_IRET_REGS
911 ASM_CLAC
912 pushq $~(\num)
913 .Lcommon_\sym:
914 interrupt \do_sym
915 jmp ret_from_intr
916 END(\sym)
917 .endm
918
919 #ifdef CONFIG_TRACING
920 #define trace(sym) trace_##sym
921 #define smp_trace(sym) smp_trace_##sym
922
923 .macro trace_apicinterrupt num sym
924 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
925 .endm
926 #else
927 .macro trace_apicinterrupt num sym do_sym
928 .endm
929 #endif
930
931 /* Make sure APIC interrupt handlers end up in the irqentry section: */
932 #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
933 #define POP_SECTION_IRQENTRY .popsection
934
935 .macro apicinterrupt num sym do_sym
936 PUSH_SECTION_IRQENTRY
937 apicinterrupt3 \num \sym \do_sym
938 trace_apicinterrupt \num \sym
939 POP_SECTION_IRQENTRY
940 .endm
941
942 #ifdef CONFIG_SMP
943 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
944 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
945 #endif
946
947 #ifdef CONFIG_X86_UV
948 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
949 #endif
950
951 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
952 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
953
954 #ifdef CONFIG_HAVE_KVM
955 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
956 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
957 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
958 #endif
959
960 #ifdef CONFIG_X86_MCE_THRESHOLD
961 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
962 #endif
963
964 #ifdef CONFIG_X86_MCE_AMD
965 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
966 #endif
967
968 #ifdef CONFIG_X86_THERMAL_VECTOR
969 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
970 #endif
971
972 #ifdef CONFIG_SMP
973 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
974 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
975 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
976 #endif
977
978 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
979 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
980
981 #ifdef CONFIG_IRQ_WORK
982 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
983 #endif
984
985 /*
986 * Exception entry points.
987 */
988 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
989
990 /*
991 * Switch to the thread stack. This is called with the IRET frame and
992 * orig_ax on the stack. (That is, RDI..R12 are not on the stack and
993 * space has not been allocated for them.)
994 */
995 ENTRY(switch_to_thread_stack)
996 UNWIND_HINT_FUNC
997
998 pushq %rdi
999 /* Need to switch before accessing the thread stack. */
1000 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
1001 movq %rsp, %rdi
1002 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1003 UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
1004
1005 pushq 7*8(%rdi) /* regs->ss */
1006 pushq 6*8(%rdi) /* regs->rsp */
1007 pushq 5*8(%rdi) /* regs->eflags */
1008 pushq 4*8(%rdi) /* regs->cs */
1009 pushq 3*8(%rdi) /* regs->ip */
1010 pushq 2*8(%rdi) /* regs->orig_ax */
1011 pushq 8(%rdi) /* return address */
1012 UNWIND_HINT_FUNC
1013
1014 movq (%rdi), %rdi
1015 ret
1016 END(switch_to_thread_stack)
1017
1018 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
1019 ENTRY(\sym)
1020 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
1021
1022 /* Sanity check */
1023 .if \shift_ist != -1 && \paranoid == 0
1024 .error "using shift_ist requires paranoid=1"
1025 .endif
1026
1027 ASM_CLAC
1028
1029 .if \has_error_code == 0
1030 pushq $-1 /* ORIG_RAX: no syscall to restart */
1031 .endif
1032
1033 ALLOC_PT_GPREGS_ON_STACK
1034
1035 .if \paranoid < 2
1036 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
1037 jnz .Lfrom_usermode_switch_stack_\@
1038 .endif
1039
1040 .if \paranoid
1041 call paranoid_entry
1042 .else
1043 call error_entry
1044 .endif
1045 UNWIND_HINT_REGS
1046 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
1047
1048 .if \paranoid
1049 .if \shift_ist != -1
1050 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
1051 .else
1052 TRACE_IRQS_OFF
1053 .endif
1054 .endif
1055
1056 movq %rsp, %rdi /* pt_regs pointer */
1057
1058 .if \has_error_code
1059 movq ORIG_RAX(%rsp), %rsi /* get error code */
1060 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
1061 .else
1062 xorl %esi, %esi /* no error code */
1063 .endif
1064
1065 .if \shift_ist != -1
1066 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1067 .endif
1068
1069 call \do_sym
1070
1071 .if \shift_ist != -1
1072 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1073 .endif
1074
1075 /* these procedures expect "no swapgs" flag in ebx */
1076 .if \paranoid
1077 jmp paranoid_exit
1078 .else
1079 jmp error_exit
1080 .endif
1081
1082 .if \paranoid < 2
1083 /*
1084 * Entry from userspace. Switch stacks and treat it
1085 * as a normal entry. This means that paranoid handlers
1086 * run in real process context if user_mode(regs).
1087 */
1088 .Lfrom_usermode_switch_stack_\@:
1089 call error_entry
1090
1091 movq %rsp, %rdi /* pt_regs pointer */
1092
1093 .if \has_error_code
1094 movq ORIG_RAX(%rsp), %rsi /* get error code */
1095 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
1096 .else
1097 xorl %esi, %esi /* no error code */
1098 .endif
1099
1100 call \do_sym
1101
1102 jmp error_exit /* %ebx: no swapgs flag */
1103 .endif
1104 END(\sym)
1105 .endm
1106
1107 idtentry divide_error do_divide_error has_error_code=0
1108 idtentry overflow do_overflow has_error_code=0
1109 idtentry bounds do_bounds has_error_code=0
1110 idtentry invalid_op do_invalid_op has_error_code=0
1111 idtentry device_not_available do_device_not_available has_error_code=0
1112 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
1113 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
1114 idtentry invalid_TSS do_invalid_TSS has_error_code=1
1115 idtentry segment_not_present do_segment_not_present has_error_code=1
1116 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1117 idtentry coprocessor_error do_coprocessor_error has_error_code=0
1118 idtentry alignment_check do_alignment_check has_error_code=1
1119 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1120
1121
1122 /*
1123 * Reload gs selector with exception handling
1124 * edi: new selector
1125 */
1126 ENTRY(native_load_gs_index)
1127 FRAME_BEGIN
1128 pushfq
1129 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1130 SWAPGS
1131 .Lgs_change:
1132 movl %edi, %gs
1133 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1134 SWAPGS
1135 popfq
1136 FRAME_END
1137 ret
1138 ENDPROC(native_load_gs_index)
1139 EXPORT_SYMBOL(native_load_gs_index)
1140
1141 _ASM_EXTABLE(.Lgs_change, bad_gs)
1142 .section .fixup, "ax"
1143 /* running with kernelgs */
1144 bad_gs:
1145 SWAPGS /* switch back to user gs */
1146 .macro ZAP_GS
1147 /* This can't be a string because the preprocessor needs to see it. */
1148 movl $__USER_DS, %eax
1149 movl %eax, %gs
1150 .endm
1151 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1152 xorl %eax, %eax
1153 movl %eax, %gs
1154 jmp 2b
1155 .previous
1156
1157 /* Call softirq on interrupt stack. Interrupts are off. */
1158 ENTRY(do_softirq_own_stack)
1159 pushq %rbp
1160 mov %rsp, %rbp
1161 ENTER_IRQ_STACK regs=0 old_rsp=%r11
1162 call __do_softirq
1163 LEAVE_IRQ_STACK regs=0
1164 leaveq
1165 ret
1166 ENDPROC(do_softirq_own_stack)
1167
1168 #ifdef CONFIG_XEN
1169 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1170
1171 /*
1172 * A note on the "critical region" in our callback handler.
1173 * We want to avoid stacking callback handlers due to events occurring
1174 * during handling of the last event. To do this, we keep events disabled
1175 * until we've done all processing. HOWEVER, we must enable events before
1176 * popping the stack frame (can't be done atomically) and so it would still
1177 * be possible to get enough handler activations to overflow the stack.
1178 * Although unlikely, bugs of that kind are hard to track down, so we'd
1179 * like to avoid the possibility.
1180 * So, on entry to the handler we detect whether we interrupted an
1181 * existing activation in its critical region -- if so, we pop the current
1182 * activation and restart the handler using the previous one.
1183 */
1184 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1185
1186 /*
1187 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1188 * see the correct pointer to the pt_regs
1189 */
1190 UNWIND_HINT_FUNC
1191 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1192 UNWIND_HINT_REGS
1193
1194 ENTER_IRQ_STACK old_rsp=%r10
1195 call xen_evtchn_do_upcall
1196 LEAVE_IRQ_STACK
1197
1198 #ifndef CONFIG_PREEMPT
1199 call xen_maybe_preempt_hcall
1200 #endif
1201 jmp error_exit
1202 END(xen_do_hypervisor_callback)
1203
1204 /*
1205 * Hypervisor uses this for application faults while it executes.
1206 * We get here for two reasons:
1207 * 1. Fault while reloading DS, ES, FS or GS
1208 * 2. Fault while executing IRET
1209 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1210 * registers that could be reloaded and zeroed the others.
1211 * Category 2 we fix up by killing the current process. We cannot use the
1212 * normal Linux return path in this case because if we use the IRET hypercall
1213 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1214 * We distinguish between categories by comparing each saved segment register
1215 * with its current contents: any discrepancy means we in category 1.
1216 */
1217 ENTRY(xen_failsafe_callback)
1218 UNWIND_HINT_EMPTY
1219 movl %ds, %ecx
1220 cmpw %cx, 0x10(%rsp)
1221 jne 1f
1222 movl %es, %ecx
1223 cmpw %cx, 0x18(%rsp)
1224 jne 1f
1225 movl %fs, %ecx
1226 cmpw %cx, 0x20(%rsp)
1227 jne 1f
1228 movl %gs, %ecx
1229 cmpw %cx, 0x28(%rsp)
1230 jne 1f
1231 /* All segments match their saved values => Category 2 (Bad IRET). */
1232 movq (%rsp), %rcx
1233 movq 8(%rsp), %r11
1234 addq $0x30, %rsp
1235 pushq $0 /* RIP */
1236 UNWIND_HINT_IRET_REGS offset=8
1237 jmp general_protection
1238 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1239 movq (%rsp), %rcx
1240 movq 8(%rsp), %r11
1241 addq $0x30, %rsp
1242 UNWIND_HINT_IRET_REGS
1243 pushq $-1 /* orig_ax = -1 => not a system call */
1244 ALLOC_PT_GPREGS_ON_STACK
1245 SAVE_C_REGS
1246 SAVE_EXTRA_REGS
1247 ENCODE_FRAME_POINTER
1248 jmp error_exit
1249 END(xen_failsafe_callback)
1250
1251 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1252 xen_hvm_callback_vector xen_evtchn_do_upcall
1253
1254 #endif /* CONFIG_XEN */
1255
1256 #if IS_ENABLED(CONFIG_HYPERV)
1257 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1258 hyperv_callback_vector hyperv_vector_handler
1259 #endif /* CONFIG_HYPERV */
1260
1261 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1262 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1263 idtentry stack_segment do_stack_segment has_error_code=1
1264
1265 #ifdef CONFIG_XEN
1266 idtentry xennmi do_nmi has_error_code=0
1267 idtentry xendebug do_debug has_error_code=0
1268 idtentry xenint3 do_int3 has_error_code=0
1269 #endif
1270
1271 idtentry general_protection do_general_protection has_error_code=1
1272 idtentry page_fault do_page_fault has_error_code=1
1273
1274 #ifdef CONFIG_KVM_GUEST
1275 idtentry async_page_fault do_async_page_fault has_error_code=1
1276 #endif
1277
1278 #ifdef CONFIG_X86_MCE
1279 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
1280 #endif
1281
1282 /*
1283 * Save all registers in pt_regs, and switch gs if needed.
1284 * Use slow, but surefire "are we in kernel?" check.
1285 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1286 */
1287 ENTRY(paranoid_entry)
1288 UNWIND_HINT_FUNC
1289 cld
1290 SAVE_C_REGS 8
1291 SAVE_EXTRA_REGS 8
1292 /*
1293 * Do the stuffing unconditionally from user/kernel to be safe
1294 */
1295 STUFF_RSB
1296 ENCODE_FRAME_POINTER 8
1297 movl $1, %ebx
1298 movl $MSR_GS_BASE, %ecx
1299 rdmsr
1300 testl %edx, %edx
1301 js 1f /* negative -> in kernel */
1302 SWAPGS
1303 xorl %ebx, %ebx
1304
1305 1:
1306 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1307 ENABLE_IBRS_CLOBBER
1308
1309 ret
1310 END(paranoid_entry)
1311
1312 /*
1313 * "Paranoid" exit path from exception stack. This is invoked
1314 * only on return from non-NMI IST interrupts that came
1315 * from kernel space.
1316 *
1317 * We may be returning to very strange contexts (e.g. very early
1318 * in syscall entry), so checking for preemption here would
1319 * be complicated. Fortunately, we there's no good reason
1320 * to try to handle preemption here.
1321 *
1322 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1323 */
1324 ENTRY(paranoid_exit)
1325 UNWIND_HINT_REGS
1326 DISABLE_INTERRUPTS(CLBR_ANY)
1327 TRACE_IRQS_OFF_DEBUG
1328 testl %ebx, %ebx /* swapgs needed? */
1329 jnz .Lparanoid_exit_no_swapgs
1330 TRACE_IRQS_IRETQ
1331 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1332 SWAPGS_UNSAFE_STACK
1333 jmp .Lparanoid_exit_restore
1334 .Lparanoid_exit_no_swapgs:
1335 TRACE_IRQS_IRETQ_DEBUG
1336 .Lparanoid_exit_restore:
1337 jmp restore_regs_and_return_to_kernel
1338 END(paranoid_exit)
1339
1340 /*
1341 * Save all registers in pt_regs, and switch gs if needed.
1342 * Return: EBX=0: came from user mode; EBX=1: otherwise
1343 */
1344 ENTRY(error_entry)
1345 UNWIND_HINT_FUNC
1346 cld
1347 SAVE_C_REGS 8
1348 SAVE_EXTRA_REGS 8
1349 STUFF_RSB
1350 ENCODE_FRAME_POINTER 8
1351 xorl %ebx, %ebx
1352 testb $3, CS+8(%rsp)
1353 jz .Lerror_kernelspace
1354
1355 /*
1356 * We entered from user mode or we're pretending to have entered
1357 * from user mode due to an IRET fault.
1358 */
1359 SWAPGS
1360 /* We have user CR3. Change to kernel CR3. */
1361 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1362
1363 ENABLE_IBRS
1364
1365 .Lerror_entry_from_usermode_after_swapgs:
1366 /* Put us onto the real thread stack. */
1367 popq %r12 /* save return addr in %12 */
1368 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1369 call sync_regs
1370 movq %rax, %rsp /* switch stack */
1371 ENCODE_FRAME_POINTER
1372 pushq %r12
1373
1374 /*
1375 * We need to tell lockdep that IRQs are off. We can't do this until
1376 * we fix gsbase, and we should do it before enter_from_user_mode
1377 * (which can take locks).
1378 */
1379 TRACE_IRQS_OFF
1380 CALL_enter_from_user_mode
1381 ret
1382
1383 .Lerror_entry_done:
1384 TRACE_IRQS_OFF
1385 ret
1386
1387 /*
1388 * There are two places in the kernel that can potentially fault with
1389 * usergs. Handle them here. B stepping K8s sometimes report a
1390 * truncated RIP for IRET exceptions returning to compat mode. Check
1391 * for these here too.
1392 */
1393 .Lerror_kernelspace:
1394 incl %ebx
1395 leaq native_irq_return_iret(%rip), %rcx
1396 cmpq %rcx, RIP+8(%rsp)
1397 je .Lerror_bad_iret
1398 movl %ecx, %eax /* zero extend */
1399 cmpq %rax, RIP+8(%rsp)
1400 je .Lbstep_iret
1401 cmpq $.Lgs_change, RIP+8(%rsp)
1402 jne .Lerror_entry_done
1403
1404 /*
1405 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1406 * gsbase and proceed. We'll fix up the exception and land in
1407 * .Lgs_change's error handler with kernel gsbase.
1408 */
1409 SWAPGS
1410 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1411 ENABLE_IBRS_CLOBBER
1412 jmp .Lerror_entry_done
1413
1414 .Lbstep_iret:
1415 /* Fix truncated RIP */
1416 movq %rcx, RIP+8(%rsp)
1417 /* fall through */
1418
1419 .Lerror_bad_iret:
1420 /*
1421 * We came from an IRET to user mode, so we have user
1422 * gsbase and CR3. Switch to kernel gsbase and CR3:
1423 */
1424 SWAPGS
1425 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1426 ENABLE_IBRS_CLOBBER
1427
1428 /*
1429 * Pretend that the exception came from user mode: set up pt_regs
1430 * as if we faulted immediately after IRET and clear EBX so that
1431 * error_exit knows that we will be returning to user mode.
1432 */
1433 mov %rsp, %rdi
1434 call fixup_bad_iret
1435 mov %rax, %rsp
1436 decl %ebx
1437 jmp .Lerror_entry_from_usermode_after_swapgs
1438 END(error_entry)
1439
1440
1441 /*
1442 * On entry, EBX is a "return to kernel mode" flag:
1443 * 1: already in kernel mode, don't need SWAPGS
1444 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1445 */
1446 ENTRY(error_exit)
1447 UNWIND_HINT_REGS
1448 DISABLE_INTERRUPTS(CLBR_ANY)
1449 TRACE_IRQS_OFF
1450 testl %ebx, %ebx
1451 jnz retint_kernel
1452 jmp retint_user
1453 END(error_exit)
1454
1455 /*
1456 * Runs on exception stack. Xen PV does not go through this path at all,
1457 * so we can use real assembly here.
1458 *
1459 * Registers:
1460 * %r14: Used to save/restore the CR3 of the interrupted context
1461 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
1462 */
1463 ENTRY(nmi)
1464 UNWIND_HINT_IRET_REGS
1465
1466 /*
1467 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1468 * the iretq it performs will take us out of NMI context.
1469 * This means that we can have nested NMIs where the next
1470 * NMI is using the top of the stack of the previous NMI. We
1471 * can't let it execute because the nested NMI will corrupt the
1472 * stack of the previous NMI. NMI handlers are not re-entrant
1473 * anyway.
1474 *
1475 * To handle this case we do the following:
1476 * Check the a special location on the stack that contains
1477 * a variable that is set when NMIs are executing.
1478 * The interrupted task's stack is also checked to see if it
1479 * is an NMI stack.
1480 * If the variable is not set and the stack is not the NMI
1481 * stack then:
1482 * o Set the special variable on the stack
1483 * o Copy the interrupt frame into an "outermost" location on the
1484 * stack
1485 * o Copy the interrupt frame into an "iret" location on the stack
1486 * o Continue processing the NMI
1487 * If the variable is set or the previous stack is the NMI stack:
1488 * o Modify the "iret" location to jump to the repeat_nmi
1489 * o return back to the first NMI
1490 *
1491 * Now on exit of the first NMI, we first clear the stack variable
1492 * The NMI stack will tell any nested NMIs at that point that it is
1493 * nested. Then we pop the stack normally with iret, and if there was
1494 * a nested NMI that updated the copy interrupt stack frame, a
1495 * jump will be made to the repeat_nmi code that will handle the second
1496 * NMI.
1497 *
1498 * However, espfix prevents us from directly returning to userspace
1499 * with a single IRET instruction. Similarly, IRET to user mode
1500 * can fault. We therefore handle NMIs from user space like
1501 * other IST entries.
1502 */
1503
1504 ASM_CLAC
1505
1506 /* Use %rdx as our temp variable throughout */
1507 pushq %rdx
1508
1509 testb $3, CS-RIP+8(%rsp)
1510 jz .Lnmi_from_kernel
1511
1512 /*
1513 * NMI from user mode. We need to run on the thread stack, but we
1514 * can't go through the normal entry paths: NMIs are masked, and
1515 * we don't want to enable interrupts, because then we'll end
1516 * up in an awkward situation in which IRQs are on but NMIs
1517 * are off.
1518 *
1519 * We also must not push anything to the stack before switching
1520 * stacks lest we corrupt the "NMI executing" variable.
1521 */
1522
1523 swapgs
1524 cld
1525 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1526 movq %rsp, %rdx
1527 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1528 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1529 pushq 5*8(%rdx) /* pt_regs->ss */
1530 pushq 4*8(%rdx) /* pt_regs->rsp */
1531 pushq 3*8(%rdx) /* pt_regs->flags */
1532 pushq 2*8(%rdx) /* pt_regs->cs */
1533 pushq 1*8(%rdx) /* pt_regs->rip */
1534 UNWIND_HINT_IRET_REGS
1535 pushq $-1 /* pt_regs->orig_ax */
1536 pushq %rdi /* pt_regs->di */
1537 pushq %rsi /* pt_regs->si */
1538 pushq (%rdx) /* pt_regs->dx */
1539 pushq %rcx /* pt_regs->cx */
1540 pushq %rax /* pt_regs->ax */
1541 pushq %r8 /* pt_regs->r8 */
1542 pushq %r9 /* pt_regs->r9 */
1543 pushq %r10 /* pt_regs->r10 */
1544 pushq %r11 /* pt_regs->r11 */
1545 pushq %rbx /* pt_regs->rbx */
1546 pushq %rbp /* pt_regs->rbp */
1547 pushq %r12 /* pt_regs->r12 */
1548 pushq %r13 /* pt_regs->r13 */
1549 pushq %r14 /* pt_regs->r14 */
1550 pushq %r15 /* pt_regs->r15 */
1551 UNWIND_HINT_REGS
1552 ENCODE_FRAME_POINTER
1553
1554 ENABLE_IBRS
1555 /*
1556 * At this point we no longer need to worry about stack damage
1557 * due to nesting -- we're on the normal thread stack and we're
1558 * done with the NMI stack.
1559 */
1560
1561 movq %rsp, %rdi
1562 movq $-1, %rsi
1563 call do_nmi
1564
1565 /*
1566 * Return back to user mode. We must *not* do the normal exit
1567 * work, because we don't want to enable interrupts.
1568 */
1569 jmp swapgs_restore_regs_and_return_to_usermode
1570
1571 .Lnmi_from_kernel:
1572 /*
1573 * Here's what our stack frame will look like:
1574 * +---------------------------------------------------------+
1575 * | original SS |
1576 * | original Return RSP |
1577 * | original RFLAGS |
1578 * | original CS |
1579 * | original RIP |
1580 * +---------------------------------------------------------+
1581 * | temp storage for rdx |
1582 * +---------------------------------------------------------+
1583 * | "NMI executing" variable |
1584 * +---------------------------------------------------------+
1585 * | iret SS } Copied from "outermost" frame |
1586 * | iret Return RSP } on each loop iteration; overwritten |
1587 * | iret RFLAGS } by a nested NMI to force another |
1588 * | iret CS } iteration if needed. |
1589 * | iret RIP } |
1590 * +---------------------------------------------------------+
1591 * | outermost SS } initialized in first_nmi; |
1592 * | outermost Return RSP } will not be changed before |
1593 * | outermost RFLAGS } NMI processing is done. |
1594 * | outermost CS } Copied to "iret" frame on each |
1595 * | outermost RIP } iteration. |
1596 * +---------------------------------------------------------+
1597 * | pt_regs |
1598 * +---------------------------------------------------------+
1599 *
1600 * The "original" frame is used by hardware. Before re-enabling
1601 * NMIs, we need to be done with it, and we need to leave enough
1602 * space for the asm code here.
1603 *
1604 * We return by executing IRET while RSP points to the "iret" frame.
1605 * That will either return for real or it will loop back into NMI
1606 * processing.
1607 *
1608 * The "outermost" frame is copied to the "iret" frame on each
1609 * iteration of the loop, so each iteration starts with the "iret"
1610 * frame pointing to the final return target.
1611 */
1612
1613 /*
1614 * Determine whether we're a nested NMI.
1615 *
1616 * If we interrupted kernel code between repeat_nmi and
1617 * end_repeat_nmi, then we are a nested NMI. We must not
1618 * modify the "iret" frame because it's being written by
1619 * the outer NMI. That's okay; the outer NMI handler is
1620 * about to about to call do_nmi anyway, so we can just
1621 * resume the outer NMI.
1622 */
1623
1624 movq $repeat_nmi, %rdx
1625 cmpq 8(%rsp), %rdx
1626 ja 1f
1627 movq $end_repeat_nmi, %rdx
1628 cmpq 8(%rsp), %rdx
1629 ja nested_nmi_out
1630 1:
1631
1632 /*
1633 * Now check "NMI executing". If it's set, then we're nested.
1634 * This will not detect if we interrupted an outer NMI just
1635 * before IRET.
1636 */
1637 cmpl $1, -8(%rsp)
1638 je nested_nmi
1639
1640 /*
1641 * Now test if the previous stack was an NMI stack. This covers
1642 * the case where we interrupt an outer NMI after it clears
1643 * "NMI executing" but before IRET. We need to be careful, though:
1644 * there is one case in which RSP could point to the NMI stack
1645 * despite there being no NMI active: naughty userspace controls
1646 * RSP at the very beginning of the SYSCALL targets. We can
1647 * pull a fast one on naughty userspace, though: we program
1648 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1649 * if it controls the kernel's RSP. We set DF before we clear
1650 * "NMI executing".
1651 */
1652 lea 6*8(%rsp), %rdx
1653 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1654 cmpq %rdx, 4*8(%rsp)
1655 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1656 ja first_nmi
1657
1658 subq $EXCEPTION_STKSZ, %rdx
1659 cmpq %rdx, 4*8(%rsp)
1660 /* If it is below the NMI stack, it is a normal NMI */
1661 jb first_nmi
1662
1663 /* Ah, it is within the NMI stack. */
1664
1665 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1666 jz first_nmi /* RSP was user controlled. */
1667
1668 /* This is a nested NMI. */
1669
1670 nested_nmi:
1671 /*
1672 * Modify the "iret" frame to point to repeat_nmi, forcing another
1673 * iteration of NMI handling.
1674 */
1675 subq $8, %rsp
1676 leaq -10*8(%rsp), %rdx
1677 pushq $__KERNEL_DS
1678 pushq %rdx
1679 pushfq
1680 pushq $__KERNEL_CS
1681 pushq $repeat_nmi
1682
1683 /* Put stack back */
1684 addq $(6*8), %rsp
1685
1686 nested_nmi_out:
1687 popq %rdx
1688
1689 /* We are returning to kernel mode, so this cannot result in a fault. */
1690 iretq
1691
1692 first_nmi:
1693 /* Restore rdx. */
1694 movq (%rsp), %rdx
1695
1696 /* Make room for "NMI executing". */
1697 pushq $0
1698
1699 /* Leave room for the "iret" frame */
1700 subq $(5*8), %rsp
1701
1702 /* Copy the "original" frame to the "outermost" frame */
1703 .rept 5
1704 pushq 11*8(%rsp)
1705 .endr
1706 UNWIND_HINT_IRET_REGS
1707
1708 /* Everything up to here is safe from nested NMIs */
1709
1710 #ifdef CONFIG_DEBUG_ENTRY
1711 /*
1712 * For ease of testing, unmask NMIs right away. Disabled by
1713 * default because IRET is very expensive.
1714 */
1715 pushq $0 /* SS */
1716 pushq %rsp /* RSP (minus 8 because of the previous push) */
1717 addq $8, (%rsp) /* Fix up RSP */
1718 pushfq /* RFLAGS */
1719 pushq $__KERNEL_CS /* CS */
1720 pushq $1f /* RIP */
1721 iretq /* continues at repeat_nmi below */
1722 UNWIND_HINT_IRET_REGS
1723 1:
1724 #endif
1725
1726 repeat_nmi:
1727 /*
1728 * If there was a nested NMI, the first NMI's iret will return
1729 * here. But NMIs are still enabled and we can take another
1730 * nested NMI. The nested NMI checks the interrupted RIP to see
1731 * if it is between repeat_nmi and end_repeat_nmi, and if so
1732 * it will just return, as we are about to repeat an NMI anyway.
1733 * This makes it safe to copy to the stack frame that a nested
1734 * NMI will update.
1735 *
1736 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1737 * we're repeating an NMI, gsbase has the same value that it had on
1738 * the first iteration. paranoid_entry will load the kernel
1739 * gsbase if needed before we call do_nmi. "NMI executing"
1740 * is zero.
1741 */
1742 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1743
1744 /*
1745 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1746 * here must not modify the "iret" frame while we're writing to
1747 * it or it will end up containing garbage.
1748 */
1749 addq $(10*8), %rsp
1750 .rept 5
1751 pushq -6*8(%rsp)
1752 .endr
1753 subq $(5*8), %rsp
1754 end_repeat_nmi:
1755
1756 /*
1757 * Everything below this point can be preempted by a nested NMI.
1758 * If this happens, then the inner NMI will change the "iret"
1759 * frame to point back to repeat_nmi.
1760 */
1761 pushq $-1 /* ORIG_RAX: no syscall to restart */
1762 ALLOC_PT_GPREGS_ON_STACK
1763
1764 /*
1765 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1766 * as we should not be calling schedule in NMI context.
1767 * Even with normal interrupts enabled. An NMI should not be
1768 * setting NEED_RESCHED or anything that normal interrupts and
1769 * exceptions might do.
1770 */
1771 call paranoid_entry
1772 UNWIND_HINT_REGS
1773
1774 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1775 movq %rsp, %rdi
1776 movq $-1, %rsi
1777 call do_nmi
1778
1779 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1780
1781 testl %ebx, %ebx /* swapgs needed? */
1782 jnz nmi_restore
1783 nmi_swapgs:
1784 SWAPGS_UNSAFE_STACK
1785 nmi_restore:
1786 POP_EXTRA_REGS
1787 POP_C_REGS
1788
1789 /*
1790 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1791 * at the "iret" frame.
1792 */
1793 addq $6*8, %rsp
1794
1795 /*
1796 * Clear "NMI executing". Set DF first so that we can easily
1797 * distinguish the remaining code between here and IRET from
1798 * the SYSCALL entry and exit paths.
1799 *
1800 * We arguably should just inspect RIP instead, but I (Andy) wrote
1801 * this code when I had the misapprehension that Xen PV supported
1802 * NMIs, and Xen PV would break that approach.
1803 */
1804 std
1805 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1806
1807 /*
1808 * iretq reads the "iret" frame and exits the NMI stack in a
1809 * single instruction. We are returning to kernel mode, so this
1810 * cannot result in a fault. Similarly, we don't need to worry
1811 * about espfix64 on the way back to kernel mode.
1812 */
1813 iretq
1814 END(nmi)
1815
1816 ENTRY(ignore_sysret)
1817 UNWIND_HINT_EMPTY
1818 mov $-ENOSYS, %eax
1819 sysret
1820 END(ignore_sysret)
1821
1822 ENTRY(rewind_stack_do_exit)
1823 UNWIND_HINT_FUNC
1824 /* Prevent any naive code from trying to unwind to our caller. */
1825 xorl %ebp, %ebp
1826
1827 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1828 leaq -PTREGS_SIZE(%rax), %rsp
1829 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1830
1831 call do_exit
1832 END(rewind_stack_do_exit)